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Abstract. In this paper, a four-dimensional rotating Kaluza Klien (K-K) black hole was deformed using
rainbow functions derived from loop quantum gravity and non-commutative geometry. We studied the
thermodynamic properties and critical phenomena of this deformed black hole. The deformed temperature
and entropy showed the existence of a Planckian remnant. The calculation of Gibbs free energy G for the
ordinary and deformed black holes showed that both share a similar critical behaviour.

1 Introduction

The quest for a consistent theory of gravity is ongoing since the early 20’s of the past century. Nevertheless, such a
theory is still unavailable. Many programmes for quantum gravity however exists, like string theory, loop quantum
gravity (LQG), causal dynamical triangulation (CDT), and many others. Most of these programmes predict that the
spacetime admits a minimal length scale. Therefore, there is a maximal energy EP that can be put into a system. This
basic, yet important and universal prediction of quantum gravity programmes leads to phenomenological investigation
of quantum gravity. The Hořava-Lifshitz gravity is based on such investigation, by imposing a deformation to the
energy-momentum dispersion relations for energies close to Ep [1, 2]. Another deformation is made by gravity’s rain-
bow [3], where different wavelengths of light (having different energies) experience gravity differently. More generally,
gravity is an energy-dependent phenomenon.

The deformation of energy-momentum dispersion relations can be derived from different quantum gravity pro-
grammes, in the UV limit. For instance in spacetime foam [4], spin-network in loop quantum gravity (LQG) [5],
discrete spacetime [6], models based on string field theory [7] and non-commutative geometry [8]. This formalism
has been heavily studied within string theory as well, the different Lifshitz scaling of space and time has been used
to deform type-IIA string theory [9], type-IIB string theory [10], AdS/CFT correspondence [11–14], dilaton black
branes [15,16], and dilaton black holes [17,18].

It has been shown that Hořava-Lifshitz gravity and gravity’s rainbow produce similar physical results [19], as they
are based on the same physical assumption. The Lifshitz deformation of geometries has produced interesting results,
and rainbow deformation has the same motivation, in this paper we will study the rainbow deformation of rotating
Kaluza-Klien black holes. In gravity’s rainbow, the geometry depends on the energy of the probe, and thus probes
of of different energy see the geometry differently. Thus, a single metric is replaced by a family of energy-dependent
metrics forming a rainbow of metrics. Now the UV modification of the energy-momentum dispersion relation can be
expressed as

E2f2(E/EP ) − p2g2(E/EP ) = m2, (1)

where EP is the Planck energy, E is the energy at which the geometry is probed, and f(E/EP ) and g(E/EP ) are the
rainbow functions. As the general relativity should be recovered in the IR limit, we have

lim
E/EP →0

f(E/EP ) = 1, lim
E/EP →0

g(E/EP ) = 1. (2)

Now the metric in gravity’s rainbow [20]

h(E) = ηabea(E) ⊗ eb(E). (3)
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So, the energy-dependent frame fields are

e0(E) =
1

f(E/EP )
ẽ0, ei(E) =

1

g(E/EP )
ẽi. (4)

Here ẽ0 and ẽi are the original energy-independent frame fields. The deformation of geometry by the rainbow functions
has been studied extensively, such as the study of black rings [21], black branes [22], higher-dimensional microscopic
black holes and the consequences of gravity’s rainbow on their detection at the TeV scale at the LHC [23]. Grav-
ity’s rainbow has also been used to address the black hole information paradox [24], and in alternative theories of
gravity [25–30].

In this paper, we shall study deformed rotating Kaluza-Kleinblack hole by the rainbow functions, and investigate its
thermodynamic properties. We start by a review of rotating Kaluza-Klein black holes, and their thermodynamics, then
we deform the metric via the rainbow functions and discuss the implications of this deformation on the thermodynamics
of these black holes.

2 Thermodynamics of rotating Kaluza-Klein black holes

Kaluza-Klein black holes are a 5D uplifted solution of rotating black holes with electric Q and magnetic P charges [31–
33]. This is a general solution to the dyonic solution (where Q = P ). This solution is considered from the 4D Einstein-
Maxwell-dilaton theory [34], or as a rotating D0-D6 bound state in string theory [35]. The rotating KK black hole
contain a 4D dyonic Reissner-Nordstrøm black hole and Myers-Perry black hole [36]. The KK solution in 5D pure
Einstein gravity has the following metric:

ds2
(5) =

H2

H1
(R dŷ + A)

2 − H3

H2

(

dt̂ + B
)2

+ H1

(

dr̂2

Ξ
+ dθ2 +

Ξ

H3
sin2 θ dφ

)

, (5)

where

H1 = r̂2 + µ2j2 cos2 θ + r̂(p = 2µ) +
1

2

p

p + q
(p − 2µ) (q − 2µ)

+
1

2

p

p + q

√

(p2 − 4µ2)(q2 − 4µ2)j cos θ. (6a)

H2 = r̂2 + µ2j2 cos2 θ + r̂(q − 2µ) +
1

2

q

p + q
(p − 2µ)(q − 2µ)

− 1

2

p

p + q

√

(p2 − 4µ2)(q2 − 4µ2)j cos θ. (6b)

H3 = r̂2 + µ2j2 cos2 θ − 2µr̂. (6c)

Ξ = r̂2 + µ2j2 − 2µr̂, (6d)

and

A =

[

√

q(q2 − 4µ2)

p + q

(

r̂ +
p − 2µ

2

)

− 1

2

√

q3(p2 − 4µ2)

p + q
j cos θ

]

H−1
2 dt̂

+

[

−

√

q(q2 − 4µ2)

p + q
(H2 + µ2j2 sin2 θ) cos θ

+
1

2

√

q(q2 − 4µ2)

p + q

{

pr̂ − µ(p − 2µ) +
q(q2 − 4µ2)

p + q

}

j sin2 θ

]

H−1
2 dφ (7)

B =
1

2

√
pq

pq + 4µ2r̂ − µ(p − 2µ)(q − 2µ)

p + q
H−1

3 j sin2 θ dφ, (8)

with R being the radius of the compactified fifth K-K dimension ŷ with the condition ŷ = ŷ + 2π. We can obtain the
4D metric after the K-K reduction of ŷ:

ds2(4) = − H3√
H1H2

(

dt̂ + B
)2

+
√

H1H2

(

dr̂2

Ξ
+ dθ2 +

Ξ

H3
sin2 θ dφ

)

. (9)
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There are four physical parameters that characterises the rotating K-K black hole, the mass M , electric and magnetic
charges Q, P and the angular momentum J . They are given in terms of the parameters µ, q, p and j:

M =
p + q

4
, (10a)

Q =
1

2

(

q(q2 − 4µ2)

p + q

)1/2

, (10b)

P =
1

2

(

p(p2 − 4µ2)

p + q

)1/2

, (10c)

J =

√
pq(pq + 4µ2)

4(p + q)
j. (10d)

The K-K black hole has an event horizon at Ξ = 0,

r± = µ
(

1 ±
√

1 − j2
)

. (11)

The Hawking temperature is then

T0 =
µh̄

π
√

pq
(

2µ√
1−j2

+ 4µ2+pq
p+q

) . (12)

Using the relation dS = dM/T we can obtain the entropy:

S0 =
2π p+q

4

(

3(p+q)

4
√

1−j2
+ 12µ + pq

µ

)

3h̄
. (13)

We observe, from figs. 1 and 2, that the K-K black holes have a very similar thermodynamic behaviour as a Kerr-
Neumann black holes with an effective U(1) charge Q = Q + P . The first law of thermodynamics is then written
as [33]

dM = T dS − ΩdJ + ΦEdQ + ΦMdP, (14)

in which

Ω =
p + q
√

pq

2µj

2µ(p + q) + (pq + 4µ2)
√

1 − j2
, (15)

ΦE =

(

2µ√
1−j

+ p
)
√

p(q2−µ2)
p+q

2
√

pq
(

2µ√
1−j2

+ 4µ2+pq
p+q

) , (16)

ΦM =

(

2µ√
1−j

+ q
)
√

q(p2−µ2)
p+q

2
√

pq
(

2µ√
1−j2

+ 4µ2+pq
p+q

) . (17)
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Fig. 1. Hawking temperature of different rotating K-K black holes (fixed Q, P and J) as a function of their mass M .

Fig. 2. The entropy of different rotating K-K black holes (fixed Q, P and J) as a function of their mass M .

The heat capacities can be calculated from the general relation CX := T (∂S/∂T )X [37]

CJ =
π

2µh̄

(

− µh̄(
√

1−j2p+q+4µ)

π(
√

1−j2µ2+
√

1−j2 1
4pq+ 1

2µ(p+q))
−

(

2µ
√

1−j2
+q

)

√

q(p2−µ2)

p+q
+

(

2µ
√

1−j2
+p

) (

−

√

p(q2−µ2)

p + q

))

.

(18)

CQ =
π

2µ2h̄2

(

− 4µ2h̄2(
√

1 − j2M + µ)

π(
√

1 − j2µ2 +
√

1 − j2M2 + 2µM)

−
2π2(

√

1 − j2µ2 +
√

1 − j2M2 + 2µM)3(
√

1 − j2q + 2µ)
√

q(p2−µ2)
p+q

(1 − j2)3/2µh̄(
√

1 − j2M + µ)
− µh̄

(

2µ
√

1 − j2
+ q

)

√

q(p2 − µ2)

p + q

)

.

(19)

CP =
π

2µ2h̄2

(

− 4µ2h̄2(
√

1 − j2M + µ)

π(
√

1 − j2µ2 +
√

1 − j2M2 + 2µM)

−
2π2(

√

1 − j2µ2 +
√

1 − j2M2 + 2µM)3(
√

1 − j2q + 2µ)
√

q(p2−µ2)
p+q

(1 − j2)3/2µh̄(
√

1 − j2M + µ)
− µh̄

(

2µ
√

1 − j2
+ p

)

√

p(q2 − µ2)

p + q

)

.

(20)

Hereby, we finish the review on rotating K-K black holes. In the next section, they shall be deformed by gravity’s
rainbow and their thermodynamic properties will be discussed.
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3 K-K black holes in gravity’s rainbow

The rotating K-K black hole is deformed by the rainbow functions discussed earlier in (2), where E is the energy of a
“quantum” particle near the outer horizon r̂ ∼ r+. Since the K-K black hole is 4-dimensional, since the fifth dimension
is compactified and the motion on it resembles the U(1) charge, the particle could - for instance - be emitted from
the Hawking radiation, and this has been studied for other black holes [38]. In order to estimate E, we may use the
uncertainty relation for position and momentum, and write ∆p ≥ 1/∆x. Thus, we can obtain a bound on energy of a
black hole, E ≥ 1/∆x [39]. It should be noted that this uncertainty relation holds for the rotating K-K black hole like
any other 4D black hole, in gravity’s rainbow [38]. Thus we write

E ≥ 1/∆x ≈ 1/r+. (21)

The general relation for temperature of a black hole in gravity rainbow was found to be [39]

T = T0
g(E)

f(E)
, (22)

where f(E) and g(E) are the rainbow function defined in (2). Observe that these deformations depend on the radial
coordinates r̂.

The deformation relation (22) is explained thoroughly in refs. [24,38–40] and many others. It is natural therefore to
conjecture that this deformation holds for the rotating K-K black holes, as well. One may define the rainbow functions
f(E) and g(E) in many ways, However, in this study these functions are chosen such that they are compatible with
loop quantum gravity and non-commutative geometry [41,42]:

f(E) := 1, g(E) :=
√

1 − η(E/Ep)ν . (23)

Here, η and ν are free parameters. Now, we use (22), (12), and (23) to obtain the formula for the modified temperature:

T =
µh̄

√

1 − η(1/r+Ep)ν

π
√

pq
(

2µ√
1−j2

+ 4µ2+pq
p+q

) . (24)

Since the area of the 4D black hole is spherically symmetric [37], we have A = 4πr2
+ we may rewrite (22) in terms of

A instead of r+:

T (M) =

µh̄

√

1 − η
(

1/
√

4π
A Ep

)ν

2πM
(

2µ√
1−j2

+ 4µ2+4M2

M

) . (25)

Similarly, the deformed entropy is calculated from the integral S =
∫

dM
T , it is found to be given by the hypergeometric

functions 2F1(a, b; c; d),

S(M) =
2π

µh̄

(

µM

(

M 2F1

(

1
2 ,− 2

ν ; ν−2
ν ; ( 1

MEp
)νη

)

√

1 − j2

+ µ 2F1

(

1

2
,−1

ν
;
ν − 1

ν
;

(

1

MEp

)ν

η

)

)

+
1

3
M3

2F1

(

1

2
,−3

ν
;
ν − 3

ν
;

(

1

MEp

)ν

η

)

)

. (26)

We observe from figs. 3 and 4 the existence of a remnant, like the other studied types of deformed black holes in
gravity’s rainbow [38]. The heat capacity at constant J is deformed in the following way:

C ′
J =

1
√

1 − η(E/Ep)ν
CJ . (27)

The same goes for other heat capacities. It is interesting to look at the criticality of rotating K-K black holes and their
rainbow deformation, this can be done by studying the Gibbs free energy of this black hole. The Gibbs free energy is
generally given by

G(M,J,Q, P ) = M − TS. (28)
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Fig. 3. Deformed Hawking temperature of different rotating K-K black holes (fixed Q, P and J) as a function of their mass
M . We set Ep = 5, η = 1 and ν = 2. The remnant can be observed at the same point for all black holes.

Fig. 4. The deformed entropy of different rotating K-K black holes (fixed Q, P and J) as a function of their mass M . We set
Ep = 5, η = 1 and ν = 2. The remnant can be observed at the same point for all black holes.

For the ordinary rotating K-K black hole it is found to be

G0(M) =
M2(2

√

1 − j2M + 3µ)

3(
√

1 − j2µ2 +
√

1 − j2M2 + 2µM)
. (29)

We can plot (29) keeping Q, P fixed and vary M and J to obtain fig. 5, that shows a critical phenomena for the
rotating K-K black holes. The deformed Gibbs free energy is calculated from (4) and (3) (see fig. 6),

G = M −

√

1 − η( M
Ep

)ν

2µM√
1−j2

+ µ2 + M2

(

µM2
2F1(

1
2 , 2

ν ; ν+2
ν ; ( M

Ep
)νη)

√

1 − j2

+
1

3
M3

2F1

(

1

2
,
3

ν
;
ν + 3

ν
;

(

M

Ep

)ν

η

)

+ µ2M 2F1

(

1

2
,
1

ν
; 1 +

1

ν
;

(

M

Ep

)ν

η

)

)

. (30)

Both ordinary and deformed rotating K-K black holes show critical behaviour as the study of Gibbs free energy, if
G > 0 the black hole is said to be “critical” and when G < 0 it is said that the black hole is uncritical.
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Fig. 5. A plot of G0(T, J, Q, P ) of a critical rotating K-K black hole fixed Q, P , showing the critical phenomena.

Fig. 6. A plot of the deformed Gibbs free energy G(T, J, Q, P ) of a deformed rotating K-K black hole fixed Q, P , showing the
same critical phenomena, as the ordinary K-K black hole. We have set η = 1,Ep = 5 and ν = 2.

4 Conclusion

In this paper, the geometry of 5D rotating Kaluza Klein black holes with electric and magnetic charges was deformed
by the rainbow functions F , G motivated by loop quantum gravity and non-commutative geometry. Resulting a
deformation on the thermodynamics of the 4D rotating K-K black hole. The deformed temperature and entropy
indicate the existence of a remnant after the decay of the black hole to a “Plankckian” scale. This is independent of
the compactification, or the K-K reduction of the 5D geometry. Moreover, the critical behaviour of this black hole
was studied via calculating its Gibbs free energy, the ordinary and the deformed black holes appear to show the same
critical behaviour.
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