Dynamic Memory Allocation :

Used When we want to allocate memory during run time.

int marks[10]; // fixed size and fixed address ... No change in Memory address.

// fixed size. (no change in size possible

We have to use <stdlib.h> hadder file for dynamic memory allocation.

It has 4 functions.

PwWNPRE

malloc()
calloc()
free()
realloc()

malloc()
memory allocation
allocate the one memory block given by user. // eg. Reserves 20bytes of block

calloc()
creates number of blocks. // uses for arrays

free()
used to free the space after using malloc() or alloc()

realloc()
if used malloc() or alloc() and need to modified memory block size realloc()

kokkkokokkokok ok ok ok ook okok ok kokok ki k ok ok ok ok ok ok ok ok ok k sk ok 3k 3k ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok %k ok ok ok

malloc()

creates the memory block according to given size ().

malloc() function Also returns the address, which points the address of the first byte in that
specific block.

Syntax :
void * maclloc(size in byte);

as it has void pointer as return type it can return Any type of data : int, string, char.
ptr = (cast_type*) malloc(size in byte);

ptr = (int*)malloc(10);
you must cast the pointer according to type of data eg. Here.. (int *)

here, ptr will be int type.

int — 2 byte

it contains garbage value. And here it can hold 5 int values if one int requires 2 bytes

in case because of the some problem if memory is not allocated by malloc() function than It
will return null pointer.

#include<stdio.h>
#tinclude<conio.h>
#include<stdlib.h>

main()

{

int n, *ptr, sum =0, i, *p;
printf(“Enter the size of array”);
scanf(“%d”,&n);

ptr = (int*)malloc(n* sizeof(int));

// ptr will point the first byte of the memory block.

// now we can use null pointer to see block is created or not.
if(ptr == NULL)

{

printf(“Error : out of Memory”);

exit(0);

}

p = ptr;
// right now both have the same address.

printf(“Enter the elements in Array”);
for(i= 1; i<=n; i++)

{

scanf(“%d”,ptr);

sum = sum + *ptr;

ptr++;

}

printf(“Array Elements : “);
for(i=1; i<=n; i++)

{

Printf(“%d”,*p);

ptt;

printf(“addition is %d”, sum);

calloc()

malloc ()creates only one block.. while calloc() can create multiple blocks.

calloc() can be used for arrays.
void *calloc(number_of_blocks, size for each block in bytes);

Syntax :

pointer = (Data_Type*) calloc(n,Size in bytes);

// here function calloc() returns the address of first byte of first block.

// malloc() has garbage value in all variables while calloc initionalize with 0.
// returns null pointer if block is not created successfully.

Example Programm for calloc() in C
#include<stdio.h>
#include<stdlib.h> // malloc(), calloc() and other functions are here in this file.

main()

{

int n, *ptr, *p, i, sum=0;

printf(“number of elements to be entered”);
scanf(“%d”,&n);

ptr = (int *)calloc(n, sizeof(int));

p= ptr;

if(ptr == NULL)

{

printf(“memory block is not created successfully);
exit(0); // 0 means normal termination.
}

printf(“enter %d elements”,n);

for(i =1; i<=n; i++)

{

scanf(“%d”,ptr);

sum = sum + *ptr;

ptr++;

}

printf(“Elements are “);

for(i =1; i<=n; i++)

{

printf(“%d”, *p);

p++;

}

printf(“ Addition = %d”,sum);

free(ptr); // free can be used to free the memory so that we can use that memory in other
program.

}

// calloc has 2 arguments and can create more than 1 block.

Realloc()

realloc() function is used to change the size of the memory which is allocated by malloc() or
alloc().

You can increase / decrease the size of memory using realloc().
It returns void pointer.
Syntax : void * realloc(void *ptr, NewSizelnBytes);

Here ptr: is old pointer by which the memory allocation is done using malloc or calloc
function.

Pointer = (cast_type*) realloc(ptr, New_Size_in_bytes);

_____ 2k 3% 3k 2k 3k 3%k ok %k ok %k ok ok ok %k ok ok ok %k ok 3k ok ok %k %k ok %k %k %k %k ok

e Write a program that stores names of the best hospitals in Riyadh into an array of
strings.
o Define a constant variable MAX and make it equal to 5.
o Use the main code provided in the end of this question. Which shows a menu where the
user will choose one of the 4 options:

= Add a new hospital name: Which calls AddName function.
= Delete a hospital name: Which calls RemoveName function.
= Print the hospitals names: Which calls PrintNames function.
= Exit: Which terminates the program.

e Write the following functions:

o Write the function AddName that takes an array of strings pointers called Names and a
pointer of integer size.
= Check if there is still enough space to store a new name.
= Hint: you will need to use the value of MAX to check.
= |f there is a space, ask the user to input the hospital name and store it in a huge array
of char (70 char).
= Calculate the length of the hospital name.
= Allocate a dynamic memory to store the entered hospital name and store its location
in one of Names indexes.
® |ncrement the size by one.
e void AddName(char *Names[],int *size)
o Write the function RemoveName that takes an array of strings pointers called Names and a
pointer of integer size.
= Check if the array is not empty.
= |fit’s not, asks the user to input the index of the hospital name that he wants to
delete. Assume that the user will enter indices starting from 0.
= |f the entered index is within a correct range of indices, Free the dynamically
allocated memory.
= Shift left all the hospitals names that comes after it.

= Decrement the size by one.
e void RemoveName(char *Names[],int *size)

o Write the function PrintNames that takes an array of strings pointers called Names and an
integer size. Then prints all of the names separated by commas (,).
= Hint: Make sure that the array is not empty before printing.
® void PrintNames(char *Names[],int size)

Model Answer:

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define MAX 5

volid AddName (char *[],int *);
void RemoveName (char *[],int *);
void PrintNames (char *[],int);

int main ()

{

char *Names[MAX];
int size = 0;

int c;

printf ("1- Add a new name.\n");

printf ("2- Delete an old name.\n");

printf ("3- Print names.\n");

printf ("4- Exit.\n");

printf ("Enter your choice: ");

scanf ("%1i", &c);

case 1:
AddName (Names, &size) ;

break;

case 2:
RemoveName (Names, &size) ;

break;

case 3:
PrintNames (Names, size) ;

break;

case 4:
printf ("Good bye.\n");

break;

default:
printf ("ERROR: Bad input.\n");

}

}while(c !'= 4);

void AddName (char *Names[],int *size)
{
int Copysize = *size;
char *s;
if (Copysize >= MAX)
printf ("\n ERROR: Array is full. Cannot add.");
else
{
int i, length=0;
char name[100];
printf ("Enter the name: ");

scanf ("%s", name) ;

for(1i=0; name[1]!="\0"; 1i++)
length++;
s = (char *)malloc((length+l) *sizeof (char));

strcpy (s, name);

Names|[*size]=s;

*size=*size+l;

printf ("\n The entered data has been added
successfully.\n");

}

void RemoveName (char *Names([],int *size)
{

if (*size == 0)

printf ("There are no data to delete");
else

{

int index, 1i;

printf ("Please Enter the index of the element you want to delete
starting from 0 ");

scanf ("%d", &index);

if (index<0 || index >= MAX) {

printf ("The entered index is incorrect");
return;

}

if (index >= *size) {

printf ("The entered index is already free,

deleted");

return;

}

free (Names[index]) ;

for (i=index; i<MAX-1; i++)
{

Names[1] = Names[i+1];

} [MAX-1] NULL;

*size= *size-1;

printf ("Deletion is done successfully");

}
}

void PrintNames (char *Names[],int size)
{

int 1i;

if (size>0) {

for (1i=0; i<size; 1i++)

printf ("%s , ", * (Names+i)); ("\n");

}

else

{

printf ("There are No data to print");
printf ("\n");

}

}

There is

nothing to be

