CE 417 Equations

Chanton 2	Chanter 2 (continued)
<u>Chapter 2</u>	<u>Chapter 2 (continued)</u>
Production = Volume per cycle X Cycles per hour	Pit excavation Volume = Horizontal area x Average depth
Cost per unit of production = $Equipment cost per hour$	Trench excavation Volume = Cross-sectional area x length
	Large area Average depth = $\underline{Sum of products of depths x weight}$
Moisture content (%) – Moist weight – Dry weight $X 100$	Sum of weights
$\frac{1}{10000000000000000000000000000000000$	Chapter 3
Swell $(\%) = \left(Weight/bank volume - 1 \right) \times 100$	1- Shovel
Equip. prod. per hour Moisture content (%) = (Moist weight - Dry weight) X 100 Dry weight Swell (%) = (Weight/bank volume - 1) X 100 Weight/loose volume	Production (LCM/h)= Cycles/h x Swing factor x heaped bucket vol.(LCM) x
weight/loose volume	Bucket fill factor x job eff.
Shrinkaga $(\%) = \begin{bmatrix} 1 & W_{aight/bank} & v_{aluma} \end{bmatrix} \times 100$	2- draglines
Shrinkage (%) = $\begin{pmatrix} 1 - \frac{\text{Weight/bank volume}}{\text{Weight/compacted volume}} \end{pmatrix} X 100$	Expected Production (BCM/h) = Ideal output x Swing depth factor x Effic.
Load factor = Weight/loose unit volume	3- Backhoes
Weight/bank unit volume	Production (LCM/h)= Cycles/h x Swing depth factor x heaped bucket Vol.(LCM) x
L oad factor – 1	Bucket fill factor x job eff
Load factor = 1 1+ swell	4. Clamshells
Shrinkage factor = <u>Weight/bank unit volume</u>	Production (LCM/h)= Cycles/h x heaped bucket vol.(LCM) x Bucket fill factor x job eff.
Weight/compacted unit volume	i roduction (ECW/n) – Cycles/n x heaped bucket vol.(ECW) x bucket nn raciol x job cn.
Shrinkage factor $= 1$ - shrinkage	Chapter 4
Shi hikage factor – 1- shi hikage	Cycle time = fixed time + variable time
Triangular spoil bank	Total resistance = Grade resistance + rolling resistance
	Rolling resistance factor $(kg/t) = 20+ (6 \text{ x cm penetration})$
Base weidth = $\left(\frac{4 \text{ x volume}}{\text{pile length x tan (angle of repose)}}\right)^{1/2}$	Grade resistance factor $(kg/t) = 10 x$ grade (%)
$Duse weight = \left(\frac{1}{pile length x tan (angle of repose)}\right)$	Grade resistance (kg) = vehicle wt (t) x grade resistance factor (kg/t)
	Grade resistance $(kg) = vehicle wt (t) x grade resistance factor (kg/t)Grade resistance (kg) = vehicle wt (t) x grade$
Pile height = $base width x tan (angle of repose)$	Effective grade (%) = Grade (%) + (Rolling resistance factor (kg/t)) /10
Conical Speil pile	Derating factor (%)= (Altitude (m) – 915) /102
Conical Spoil pile	Maximum usable pull = Coefficient of traction x weight on drivers
Volumo – base area y haight	1- Dozer
Volume = $\frac{\text{base area x height}}{3}$	Blade load (LCM)= 0.375 x height (m) x Width (m) x Length (m)
	Production (LCM/h)= blade capacity (LCM) x (60 / cycle time (min)) x job eff.
Diameter of pile base $-$ (7.64 x volume)	2- Loader
Diameter of pile base = $\left(\frac{7.64 \text{ x volume}}{\tan(\text{angle of repose})}\right)^{1/3}$	Production (LCM/h)= bucket size (LCM) x bucket fill factor $x(60 / \text{cycle time (min)})x$ job eff
Pile height = Diameter of pile base x tan (angle of repose)	
$\frac{1}{2}$	
-	

Chanter 4 (continued)	Chapter 12
Chapter 4 (continued) 3- Scraper Production (LCM/h)= capacity (LCM) x (60 / cycle time (min)) x job eff. factor Number of scrapers served = scraper cycle time / pusher cycle time Number of pushers required = no. of scrapers x production of per scraper Required number of pushers 4- Trucks and Wagons load time = (haul unit capacity) / Loader production at 100% eff. Load time = number of bucket loads x excavator cycle time Number of haulers required (N) = (haul unit cycle time) / (Load time) Expected production = Actual no. of units x excavator production at 100% eff. x job eff. factor Kno. of units x excavator prod. at 100% eff. x job eff. factor (no. of units x excavator prod. at 100% eff. x job eff. factor Number of units < N)	Lateral pressure P = 7.2+ 785 R / $P = 7.2 + (1154/(T+18)) + (24)$ P = 150 h Lateral force H = 0.02 X dl X ws Bending (wood) $l = (40.7/100)$ = (100/100) (plywood) $l = 3.16$ ((F _b H Shear (wood) $l = (1.11/1000)$ l = (1.11/1000) (plywood) $l = 1.67$ (F _s (lb/ Deflection $\Delta = 1/180$ $l = (93/1000)$ (EI / $\Delta = 1/240$ $l = (84.7/1000)$ (EI / $\Delta = 1/360$ $l = (73.8/1000)$ (EI / Compression f_c or $f_{c\perp} = P/A$ Tension $ft = P/A$
	Chapter 17Straight line method: $D_n = (($ Sum of the years digit method: $D_n = ((N - (n-1)) *$ amount toDouble Declining Balance Method: $D_n = (2/N) *$ Book value atAverage Investment= (Initial colspan="2">(Initial colspan="2">Sum of yTire cost = 1.15 * cost of a setExpected time

/(T+18) $(R \le 2.1 \text{ m/h})$ (R = 2.1 to 3.27 m/h)(244 R /(T+18)) (R > 3.27 m/h)

000) d $((F_b b) / w)^{1/2}$ 000) $((F_b S) / w)^{1/2}$ $(KS) / w)^{1/2}$ 0) $(F_v A / w) + 2d$ 0) $(F_v bd / w) + 2d$ lb/Q)) / w) + 2d

 $(/w)^{1/3} = (93/1000) (Ebd^3/12w)^{1/3}$ EI / w) ^{1/3}= (84.7 / 1000) (Ebd³ / 12w) ^{1/3} EI/w) ^{1/3}= (73.8/1000) (Ebd³/12w) ^{1/3}

(Cost – Salvage – tires) / N d: t to be depreciated) / Sum of years digit lethod: at beginning of year $\cos t + \text{Salvage} / 2$ git * lifetime repair cost f year digit * Hours operated et of tires ire life (h)