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Figure 23.23 shows the electric field lines in the vicinity of two equal positive point
charges. Again, the lines are nearly radial at points close to either charge, and the
same number of lines emerge from each charge because the charges are equal in mag-
nitude. At great distances from the charges, the field is approximately equal to that of
a single point charge of magnitude 2q.

Finally, in Figure 23.24 we sketch the electric field lines associated with a positive
charge ! 2q and a negative charge " q. In this case, the number of lines leaving ! 2q is
twice the number terminating at " q. Hence, only half of the lines that leave the posi-
tive charge reach the negative charge. The remaining half terminate on a negative
charge we assume to be at infinity. At distances that are much greater than the charge
separation, the electric field lines are equivalent to those of a single charge ! q.

(a)

+ +
C

A

B

(b)

Figure 23.23 (a) The electric field lines for two positive point charges. (The locations
A, B, and C are discussed in Quick Quiz 23.7.) (b) Pieces of thread suspended in oil,
which align with the electric field created by two equal-magnitude positive charges.
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Active Figure 23.24 The electric
field lines for a point charge ! 2q
and a second point charge " q.
Note that two lines leave ! 2q for
every one that terminates on " q.

At the Active Figures link
at http://www.pse6.com, you
can choose the values and
signs for the two charges and
observe the electric field lines
for the configuration that you
have chosen.

Quick Quiz 23.7 Rank the magnitudes of the electric field at points A, B,
and C shown in Figure 23.23a (greatest magnitude first).

Quick Quiz 23.8 Which of the following statements about electric field lines
associated with electric charges is false? (a) Electric field lines can be either straight or
curved. (b) Electric field lines can form closed loops. (c) Electric field lines begin on
positive charges and end on negative charges. (d) Electric field lines can never inter-
sect with one another.

23.7 Motion of Charged Particles in a Uniform
Electric Field

When a particle of charge q and mass m is placed in an electric field E, the electric
force exerted on the charge is q E according to Equation 23.8. If this is the only force
exerted on the particle, it must be the net force and causes the particle to accelerate
according to Newton’s second law. Thus,

The acceleration of the particle is therefore

(23.12)

If E is uniform (that is, constant in magnitude and direction), then the acceleration is
constant. If the particle has a positive charge, its acceleration is in the direction of the

a #
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= − ∫
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A

⃗E ⋅ d ⃗s = Es cos θ = Ed

Now suppose that a test charge q0 moves from A to B. We can calculate the change
in the potential energy of the charge–field system from Equations 25.3 and 25.6:

(25.7)

From this result, we see that if q0 is positive, then !U is negative. We conclude that a
system consisting of a positive charge and an electric field loses electric poten-
tial energy when the charge moves in the direction of the field. This means that
an electric field does work on a positive charge when the charge moves in the direction
of the electric field. (This is analogous to the work done by the gravitational field on a
falling object, as shown in Figure 25.2b.) If a positive test charge is released from rest
in this electric field, it experiences an electric force q0E in the direction of E
(downward in Fig. 25.2a). Therefore, it accelerates downward, gaining kinetic energy.
As the charged particle gains kinetic energy, the charge–field system loses an
equal amount of potential energy. This should not be surprising—it is simply conser-
vation of energy in an isolated system as introduced in Chapter 8.

If q0 is negative, then !U in Equation 25.7 is positive and the situation is reversed:
A system consisting of a negative charge and an electric field gains electric po-
tential energy when the charge moves in the direction of the field. If a negative
charge is released from rest in an electric field, it accelerates in a direction opposite
the direction of the field. In order for the negative charge to move in the direction of
the field, an external agent must apply a force and do positive work on the charge.

Now consider the more general case of a charged particle that moves between A
and B in a uniform electric field such that the vector s is not parallel to the field lines,
as shown in Figure 25.3. In this case, Equation 25.3 gives

(25.8)

where again we are able to remove E from the integral because it is constant. The
change in potential energy of the charge–field system is

(25.9)

Finally, we conclude from Equation 25.8 that all points in a plane perpendicular to a
uniform electric field are at the same electric potential. We can see this in Figure 25.3,
where the potential difference VB " VA is equal to the potential difference VC " VA.
(Prove this to yourself by working out the dot product E !s for sA:B , where the angle #
between E and s is arbitrary as shown in Figure 25.3, and the dot product for sA:C ,
where # $ 0.) Therefore, VB $ VC . The name equipotential surface is given to any
surface consisting of a continuous distribution of points having the same electric
potential.

The equipotential surfaces of a uniform electric field consist of a family of parallel
planes that are all perpendicular to the field. Equipotential surfaces for fields with
other symmetries are described in later sections.
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Figure 25.3 A uniform electric
field directed along the positive
x axis. Point B is at a lower electric
potential than point A. Points
B and C are at the same electric
potential.
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Figure 25.4 (Quick Quiz 25.3)
Four equipotential surfaces.

Quick Quiz 25.3 The labeled points in Figure 25.4 are on a series of equipo-
tential surfaces associated with an electric field. Rank (from greatest to least) the work
done by the electric field on a positively charged particle that moves from A to B ; from
B to C ; from C to D ; from D to E.

Quick Quiz 25.4 For the equipotential surfaces in Figure 25.4, what is
the approximate direction of the electric field? (a) Out of the page (b) Into the page
(c) Toward the right edge of the page (d) Toward the left edge of the page (e) Toward
the top of the page (f) Toward the bottom of the page.

Change in potential energy
when a charged particle is
moved in a uniform electric field
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Kirchhoff’s first rule is a statement of conservation of electric charge. All charges
that enter a given point in a circuit must leave that point because charge cannot build
up at a point. If we apply this rule to the junction shown in Figure 28.14a, we obtain

I1 ! I2 " I3

Figure 28.14b represents a mechanical analog of this situation, in which water flows
through a branched pipe having no leaks. Because water does not build up anywhere
in the pipe, the flow rate into the pipe equals the total flow rate out of the two
branches on the right.

Kirchhoff’s second rule follows from the law of conservation of energy. Let us
imagine moving a charge around a closed loop of a circuit. When the charge
returns to the starting point, the charge–circuit system must have the same total
energy as it had before the charge was moved. The sum of the increases in energy as
the charge passes through some circuit elements must equal the sum of the
decreases in energy as it passes through other elements. The potential energy
decreases whenever the charge moves through a potential drop # IR across a resis-
tor or whenever it moves in the reverse direction through a source of emf. The
potential energy increases whenever the charge passes through a battery from the
negative terminal to the positive terminal.

When applying Kirchhoff’s second rule in practice, we imagine traveling around the
loop and consider changes in electric potential, rather than the changes in potential energy
described in the preceding paragraph. You should note the following sign conventions
when using the second rule:

• Because charges move from the high-potential end of a resistor toward the low-
potential end, if a resistor is traversed in the direction of the current, the poten-
tial difference $V across the resistor is # IR (Fig. 28.15a).

• If a resistor is traversed in the direction opposite the current, the potential differ-
ence $V across the resistor is " IR (Fig. 28.15b).

• If a source of emf (assumed to have zero internal resistance) is traversed in the
direction of the emf (from # to "), the potential difference $V is " (Fig.
28.15c). The emf of the battery increases the electric potential as we move
through it in this direction.

• If a source of emf (assumed to have zero internal resistance) is traversed in the
direction opposite the emf (from " to # ), the potential difference $V is #
(Fig. 28.15d). In this case the emf of the battery reduces the electric potential as
we move through it.

Limitations exist on the numbers of times you can usefully apply Kirchhoff’s rules
in analyzing a circuit. You can use the junction rule as often as you need, so long as
each time you write an equation you include in it a current that has not been used in
a preceding junction-rule equation. In general, the number of times you can use the
junction rule is one fewer than the number of junction points in the circuit. You can
apply the loop rule as often as needed, as long as a new circuit element (resistor or
battery) or a new current appears in each new equation. In general, in order to
solve a particular circuit problem, the number of independent equations you
need to obtain from the two rules equals the number of unknown currents.

Complex networks containing many loops and junctions generate great numbers
of independent linear equations and a correspondingly great number of unknowns.
Such situations can be handled formally through the use of matrix algebra. Computer
software can also be used to solve for the unknowns.

The following examples illustrate how to use Kirchhoff’s rules. In all cases, it is
assumed that the circuits have reached steady-state conditions—that is, the currents
in the various branches are constant. Any capacitor acts as an open branch in a
circuit; that is, the current in the branch containing the capacitor is zero under
steady-state conditions.
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Figure 28.15 Rules for
determining the potential
differences across a resistor and a
battery. (The battery is assumed to
have no internal resistance.) Each
circuit element is traversed from
left to right.
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I3
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Flow in
Flow out

Figure 28.14 (a) Kirchhoff’s
junction rule. Conservation of
charge requires that all charges
entering a junction must leave that
junction. Therefore, I1 ! I2 " I3.
(b) A mechanical analog of the
junction rule: the amount of water
flowing out of the branches on the
right must equal the amount
flowing into the single branch on
the left.

The positive terminal of the battery is at a higher potential than the negative termi-
nal. Because a real battery is made of matter, there is resistance to the flow of charge
within the battery. This resistance is called internal resistance r. For an idealized bat-
tery with zero internal resistance, the potential difference across the battery (called its
terminal voltage) equals its emf. However, for a real battery, the terminal voltage is not
equal to the emf for a battery in a circuit in which there is a current. To understand
why this is so, consider the circuit diagram in Figure 28.2a, where the battery of
Figure 28.1 is represented by the dashed rectangle containing an ideal, resistance-free
emf in series with an internal resistance r. Now imagine moving through the battery
from a to b and measuring the electric potential at various locations. As we pass from
the negative terminal to the positive terminal, the potential increases by an amount .
However, as we move through the resistance r, the potential decreases by an amount
Ir, where I is the current in the circuit. Thus, the terminal voltage of the battery
!V " Vb # Va is1

!V " # Ir (28.1)

From this expression, note that is equivalent to the open-circuit voltage—that is,
the terminal voltage when the current is zero. The emf is the voltage labeled on a battery—
for example, the emf of a D cell is 1.5 V. The actual potential difference between the
terminals of the battery depends on the current in the battery, as described by Equa-
tion 28.1.

Figure 28.2b is a graphical representation of the changes in electric potential as the
circuit is traversed in the clockwise direction. By inspecting Figure 28.2a, we see that
the terminal voltage !V must equal the potential difference across the external resis-
tance R, often called the load resistance. The load resistor might be a simple resistive
circuit element, as in Figure 28.1, or it could be the resistance of some electrical device
(such as a toaster, an electric heater, or a lightbulb) connected to the battery (or, in
the case of household devices, to the wall outlet). The resistor represents a load on the
battery because the battery must supply energy to operate the device. The potential dif-
ference across the load resistance is !V " IR. Combining this expression with Equation
28.1, we see that

" IR $ Ir (28.2)

Solving for the current gives

(28.3)

This equation shows that the current in this simple circuit depends on both the load
resistance R external to the battery and the internal resistance r. If R is much greater
than r, as it is in many real-world circuits, we can neglect r.

If we multiply Equation 28.2 by the current I, we obtain

I " I 2R $ I 2r (28.4)

This equation indicates that, because power ! " I !V (see Eq. 27.22), the total power
output I of the battery is delivered to the external load resistance in the amount I 2R
and to the internal resistance in the amount I 2r. 

%
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R $ r
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1 The terminal voltage in this case is less than the emf by an amount Ir. In some situations, the
terminal voltage may exceed the emf by an amount Ir. This happens when the direction of the current is
opposite that of the emf, as in the case of charging a battery with another source of emf.
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Active Figure 28.2 (a) Circuit
diagram of a source of emf (in
this case, a battery), of internal
resistance r, connected to an
external resistor of resistance R.
(b) Graphical representation
showing how the electric potential
changes as the circuit in part (a) is
traversed clockwise.

At the Active Figures link
at http://www.pse6.com, you
can adjust the emf and
resistances r and R to see the
effect on the current and on the
graph in part (b).
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▲ PITFALL PREVENTION
28.1 What Is Constant in a

Battery?
It is a common misconception
that a battery is a source of
constant current. Equation 28.3
clearly shows that this is not true.
The current in the circuit
depends on the resistance
connected to the battery. It is also
not true that a battery is a source
of constant terminal voltage,
as shown by Equation 28.1. A
battery is a source of constant
emf.

Quick Quiz 28.1 In order to maximize the percentage of the power that is
delivered from a battery to a device, the internal resistance of the battery should be 
(a) as low as possible (b) as high as possible (c) The percentage does not depend on
the internal resistance.
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(b)

∆Vmax

φ

∆VL – ∆VC

∆VR

(a)

ω
∆VRImax

φ

∆VL

∆VC

∆Vmax

Active Figure 33.15 (a) Phasor diagram for the series RLC circuit shown in Figure
33.13a. The phasor !VR is in phase with the current phasor Imax, the phasor !VL leads
Imax by 90°, and the phasor !VC lags Imax by 90°. The total voltage !Vmax makes an
angle " with Imax. (b) Simplified version of the phasor diagram shown in part (a).

At the Active Figures link at http://www.pse6.com, you can adjust the
resistance, the inductance, and the capacitance of the circuit in Figure 33.13a.
The results can be studied with the graphs in Figure 33.13b and the phasor
diagram in this figure.

in Figure 33.15b, we see that

(33.24)

Therefore, we can express the maximum current as

Once again, this has the same mathematical form as Equation 27.8. The denominator
of the fraction plays the role of resistance and is called the impedance Z of the circuit:

(33.25)

where impedance also has units of ohms. Therefore, we can write Equation 33.24 in
the form

(33.26)

We can regard Equation 33.26 as the AC equivalent of Equation 27.8. Note that the
impedance and therefore the current in an AC circuit depend upon the resistance,
the inductance, the capacitance, and the frequency (because the reactances are
frequency-dependent).

By removing the common factor Imax from each phasor in Figure 33.15a, we can
construct the impedance triangle shown in Figure 33.16. From this phasor diagram we
find that the phase angle " between the current and the voltage is

(33.27)

Also, from Figure 33.16, we see that cos " # R/Z . When XL $ XC (which occurs at high
frequencies), the phase angle is positive, signifying that the current lags behind the
applied voltage, as in Figure 33.15a. We describe this situation by saying that the circuit
is more inductive than capacitive. When XL % XC , the phase angle is negative, signifying
that the current leads the applied voltage, and the circuit is more capacitive than inductive.
When XL # XC , the phase angle is zero and the circuit is purely resistive.

Table 33.1 gives impedance values and phase angles for various series circuits
containing different combinations of elements.

" # tan&1 ! XL & XC

R "

∆V max # I max Z

Z # √R 
2 ' (XL & XC)2

I max #
∆V max

√R 
2 ' (XL & XC)2

∆V max # I max √R2 ' (XL & XC)2

∆V max # √∆V 
2

R ' (∆VL & ∆VC)2 # √(I max R)2 ' (I max XL & I max X C)2

Maximum current in an RLC
circuit

Impedance

Phase angle

Figure 33.16 An impedance
triangle for a series RLC circuit
gives the relationship
Z # √R2 ' (XL & XC)2.

XL – XC

Z

φ

R

where ! is some phase angle between the current and the applied voltage. Based on
our discussions of phase in Sections 33.3 and 33.4, we expect that the current will
generally not be in phase with the voltage in an RLC circuit. Our aim is to determine !
and Imax. Figure 33.13b shows the voltage versus time across each element in the
circuit and their phase relationships.

First, we note that because the elements are in series, the current everywhere
in the circuit must be the same at any instant. That is, the current at all points
in a series AC circuit has the same amplitude and phase. Based on the
preceding sections, we know that the voltage across each element has a different
amplitude and phase. In particular, the voltage across the resistor is in phase
with the current, the voltage across the inductor leads the current by 90°, and
the voltage across the capacitor lags behind the current by 90°. Using these
phase relationships, we can express the instantaneous voltages across the three
circuit elements as

"vR # ImaxR sin $t # "VR sin $t (33.21)

(33.22)

(33.23)

where "VR , "VL, and "VC are the maximum voltage values across the elements:

"VR # ImaxR "VL # ImaxXL "VC # ImaxXC

At this point, we could proceed by noting that the instantaneous voltage "v across the
three elements equals the sum

"v # "vR % "vL % "vC

Although this analytical approach is correct, it is simpler to obtain the sum
by examining the phasor diagram, shown in Figure 33.14. Because the current
at any instant is the same in all elements, we combine the three phasor pairs shown
in Figure 33.14 to obtain Figure 33.15a, in which a single phasor I max is used to
represent the current in each element. Because phasors are rotating vectors, we can
combine the three parts of Figure 33.14 by using vector addition. To obtain the
vector sum of the three voltage phasors in Figure 33.15a, we redraw the phasor
diagram as in Figure 33.15b. From this diagram, we see that the vector sum of the
voltage amplitudes "VR , "VL , and "VC equals a phasor whose length is the
maximum applied voltage "V max, and which makes an angle ! with the current
phasor I max. The voltage phasors "VL and "VC are in opposite directions
along the same line, so we can construct the difference phasor "VL & "VC , which
is perpendicular to the phasor "VR . From either one of the right triangles

∆vC # I max XC  sin !$t &
'

2 " # &∆VC  cos $t

∆vL # I max XL sin !$t %
'

2 " # ∆VL cos $t
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t
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∆vR

R L C

∆vL ∆vC

(a)

Active Figure 33.13 (a) A series
circuit consisting of a resistor,
an inductor, and a capacitor
connected to an AC source.
(b) Phase relationships for
instantaneous voltages in the series
RLC circuit. 

At the Active Figures link
at http://www.pse6.com, you
can adjust the resistance, the
inductance, and the
capacitance. The results can
be studied with the graph in
this figure and the phasor
diagram in Figure 33.15.

90°

90°

ωωω

∆VRImax Imax
Imax

∆VL

∆VC

(a) Resistor (b) Inductor (c) Capacitor

Figure 33.14 Phase relationships between the voltage and current phasors for
(a) a resistor, (b) an inductor, and (c) a capacitor connected in series. 
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perpendicular to and directed out of the page with a series of blue dots, which
represent the tips of arrows coming toward you (see Fig. 29.6a). In this case, we label
the field Bout. If B is directed perpendicularly into the page, we use blue crosses, which
represent the feathered tails of arrows fired away from you, as in Figure 29.6b. In this
case, we label the field Bin, where the subscript “in” indicates “into the page.” The
same notation with crosses and dots is also used for other quantities that might be per-
pendicular to the page, such as forces and current directions.

One can demonstrate the magnetic force acting on a current-carrying conductor
by hanging a wire between the poles of a magnet, as shown in Figure 29.7a. For ease in
visualization, part of the horseshoe magnet in part (a) is removed to show the end face
of the south pole in parts (b), (c), and (d) of Figure 29.7. The magnetic field is
directed into the page and covers the region within the shaded squares. When the
current in the wire is zero, the wire remains vertical, as shown in Figure 29.7b.
However, when the wire carries a current directed upward, as shown in Figure 29.7c,
the wire deflects to the left. If we reverse the current, as shown in Figure 29.7d, the
wire deflects to the right.

Let us quantify this discussion by considering a straight segment of wire of length L
and cross-sectional area A, carrying a current I in a uniform magnetic field B, as shown
in Figure 29.8. The magnetic force exerted on a charge q moving with a drift velocity
vd is q vd ! B. To find the total force acting on the wire, we multiply the force q vd ! B
exerted on one charge by the number of charges in the segment. Because the volume
of the segment is AL, the number of charges in the segment is nAL, where n is the
number of charges per unit volume. Hence, the total magnetic force on the wire of
length L is

We can write this expression in a more convenient form by noting that, from Equation
27.4, the current in the wire is I ! nqvdA. Therefore,

(29.3)

where L is a vector that points in the direction of the current I and has a magnitude
equal to the length L of the segment. Note that this expression applies only to a
straight segment of wire in a uniform magnetic field.
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Figure 29.7 (a) A wire suspended vertically between the poles of a magnet. (b) The
setup shown in part (a) as seen looking at the south pole of the magnet, so that the
magnetic field (blue crosses) is directed into the page. When there is no current in
the wire, it remains vertical. (c) When the current is upward, the wire deflects to the
left. (d) When the current is downward, the wire deflects to the right.
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perpendicular to and directed out of the page with a series of blue dots, which
represent the tips of arrows coming toward you (see Fig. 29.6a). In this case, we label
the field Bout. If B is directed perpendicularly into the page, we use blue crosses, which
represent the feathered tails of arrows fired away from you, as in Figure 29.6b. In this
case, we label the field Bin, where the subscript “in” indicates “into the page.” The
same notation with crosses and dots is also used for other quantities that might be per-
pendicular to the page, such as forces and current directions.

One can demonstrate the magnetic force acting on a current-carrying conductor
by hanging a wire between the poles of a magnet, as shown in Figure 29.7a. For ease in
visualization, part of the horseshoe magnet in part (a) is removed to show the end face
of the south pole in parts (b), (c), and (d) of Figure 29.7. The magnetic field is
directed into the page and covers the region within the shaded squares. When the
current in the wire is zero, the wire remains vertical, as shown in Figure 29.7b.
However, when the wire carries a current directed upward, as shown in Figure 29.7c,
the wire deflects to the left. If we reverse the current, as shown in Figure 29.7d, the
wire deflects to the right.

Let us quantify this discussion by considering a straight segment of wire of length L
and cross-sectional area A, carrying a current I in a uniform magnetic field B, as shown
in Figure 29.8. The magnetic force exerted on a charge q moving with a drift velocity
vd is q vd ! B. To find the total force acting on the wire, we multiply the force q vd ! B
exerted on one charge by the number of charges in the segment. Because the volume
of the segment is AL, the number of charges in the segment is nAL, where n is the
number of charges per unit volume. Hence, the total magnetic force on the wire of
length L is

We can write this expression in a more convenient form by noting that, from Equation
27.4, the current in the wire is I ! nqvdA. Therefore,

(29.3)

where L is a vector that points in the direction of the current I and has a magnitude
equal to the length L of the segment. Note that this expression applies only to a
straight segment of wire in a uniform magnetic field.
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Figure 29.7 (a) A wire suspended vertically between the poles of a magnet. (b) The
setup shown in part (a) as seen looking at the south pole of the magnet, so that the
magnetic field (blue crosses) is directed into the page. When there is no current in
the wire, it remains vertical. (c) When the current is upward, the wire deflects to the
left. (d) When the current is downward, the wire deflects to the right.
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which by definition of the cross product (see Section 11.1) is perpendicular to both v
and B. We can regard this equation as an operational definition of the magnetic field
at some point in space. That is, the magnetic field is defined in terms of the force
acting on a moving charged particle.

Figure 29.4 reviews two right-hand rules for determining the direction of the cross
product v ! B and determining the direction of FB . The rule in Figure 29.4a 
depends on our right-hand rule for the cross product in Figure 11.2. Point the four
fingers of your right hand along the direction of v with the palm facing B and curl
them toward B. The extended thumb, which is at a right angle to the fingers, points
in the direction of v ! B. Because FB ! q v ! B, FB is in the direction of your thumb
if q is positive and opposite the direction of your thumb if q is negative. (If you need
more help understanding the cross product, you should review pages 337 to 339, in-
cluding Fig. 11.2.)

An alternative rule is shown in Figure 29.4b. Here the thumb points in the direc-
tion of v and the extended fingers in the direction of B. Now, the force FB on a posi-
tive charge extends outward from your palm. The advantage of this rule is that the
force on the charge is in the direction that you would push on something with your
hand—outward from your palm. The force on a negative charge is in the opposite
direction. Feel free to use either of these two right-hand rules.

The magnitude of the magnetic force on a charged particle is

(29.2)

where " is the smaller angle between v and B. From this expression, we see that FB is
zero when v is parallel or antiparallel to B (" ! 0 or 180°) and maximum when v is
perpendicular to B (" ! 90°).

There are several important differences between electric and magnetic forces:

• The electric force acts along the direction of the electric field, whereas the mag-
netic force acts perpendicular to the magnetic field.

• The electric force acts on a charged particle regardless of whether the particle is
moving, whereas the magnetic force acts on a charged particle only when the parti-
cle is in motion.

FB ! ! q !vB  sin "
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B
FB

B

v

(a)

v

(b)

FB

Figure 29.4 Two right-hand rules for determining the direction of the magnetic force
FB ! q v ! B acting on a particle with charge q moving with a velocity v in a magnetic
field B. (a) In this rule, the fingers point in the direction of v, with B coming out of
your palm, so that you can curl your fingers in the direction of B. The direction of 
v ! B, and the force on a positive charge, is the direction in which the thumb points.
(b) In this rule, the vector v is in the direction of your thumb and B in the direction of
your fingers. The force FB on a positive charge is in the direction of your palm, as if you
are pushing the particle with your hand.

Magnitude of the magnetic
force on a charged particle
moving in a magnetic field

ε = − N
dΦB

dt

ε = − Blv
Sliding Conducting Bar
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This statement, known as Faraday’s law of induction, can be written

(31.1)

where !B " ∫ B ! dA is the magnetic flux through the circuit. (See Section 30.5.)
If the circuit is a coil consisting of N loops all of the same area and if !B is the

magnetic flux through one loop, an emf is induced in every loop. The loops are in series,
so their emfs add; thus, the total induced emf in the coil is given by the expression

(31.2)

The negative sign in Equations 31.1 and 31.2 is of important physical significance, as
discussed in Section 31.3.

Suppose that a loop enclosing an area A lies in a uniform magnetic field B, as in
Figure 31.3. The magnetic flux through the loop is equal to BA cos # ; hence, the
induced emf can be expressed as

(31.3)

From this expression, we see that an emf can be induced in the circuit in several ways:

• The magnitude of B can change with time.

• The area enclosed by the loop can change with time.

• The angle # between B and the normal to the loop can change with time.

• Any combination of the above can occur.

$ " %
d
dt

 (BA cos #)

$ " %N  
d!B

dt

$ " %
d!B

dt

the switch is closed, the magnetic field produced by the current in the primary circuit
changes from zero to some value over some finite time, and this changing field induces
a current in the secondary circuit.

As a result of these observations, Faraday concluded that an electric current can
be induced in a circuit (the secondary circuit in our setup) by a changing
magnetic field. The induced current exists for only a short time while the magnetic
field through the secondary coil is changing. Once the magnetic field reaches a steady
value, the current in the secondary coil disappears. In effect, the secondary circuit
behaves as though a source of emf were connected to it for a short time. It is customary
to say that an induced emf is produced in the secondary circuit by the changing
magnetic field.

The experiments shown in Figures 31.1 and 31.2 have one thing in common: in
each case, an emf is induced in the circuit when the magnetic flux through the circuit
changes with time. In general,

The emf induced in a circuit is directly proportional to the time rate of change of
the magnetic flux through the circuit.

▲ PITFALL PREVENTION
31.1 Induced emf

Requires a Change
The existence of a magnetic flux
through an area is not sufficient
to create an induced emf. There
must be a change in the magnetic
flux in order for an emf to be
induced.

Faraday’s law

B

θ

θ

Loop of
area A

Figure 31.3 A conducting loop
that encloses an area A in the
presence of a uniform magnetic
field B. The angle between B and
the normal to the loop is #.

Quick Quiz 31.1 A circular loop of wire is held in a uniform magnetic field,
with the plane of the loop perpendicular to the field lines. Which of the following will
not cause a current to be induced in the loop? (a) crushing the loop; (b) rotating the
loop about an axis perpendicular to the field lines; (c) keeping the orientation of the
loop fixed and moving it along the field lines; (d) pulling the loop out of the field.


