Dynamic Memory Allocation :

Used When we want to allocate memory during run time.

int marks[10]; // fixed size and fixed address ... No change in Memory address.

// fixed size. ( no change in size possible

We have to use <stdlib.h> hadder file for dynamic memory allocation.

It has 4 functions.
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malloc()
calloc()
free()
realloc()

malloc()
memory allocation
allocate the one memory block given by user. // eg. Reserves 20bytes of block

calloc()
creates number of blocks. // uses for arrays

free()
used to free the space after using malloc() or alloc()

realloc()
if used malloc() or alloc() and need to modified memory block size realloc()
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malloc()

creates the memory block according to given size ().

malloc() function Also returns the address, which points the address of the first byte in that
specific block.

Syntax :
void * maclloc(size in byte );

as it has void pointer as return type it can return Any type of data : int, string, char.
ptr = (cast_type*) malloc( size in byte);

ptr = (int*)malloc(10);
you must cast the pointer according to type of data eg. Here.. (int *)

here, ptr will be int type.

int — 2 byte

it contains garbage value. And here it can hold 5 int values if one int requires 2 bytes

in case because of the some problem if memory is not allocated by malloc() function than It
will return null pointer.



#include<stdio.h>
#tinclude<conio.h>
#include<stdlib.h>

main()

{

int n, *ptr, sum =0, i, *p;
printf(“Enter the size of array”);
scanf(“%d”,&n);

ptr = (int*)malloc(n* sizeof(int));

// ptr will point the first byte of the memory block.

// now we can use null pointer to see block is created or not.
if( ptr == NULL)

{

printf(“Error : out of Memory”);

exit(0);

}

p = ptr;
// right now both have the same address.

printf(“Enter the elements in Array”);
for( i= 1; i<=n; i++)

{

scanf(“%d”,ptr);

sum = sum + *ptr;

ptr++;

}

printf(“Array Elements : “);
for(i=1; i<=n; i++)

{

Printf(“%d”,*p);

ptt;

printf(“addition is %d”, sum);



calloc()

malloc ()creates only one block.. while calloc() can create multiple blocks.

calloc() can be used for arrays.
void *calloc( number_of_blocks, size for each block in bytes);

Syntax :

pointer = (Data_Type*) calloc(n,Size in bytes);

// here function calloc() returns the address of first byte of first block.

// malloc() has garbage value in all variables while calloc initionalize with 0.
// returns null pointer if block is not created successfully.



Example Programm for calloc() in C
#include<stdio.h>
#include<stdlib.h> // malloc(), calloc() and other functions are here in this file.

main()

{

int n, *ptr, *p, i, sum=0;

printf( “number of elements to be entered”);
scanf(“%d”,&n);

ptr = (int *)calloc(n, sizeof(int));

p= ptr;

if(ptr == NULL)

{

printf(“memory block is not created successfully);
exit(0); // 0 means normal termination.
}

printf(“enter %d elements”,n);

for(i =1; i<=n; i++)

{

scanf(“%d”,ptr);

sum = sum + *ptr;

ptr++;

}

printf(“Elements are “);

for(i =1; i<=n; i++)

{

printf( “%d”, *p);

p++;

}

printf(“ Addition = %d”,sum);

free(ptr); // free can be used to free the memory so that we can use that memory in other
program.

}

// calloc has 2 arguments and can create more than 1 block.



Realloc()

realloc() function is used to change the size of the memory which is allocated by malloc() or
alloc().

You can increase / decrease the size of memory using realloc().
It returns void pointer.
Syntax : void * realloc(void *ptr, NewSizelnBytes);

Here ptr: is old pointer by which the memory allocation is done using malloc or calloc
function.

Pointer = (cast_type*) realloc( ptr, New_Size_in_bytes);
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e Write a program that stores names of the best hospitals in Riyadh into an array of
strings.
o Define a constant variable MAX and make it equal to 5.
o Use the main code provided in the end of this question. Which shows a menu where the
user will choose one of the 4 options:

= Add a new hospital name: Which calls AddName function.
= Delete a hospital name: Which calls RemoveName function.
= Print the hospitals names: Which calls PrintNames function.
= Exit: Which terminates the program.

e Write the following functions:



o Write the function AddName that takes an array of strings pointers called Names and a
pointer of integer size.
= Check if there is still enough space to store a new name.
= Hint: you will need to use the value of MAX to check.
= |f there is a space, ask the user to input the hospital name and store it in a huge array
of char (70 char).
= Calculate the length of the hospital name.
= Allocate a dynamic memory to store the entered hospital name and store its location
in one of Names indexes.
® |ncrement the size by one.
e void AddName(char *Names[],int *size)
o Write the function RemoveName that takes an array of strings pointers called Names and a
pointer of integer size.
= Check if the array is not empty.
= |fit’s not, asks the user to input the index of the hospital name that he wants to
delete. Assume that the user will enter indices starting from 0.
= |f the entered index is within a correct range of indices, Free the dynamically
allocated memory.
= Shift left all the hospitals names that comes after it.

= Decrement the size by one.
e void RemoveName(char *Names[],int *size)

o Write the function PrintNames that takes an array of strings pointers called Names and an
integer size. Then prints all of the names separated by commas (,).
= Hint: Make sure that the array is not empty before printing.
®  void PrintNames(char *Names[],int size)

Model Answer:

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define MAX 5

volid AddName (char *[],int *);
void RemoveName (char *[],int *);
void PrintNames (char *[],int);

int main ()

{

char *Names[MAX];
int size = 0;

int c;



printf ("1- Add a new name.\n");

printf ("2- Delete an old name.\n");

printf ("3- Print names.\n");

printf ("4- Exit.\n");

printf ("Enter your choice: ");

scanf ("%1i", &c);

case 1:
AddName (Names, &size) ;

break;

case 2:
RemoveName (Names, &size) ;

break;

case 3:
PrintNames (Names, size) ;

break;

case 4:
printf ("Good bye.\n");

break;

default:
printf ("ERROR: Bad input.\n");

}



}while(c !'= 4);

void AddName (char *Names[],int *size)
{
int Copysize = *size;
char *s;
if (Copysize >= MAX)
printf ("\n ERROR: Array is full. Cannot add.");
else
{
int i, length=0;
char name[100];
printf ("Enter the name: ");

scanf ("%s", name) ;

for(1i=0; name[1]!="\0"; 1i++)
length++;
s = (char *)malloc((length+l) *sizeof (char));

strcpy (s, name);

Names|[*size]=s;

*size=*size+l;

printf ("\n The entered data has been added
successfully.\n");

}



void RemoveName (char *Names([],int *size)
{

if (*size == 0)

printf ("There are no data to delete");
else

{

int index, 1i;

printf ("Please Enter the index of the element you want to delete
starting from 0 ");

scanf ("%d", &index);

if (index<0 || index >= MAX) {

printf ("The entered index is incorrect");
return;

}



if (index >= *size) {

printf ("The entered index is already free,

deleted");

return;

}

free (Names[index]) ;

for (i=index; i<MAX-1; i++)
{

Names[1] = Names[i+1];

} [MAX-1] NULL;

*size= *size-1;

printf ("Deletion is done successfully");

}
}

void PrintNames (char *Names[],int size)
{

int 1i;

if (size>0) {

for (1i=0; i<size; 1i++)

printf ("%s , ", * (Names+i)); ("\n");

}

else

{

printf ("There are No data to print");
printf ("\n");

}

}

There is

nothing to be






