CE 417 Equations

Chapter 2	Chapter 2 (continued)
$\begin{aligned} & \left.\begin{array}{l} \text { Production }=\text { Volume per cycle X Cycles per hour } \\ \text { Cost per unit of production }=\frac{\text { Equipment cost per hour }}{\text { Equip. prod. per hour }} \\ \text { Moisture content }(\%)=\left(\frac{\text { Moist weight }- \text { Dry weight }}{\text { Dry weight }}\right. \end{array}\right] \times 100 \\ & \text { Swell }(\%)=\left(\begin{array}{l} \frac{\text { Weight/bank volume }}{\text { Weight/loose volume }}-1 \end{array}\right] \times 100 \\ & \text { Shrinkage }(\%)=\left[\begin{array}{ll} 1-\quad \frac{\text { Weight/bank volume }}{\text { Weight/compacted volume }} \end{array}\right] \times 100 \\ & \text { Load factor }=\frac{\text { Weight/loose unit volume }}{\text { Weight/bank unit volume }} \\ & \text { Load factor }=\frac{1}{1+\text { swell }} \\ & \text { Shrinkage factor }=\frac{\text { Weight/bank unit volume }}{\text { Weight/compacted unit volume }} \\ & \text { Shrinkage factor }=1-\text { shrinkage } \end{aligned}$ Triangular spoil bank $\begin{aligned} & \text { Base weidth }=\left(\frac{4 x \text { volume }}{\text { pile length } x \tan (\text { angle of repose })}\right)^{1 / 2} \\ & \text { Pile height }=\frac{\text { base width } \mathrm{x} \tan (\text { angle of repose })}{2} \end{aligned}$ Conical Spoil pile $\text { Volume }=\frac{\text { base area } \times \text { height }}{3}$ $\text { Diameter of pile base }=\left(\frac{7.64 x \text { volume }}{\tan (\text { angle of repose })}\right)^{1 / 3}$ $\text { Pile height }=\underline{\text { Diameter of pile base } x \tan \text { (angle of repose) }}$	Pit excavation \quad Volume $=$ Horizontal area x Average depth Trench excavation Volume $=$ Cross-sectional area x length Large area Average depth $=\underline{\text { Sum of products of depths } \mathrm{x} \text { weight }}$ Sum of weights Chapter 3 1-Shovel Production (LCM/h)= Cycles/h x Swing factor x heaped bucket vol.(LCM) x Bucket fill factor x job eff. 2- draglines Expected Production $(\mathrm{BCM} / \mathrm{h})=$ Ideal output x Swing depth factor x Effic. 3- Backhoes Production (LCM/h)= Cycles/h x Swing depth factor x heaped bucket Vol.(LCM) x Bucket fill factor x job eff.. 4. Clamshells Production $(L C M / h)=$ Cycles $/ h \times$ heaped bucket vol. $(L C M) \times$ Bucket fill factor x job eff. Chapter 4 Cycle time $=$ fixed time + variable time Total resistance $=$ Grade resistance + rolling resistance Rolling resistance factor $(\mathrm{kg} / \mathrm{t})=20+(6 \mathrm{x} \mathrm{cm}$ penetration $)$ Grade resistance factor $(\mathrm{kg} / \mathrm{t})=10 \mathrm{x}$ grade $(\%)$ Grade resistance $(\mathrm{kg})=$ vehicle $\mathrm{wt}(\mathrm{t}) \times$ grade resistance factor $(\mathrm{kg} / \mathrm{t})$ Grade resistance $(\mathrm{kg})=$ vehicle $\mathrm{wt}(\mathrm{t}) \mathrm{x}$ grade Effective grade (\%) $=$ Grade (\%) $+($ Rolling resistance factor $(\mathrm{kg} / \mathrm{t})$) $/ 10$ Derating factor $(\%)=($ Altitude $(\mathrm{m})-915) / 102$ Maximum usable pull = Coefficient of traction x weight on drivers 1- Dozer Blade load $(L C M)=0.375 \times$ height $(\mathrm{m}) \times$ Width (m) x Length (m) Production $(\mathrm{LCM} / \mathrm{h})=$ blade capacity $(\mathrm{LCM}) \mathrm{x}(60 /$ cycle time $(\mathrm{min})) \mathrm{x}$ job eff. 2- Loader Production $(\mathrm{LCM} / \mathrm{h})=$ bucket size $(\mathrm{LCM}) \mathrm{x}$ bucket fill factor $\mathrm{x}(60 /$ cycle time $(\mathrm{min})) \mathrm{x}$ job eff

Chapter 4 (continued)

3- Scraper

Production $(\mathrm{LCM} / \mathrm{h})=$ capacity $(\mathrm{LCM}) \times(60 /$ cycle time $(\mathrm{min})) \mathrm{x}$ job eff. factor
Number of scrapers served = scraper cycle time / pusher cycle time
Number of pushers required $=$ no. of scrapers / (no. of scrapers served by one pusher)
Production $=\underline{\text { No. of pushers } x \text { no. of scrapers } x \text { production of per scraper }}$
Required number of pushers

4- Trucks and Wagons

load time $=$ (haul unit capacity) $/$ Loader production at 100% eff.
Load time $=$ number of bucket loads x excavator cycle time
Number of haulers required $(\mathrm{N})=$ (haul unit cycle time) / (Load time)
Expected production (theoretically) = excavator production at 100% eff. x job eff. factor
Expected production $=$ Actual no. of units x excavator prod. at 100% eff. x job eff. factor (no. of units < N)

Chapter 5

1. Compactor production $(\mathrm{CCM} / \mathrm{h})$
$=\underline{10 \mathrm{x} \text { width per pass }(\mathrm{m}) \times \text { speed }(\mathrm{km} / \mathrm{h}) \mathrm{x} \text { lift thickness }(\mathrm{cm}) \mathrm{x} \text { job eff. } ~}$ Number of passes required
2. Motor grader

$$
\operatorname{Time}(h)=\left[\sum \frac{\text { No. of passes } x \sec \text { tion length }(\mathrm{km})}{\text { average speed for } \sec \text { tion }(\mathrm{km} / \mathrm{h})}\right] x \frac{1}{\text { efficiency }}
$$

Chapter 12

```
Lateral pressure P}=7.2+785\textrm{R}/(\textrm{T}+18)\quad(\textrm{R}\leq2.1\textrm{m}/\textrm{h}
    P}=7.2+(1154/(T+18))+(244 R /( T+18)) (R = 2.1 to 3.27 m/h)
    P}=150\textrm{h}\quad(\textrm{R}>3.27\textrm{m}/\textrm{h}
```

Lateral force $\mathrm{H}=0.02 \mathrm{X} d l \mathrm{X}$ ws
Bending (wood) $l=(40.7 / 1000) \mathrm{d}\left(\left(\mathrm{F}_{\mathrm{b}} \mathrm{b}\right) / \mathrm{w}\right)^{1 / 2}$

$$
=(100 / 1000)\left(\left(\mathrm{F}_{\mathrm{b}} \mathrm{~S}\right) / \mathrm{w}\right)^{1 / 2}
$$

(plywood) $l=3.16\left(\left(\mathrm{~F}_{\mathrm{b}} \mathrm{KS}\right) / \mathrm{w}\right)^{1 / 2}$
Shear (wood) $l=(1.11 / 1000)\left(\mathrm{F}_{\mathrm{v}} \mathrm{A} / \mathrm{w}\right)+2 \mathrm{~d}$

$$
l=(1.11 / 1000)\left(\mathrm{F}_{\mathrm{v}} \mathrm{bd} / \mathrm{w}\right)+2 \mathrm{~d}
$$

(plywood) $\left.l=1.67\left(\mathrm{~F}_{\mathrm{S}}(\mathrm{lb} / \mathrm{Q})\right) / \mathrm{w}\right)+2 \mathrm{~d}$

Deflection

$$
\begin{aligned}
& \Delta=1 / 180 \quad l=(93 / 1000)(\mathrm{EI} / \mathrm{w})^{1 / 3}=(93 / 1000)\left(\mathrm{Ebd}^{3} / 12 \mathrm{w}\right)^{1 / 3} \\
& \Delta=1 / 240 \quad l=(84.7 / 1000)(\mathrm{EI} / \mathrm{w})^{1 / 3}=(84.7 / 1000)\left(\operatorname{Ebd}^{3} / 12 \mathrm{w}\right)^{1 / 3} \\
& \Delta=1 / 360 \quad l=(73.8 / 1000)(\mathrm{EI} / \mathrm{w})^{1 / 3}=(73.8 / 1000)\left(\operatorname{Ebd}^{3} / 12 \mathrm{w}\right)^{1 / 3} \\
& \text { Compression } f_{\mathrm{c}} \text { or } f_{\mathrm{c} \perp}=\mathrm{P} / \mathrm{A} \\
& \text { Tension } \quad f t=\mathrm{P} / \mathrm{A}
\end{aligned}
$$

Straight line method: $\mathrm{D}_{\mathrm{n}}=($ Cost - Salvage - tires $) / \mathrm{N}$ Sum of the years digit method:
$\mathrm{D}_{\mathrm{n}}=((\mathrm{N}-(\mathrm{n}-1)) *$ amount to be depreciated) / Sum of years digit Double Declining Balance Method:
$D_{n}=(2 / N) *$ Book value at beginning of year
Average Investment= (Initial cost + Salvage) $/ 2$
Hourly repair cost $=$ year digit * lifetime repair cost

> Sum of year digit * Hours operated

Tire cost $=1.15 *$ cost of a set of tires

