Eigenvalues and Eigenvectors
 Linear Algebra and Vector Analysis

Dr. Abdul Ghani Abro
King Saud University Muzahimiyah Campus

Definition: A nonzero vector \mathbf{x} is an eigenvector (or characteristic vector) of a square matrix \mathbf{A} if there exists a scalar λ such that $\mathbf{A x}=\lambda \mathbf{x}$. Then λ is an eigenvalue (or characteristic value) of \mathbf{A}.

Note: The zero vector can not be an eigenvector even though $\mathrm{A} 0=\lambda 0$. But $\lambda=0$ can be an eigenvalue.

Example:

$$
\begin{aligned}
& \text { Show } x=\left\lfloor\begin{array}{l}
2 \\
1
\end{array}\right] \text { is an eigenvector for } A=\left[\begin{array}{ll}
2 & -4 \\
3 & -6
\end{array}\right] \\
& \text { Solution : } A x=\left[\begin{array}{ll}
2 & -4 \\
3 & -6
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \text { But for } \lambda=0, \quad \lambda x=0\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

or.abu Thus, x is an eigenvector of A, and $\lambda=0$ is an eigenvalue.

Geometric interpretation of Eigenvalues and Eigenvectors

An $\mathrm{n} \times \mathrm{n}$ matrix \mathbf{A} multiplied by $\mathrm{n} \times 1$ vector \mathbf{x} results in another $\mathrm{n} \times 1$ vector $\mathbf{y}=\mathrm{Ax}$. Thus \mathbf{A} can be considered as a transformation matrix.

In general, a matrix acts on a vector by changing both its magnitude and its direction. However, a matrix may act on certain vectors by changing only their magnitude, and leaving their direction unchanged (or possibly reversing it). These vectors are the eigenvectors of the matrix.

A matrix acts on an eigenvector by multiplying its magnitude by a factor, which is positive if its direction is unchanged and negative if its direction is reversed. This factor is the eigenvalue associated with that eigenvector.

Eigenvalues: examples

Example 1: Find the eigenvalues of

$$
A=\left[\begin{array}{cc}
2 & -12 \\
1 & -5
\end{array}\right]
$$

$$
\begin{aligned}
|\lambda I-A| & =\left|\begin{array}{cc}
\lambda-2 & 12 \\
-1 & \lambda+5
\end{array}\right|=(\lambda-2)(\lambda+5)+12 \\
& =\lambda^{2}+3 \lambda+2 \Rightarrow(\lambda+1)(\lambda+2)
\end{aligned}
$$

two eigenvalues: $-1,-2$
Note: The roots of the characteristic equation can be repeated. That is, $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{\mathrm{k}}$. If that happens, the eigenvalue is said to be of multiplicity k .
Example 2: Find the eigenvalues of

$$
\left.|\lambda I-A|=\left|\begin{array}{ccc}
\lambda-2 & -1 & 0 \\
\text { Dr.Abdu Ghani Abio } \\
0 & \lambda-2 & 0 \\
0 & \lambda-2
\end{array}\right|=(\lambda-2)^{3}=0 \quad \begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Eigenvectors

To each distinct eigenvalue of a matrix \mathbf{A} there will correspond at least one eigenvector which can be found by solving the appropriate set of homogenous equations. If λ_{i} is an eigenvalue then the corresponding eigenvector $\mathbf{x}_{\mathbf{i}}$ is the solution of $\left(\boldsymbol{A}-\lambda_{i} \boldsymbol{I}\right) \boldsymbol{x}_{i}=0$

Example 1 (cont.):

$$
\begin{gathered}
\lambda=-1:(-1) I-A=\left[\begin{array}{cc}
-3 & 12 \\
-1 & 4
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
1 & -4 \\
0 & 0
\end{array}\right] \\
x_{1}-4 x_{2}=0 \Rightarrow x_{1}=4 t, x_{2}=t \\
\mathbf{x}_{1}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=t\left[\begin{array}{l}
4 \\
1
\end{array}\right], t \neq 0 \\
\lambda=-2:(-2) I-A=\left[\begin{array}{cc}
-4 & 12 \\
-1 & 3
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
1 & -3 \\
0 & 0
\end{array}\right] \\
\mathbf{x}_{2}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=s\left[\begin{array}{l}
3 \\
1
\end{array}\right], s \neq 0
\end{gathered}
$$

Eigenvectors

Example 2 (cont.): Find the eigenvectors of

- Solve the homogeneous linear system represented by

$$
\begin{aligned}
& (2 I-A) \mathbf{x}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& x_{1}=s, x_{3}=t
\end{aligned}
$$

- The eigenvectors of $\lambda=2$ are of the form

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
s \\
0 \\
t
\end{array}\right]=s\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],
$$

Properties of Eigenvalues and Eigenvectors

Definition: The trace of a matrix A, designated by $\operatorname{tr}(\mathrm{A})$, is the sum of the elements on the main diagonal.

Property 1: The sum of the eigenvalues of a matrix equals the trace of the matrix.

Property 2: A matrix is singular if and only if it has a zero eigenvalue.

Property 3: The eigenvalues of an upper (or lower) triangular matrix are the elements on the main diagonal.

Property 4: If λ is an eigenvalue of \mathbf{A} and \mathbf{A} is invertible, then $1 / \lambda$ is an eigenvalue of matrix \mathbf{A}^{-1}.

Property 5: If λ is an eigenvalue of \mathbf{A} then $\mathbf{k} \lambda$ is an eigenvalue of $\mathbf{k} \mathbf{A}$ where \mathbf{k} is any arbitrary scalar.

Property 6: If λ is an eigenvalue of \mathbf{A} then $\lambda^{\mathbf{k}}$ is an eigenvalue of $\mathbf{A}^{\mathbf{k}}$ for any positive integer \mathbf{k}.

Property 8: If λ is an eigenvalue of \mathbf{A} then λ is an eigenvalue of \mathbf{A}^{T}.

Property 9: The product of the eigenvalues (counting multiplicity) of a matrix equals the determinant of the matrix.

