$$
\begin{aligned}
& \overrightarrow{\mathbf{E}}=\frac{\overrightarrow{\mathbf{F}}_{E}}{q_{0}}=k_{e} \sum_{i} \frac{q_{i}}{r_{i}^{2}} \hat{\mathbf{r}}_{\mathbf{i}}=k_{e} \int \frac{d q}{r^{2}} \hat{\mathbf{r}}=k_{e} \int \frac{\lambda d l}{r^{2}} \hat{\mathbf{r}}=k_{e} \int \frac{\sigma d A}{r^{2}} \hat{\mathbf{r}}=k_{e} \int \frac{\rho d V}{r^{2}} \hat{\mathbf{r}} \\
& \begin{array}{l}
V_{B}-V_{A}=\Delta V=\frac{\Delta U}{q_{0}}=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}=E s \cos \theta=E d \\
V=k_{e} \sum_{i} \frac{q_{i}}{r_{i}} \\
\text { Assuming } V \rightarrow 0 \text { when } r \rightarrow \infty \\
U=k_{e}\left(\frac{q_{1} q_{2}}{r_{12}}+\frac{q_{1} q_{3}}{r_{13}}+\frac{q_{2} q_{3}}{r_{23}}+\ldots\right) \xrightarrow{\square} \xrightarrow{\square}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\overrightarrow{\mathbf{F}}_{E} & =q \overrightarrow{\mathbf{E}}=m \overrightarrow{\mathbf{a}} \Rightarrow \overrightarrow{\mathbf{a}}=\frac{q \overrightarrow{\mathbf{E}}}{m} \\
x_{f} & =x_{i}+v_{i} t+\frac{1}{2} a t^{2} \\
v_{f} & =v_{i}+a t \\
v_{f}^{2} & =v_{i}^{2}+2 a\left(x_{f}-x_{i}\right) \\
K E & =\frac{1}{2} m v^{2}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{|l}
\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}=0 \\
\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{s}}=\mu_{0} I \Rightarrow\left[\begin{array}{cc}
B=\frac{\mu_{0} I}{2 \pi r} & \text { Outside: wire } \\
B=\frac{\mu_{0} I}{2 \pi R^{2}} r & \text { Inside: wire } \\
B=\mu_{0} \frac{N}{l} I=\mu_{0} n I \text { Inside: Solenoia } \\
\Phi_{B}=\int \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}} & \\
=B A \cos \theta ; & \overrightarrow{\mathbf{B}}(\overrightarrow{\mathbf{r}})=\frac{\mu_{0} I}{4 \pi} \int \frac{d \overrightarrow{\mathbf{s}} \times \hat{\mathbf{r}}}{r^{2}}
\end{array}\right.
\end{array} \\
& \Delta v=\Delta V_{\max } \sin (\omega t) ; \quad \Delta i=I_{\max } \sin (\omega t-\phi) ; \quad I_{\text {max }}=\frac{\Delta V_{\text {max }}}{Z} \\
& \omega=2 \pi f=\frac{2 \pi}{T} ; \quad I_{\mathrm{rms}}=\frac{I_{\mathrm{max}}}{\sqrt{2}} ; \quad P_{\mathrm{avg}}=I_{\mathrm{rms}}^{2} R=I_{\mathrm{rms}} \Delta V_{\mathrm{rms}} \cos (\phi) \\
& \text { when } X_{L}=X_{C} \Rightarrow \omega_{0}=\frac{1}{\sqrt{L C}} \\
& I=\frac{d Q}{d t} ; \quad I_{\text {avg }}=\frac{\Delta Q}{\Delta t}=n q v_{d} A ; \quad J=\frac{I}{A}=\sigma E ; \quad \rho=\frac{1}{\sigma} ; \quad \frac{\Delta \rho}{\rho_{0}}=\alpha \Delta T=\frac{\Delta R}{R_{0}} \\
& \begin{array}{l}
\varepsilon=-N \frac{d \Phi_{B}}{d t} \\
\text { Sliding Conducting Bar } \\
\varepsilon=-B l v
\end{array} \\
& \begin{array}{|c|c|c|c|}
\hline R=\frac{\Delta V}{I}=\frac{\rho l}{A} & \Delta V=\Delta V_{1}+\Delta V_{2}+\ldots & \Delta V=\Delta V_{1}=\Delta V_{2}=\ldots \\
R_{\mathrm{eq}}=R_{1}+R_{2}+\ldots & \frac{1}{R_{\mathrm{eq}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots & P=I \Delta V=I^{2} R=\frac{(\Delta V)^{2}}{R} \\
C=\frac{Q}{\Delta V}=\kappa \frac{\epsilon_{0} A}{d} & \frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\ldots & C_{\mathrm{eq}}=C_{1}+C_{2}+\ldots & U=\frac{1}{2} Q \Delta V=\frac{1}{2} C(\Delta V)^{2}=\frac{1}{2} \frac{Q^{2}}{C} ; \quad u_{E}=\frac{1}{2} \epsilon_{0} E^{2} \\
\hline
\end{array} \\
& L=\frac{-\varepsilon_{L}}{\frac{d I}{d t}}=\frac{N \Phi_{B}}{I}=\mu_{0} n^{2} A l \\
& u_{B}=\frac{1}{2 \mu_{0}} B^{2} ; \quad U=\frac{1}{2} L I^{2} \\
& \sum I=0 \\
& \sum \Delta V=0 \\
& \text { closed loop } \\
& \stackrel{\rightharpoonup}{\underset{\Delta V=-I R}{I}} \quad \stackrel{a}{\longrightarrow} \\
& \stackrel{I}{\underset{a}{M V=+I R}} \stackrel{I}{b}
\end{aligned}
$$

