
Exam P Review Sheet

logb(bx) = x logb(yk) = k logb(y) logb(y) = ln(y)
ln(b)

logb(yz) = logb(y) + logb(z) logb(y/z) = logb(y)− logb(z)

ln(ex) = x eln(y) = y for y > 0.
d
dxax = ax ln(a)

∫
axdx = ax

ln(a) for a > 0.∫∞
0 xne−cxdx = n!

cn+1 . In particular, for a > 0,
∫∞
0 e−atdt = 1

a

a + ar + ar2 + ar3 + · · ·+ arn = a
1− rn+1

1− r
= a

rn+1 − 1
r − 1

if |r| < 1 then a + ar + ar2 + ar3 + · · · =
∑∞

i=0 ari =
a

1− r

Note: (derivative of above) a + 2ar + 3ar2 + · · · = a

(1− r)2
.

If A ⊆ B, then P (A) ≤ P (B).

P (A ∪B) = P (A) + P (B)− P (A ∩B)

P (A) = P (A ∩B) + P (A ∩B′)

If P (A) > 0, then P (B|A) =
P (A ∩B)

P (A)
, and P (A ∩B) = P (B|A)P (A).

P (B) = P (B|A)P (A) + P (B|A′)P (A′) (Law of Total Probability)

P (A|B) =
P (B|A)P (A)

P (B)
(Bayes)

P (Aj |B) =
P (Aj ∩B)

P (B)
=

P (B|Aj)P (Aj)∑n
i=1 P (B|Ai)P (Ai)

(Note that the Ai’s form a partition)

A,B are independent iff P (A ∩B) = P (A)P (B) iff P (A|B) = P (A) iff P (B|A) = P (B).

P (A′|B) = 1− P (A|B)

P ((A ∪B)|C) = P (A|C) + P (B|C)− P ((A ∩B)|C).

If A,B are independent, then (A′, B), (A,B′), and (A′, B′) are also independent (each pair).

Given n distinct objects, the number of different ways in which the objects may be ordered (or
permuted) is n!.

We say that we are choosing an ordered subset of size k without replacement from a collection of
n objects if after the first object is chosen, the next object is chosen from the remaining n−1, then
next after that from the remaining n − 2 and so on. The number of ways of doing this is n!

(n−k)! ,
and is denoted nPk or Pn,k or P (n, k).

Given n objects, of which n1 are of Type 1, n2 are of Type 2, . . ., and nt are of type t, and
n = n1 + n2 + · · · + nt, the number of ways of ordering all n objects (where objects of the same
type are indistinguishable) is

n!
n1!n2! · · ·nt!

which is sometimes denoted as
(

n

n1n2 · · ·nt

)
.
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Given n distinct objects, the number of ways of choosing a subset of size k ≤ n without re-

placement and without regard to the order in which the objects are chosen is
n!

k!(n− k)!
,

which is usually denoted
(

n

k

)
. Remember,

(
n

k

)
=

(
n

n− k

)
.

Given n objects, of which n1 are of Type 1, n2 are of Type 2, . . ., and nt are of type t, and
n = n1 +n2 + · · ·+nt, the number of ways of choosing a subset of size k ≤ n (without replacement)
with k1 objects of Type 1, k2 objects of Type 2, and so on, where k = k1 + k2 + · · ·+ kt is(

n1

k1

)(
n2

k2

)
· · ·

(
nt

kt

)
Binomial Theorem: In the power series expansion of (1 + t)N , the coefficient of tk is

(
N

k

)
, so

that (1 + t)N =
∞∑

k=0

(
N

k

)
tk.

Multinomial Theorem: In the power series expansion of (t1+t2+ · · ·+ts)N where N is a positive

integer, the coefficient of tk1
1 tk2

2 · · · tks
s (where k1+k2+ · · ·+ks = N) is

(
N

k1k2 · · · ks

)
=

N !
k1!k2! · · · ks!

.

Discrete Distributions:
The probability function (pf) of a discrete random variable is usually denoted p(x), f(x), fX(x),
or px, and is equal to P (X = x), the probability that the value x occurs. The probability function
must satisfy:
(i) 0 ≤ p(x) ≤ 1 for all x, and (ii)

∑
x

p(x) = 1.

Given a set A of real numbers (possible outcomes of X), the probability that X is one of the values
in A is P (X ∈ A) =

∑
x∈A

p(x) = P (A).

Continuous Distributions:
A continuous random variable X usually has a probability density function (pdf) usually
denoted f(x) or fX(x), which is a continuous function except possibly at a finite number of points.
Probabilities related to X are found by integrating the density function over an interval. The
probability that X is in the interval (a, b) is P (X ∈ (a, b)) = P (a < X < b), which is defined to be∫ b
a f(x)dx.

Note that for a continuous random variable X, P (a < X < b) = P (a ≤ X < b) = P (a < X ≤ b) =
P (a ≤ X ≤ b). Recall that if we have a mixed distribution that this is not always the case.

The pdf f(x) must satisfy:
(i) f(x) ≥ 0 for all x, and (ii)

∫∞
−∞ f(x)dx = 1.

Mixed Distributions:
A random variable that has some points with non-zero probability mass, and with a continuous
pdf on one ore more intervals is said to have a mixed distribution. The probability space is a
combination of a set of discrete points of probability for the discrete part of the random variable
along with one or more intervals of density for the continuous part. The sum of the probabilities at
the discrete points of probability plus the integral of the density function on the continuous region
for X must be 1. If a pdf looks to have discontinuities then we likely have a mixed distribution.
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Cumulative distribution function (and survival function): Given a random variable X,
the cumulative distribution function of X (also called the distribution function, or cdf) is
F (x) = P (X ≤ x) (also denoted FX(x)). F (x) is the cumulative probability to the left of (and
including) the point x. The survival function is the complement of the distribution function,
S(x) = 1− F (x) = P (X > x).

For a discrete random variable with probability function p(x), F (x) =
∑
w≤x

p(w), and in this case

F (x) is a step function (it has a jump at each point with non-zero probability, while remaining
constant until the next jump).

If X has a continuous distribution with density function f(x), then F (x) =
∫ x
−∞ f(t)dt and F (x) is

a continuous, differentiable, non-decreasing function such that d
dxF (x) = F ′(x) = −S′(x) = f(x).

If X has a mixed distribution, then F (x) is continuous except at the points of non-zero probability
mass, where F (x) will have a jump.

For any cdf P (a < X < b) = F (b)− F (a), lim
x→∞

F (x) = 1, lim
x→−∞

F (x) = 0.

Some results and formulas from this section:

(i) For a continuous random variable, the hazard rate or failure rate is

h(x) =
f(x)

1− F (x)
= − d

dx
ln[1− F (x)]

(ii) If X, Y are independent, then P [(a < X ≤ b) ∩ (c < Y ≤ d)] = P (a < X ≤ b)P (c < Y ≤ d). In
general, what we mean by saying that X and Y are independent is that if A is any event involving
only X (such as a < X ≤ b), and B is any event involving only Y , then A and B are independent
events.

(iii) Conditional distribution of X given event A: Suppose that fX(x) is the density function
or probability function of X, and suppose that A is an event. The conditional pdf or pf of X given
A is
fX|A(x|A) =

f(x)
P (A)

if x is an outcome in A, and 0 otherwise.

Expected value of a random variable: For a random variable X, the expected value of X
(also called the mean of X or the expectation of X) is denoted E[X], or µx or µ. The mean is
interpreted as the average of the random outcomes.

For a discrete random variable, the expected value of X is
∑

xp(x) = x1p(x1)+x2p(x2)+ · · · where
the sum is taken over all points x at which X has non-zero probability.

For a continuous random variable, the expected value of X is
∫∞
−∞ xf(x)dx. Note that although

the integral is written with limits involving infinity, we actually integrate over the interval(s) of
non-zero density for X.

Expectation of h(x): If h is a function, then E[h(X)] is equal to
∑

x

h(x)p(x) in the discrete case,

and is equal to
∫∞
−∞ h(x)f(x)dx in the continuous case.

Moments of a random variable: If n ≥ 1 is an integer, the n−th moment of X is E[Xn]. If
the mean of X is µ, then the n−th central moment of X (about the mean µ) is E[(X − µ)n].

Symmetric distribution: If X is a continuous random variable with pdf f(x), and if c is a point
for which f(c + t) = f(c − t) for all t > 0, then X is said to have a symmetric distribution about
the point x = c. For such a distribution, the mean will be the point of symmetry, E[X] = c.
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Variance of X: The variance of X is denoted V ar[X], V [X], σ2
x, or σ2. It is defined to be equal

to V ar[X] = E[(X − µ)2] = E[X2]− (E[X])2.
The standard deviation of X is the square root of the variance of X, and is denoted
σx =

√
V ar[X].

The coefficient of variation of X is
σx

µx
.

Moment generating function (mgf) or a random variable X: The moment generating
function of X (mgf) is defined to be Mx(t) = E[etX ]. The mfg is also denoted as MX(t),mx(t),M(t),
or m(t).

If X is a discrete random variable then Mx(t) =
∑

etxp(x).

If X is a continuous random variable then Mx(t) =
∫∞
−∞ etxf(x)dx.

Some important properties that moment generating functions satisfy are

(i) It is always true that MX(0) = 1

(ii) The moments of X can be found from the successive derivatives of Mx(t).

M ′
x(0) = E[X], M ′′

X(0) = E[X2], M
(n)
X (0) = E[Xn] and

d2

dt2
ln[Mx(t)]

∣∣∣
t=0

= V ar[X].

(iii) The moment generating function of X might not exist for all real numbers, but usually exists
on some interval of real numbers.

Percentiles of a distribution: If 0 < p < 1, then the 100p−th percentile of the distribution of
X is the number cp which satisfies both of the following inequalities:
P (X ≤ cp) ≥ p and P (X ≥ cp) ≥ 1− p.

For a continuous random variable, it is sufficient to find the cp for which P (X ≤ cp) = p.

If p = .5 the 50−th percentile of a distribution is referred to as the median of the distribution, it
is the point M for which P (X ≤ M) = .5.

The mode of a distribution: The mode is any point m at which the probability or density
function f(x) is maximized.

The skewness of a distribution: If the mean of random variable X is µ and the variance is σ2

then the skewness is defined to be E[(X − µ)3]/σ3. If the skewness is positive, the distribution is
said to be skewed to the right, and if the skewness is negative, then the distribution is said to be
skewed to the left.

Some formulas and results:
(i) Note that the mean of a random variable X might not exist.

(ii) For any constants a1, a2 and b and functions h1 and h2,

E[a1h1(X)+a2h2(X)+b] = a1E[h1(X)]+a2E[h2(X)]+b. As a special case, E[aX+b] = aE[X]+b.

(iii) If X is a random variable defined on the interval [a,∞)(f(x) = 0 for x < a), then E[X] =
a +

∫∞
a [1 − F (x)]dx, and if X is defined on the interval [a, b], where b < ∞, then E[X] = a +∫ b

a [1 − F (x)]dx. This relationship is valid for any random variable, discrete, continuous or with a
mixed distribution. As a special case, if X is a non-negative random variable (defined on [0,∞),
or (0,∞)), then E[X] =

∫∞
0 [1− F (x)]dx.
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(iv) Jensen’s Inequality: If h is a function and X is a random variable such that
d2

dx2
h(x) =

h′′(x) ≥ 0 at all points x with non-zero density or probability for X, then E[h(X)] ≥ h(E[X]), and
if h′′ > 0, then E[h(X)] > h(E[X]).

(v) If a and b are constants, then V ar[aX + b] = a2V ar[X].

(vi) Chebyshev’s inequality: If X is a random variable with mean µx and standard deviation
σx, then for any real number r > 0, P [|X − µx| > rσx] ≤ 1

r2 .

(vii) Suppose that for the random variable X, the moment generating function Mx(t) exists in an
interval containing the point t = 0. Then,

dn

dtn
MX(t)

∣∣∣
t=0

= M
(n)
X (0) = E[Xn], the n−th moment of X, and

d

dt
ln[MX(t)]

∣∣∣
t=0

=
M ′

X(0)
MX(0)

= E[X], and
d

dt2
ln[MX(t)]

∣∣∣
t=0

= V ar[X].

The Taylor series expansion of MX(t) expanded about the point t = 0 is

MX(t) =
∞∑

k=0

tk

k!
E[Xk] = 1 + tE[X] +

t2

2
E[X2] +

t3

6
E[X3] + · · ·.

Therefore, if we are given a moment generating function and we are able to formulate the Taylor
series expansion about the point t = 0, we can identify the successive moments of X.

If X has a discrete distribution with probability space {x1, x2, . . .} and probability function P (X =
xk) = pk, then the moment generating function is MX(t) = etx1p1 + etx2p2 + etx3p3 + · · · .
Conversely, if we are given a moment generating function in this form (a sum of exponential factors),
then we can identify the points of probability and their probabilities.

If X1 and X2 are random variables, and MX1(t) = MX2(t) for all values of t in an interval containing
t = 0, then X1 and X2 have identical probability distributions.

(xi) A mixture of distributions: Given any finite collection of random variables, X1, X2, . . . , Xk

with density or probability functions, say f1(x), f2(x), . . . , fk(x), where k is a non-negative integer,
and given a set of weights, α1, α2, . . . , αk, where 0 ≤ αi ≤ 1 for each i and

∑k
i=1 αi = 1, it is

possible to construct a new density function: f(x) = α1f1(x) + α2f2(x) + · · ·+ αkfk(x) which is
a weighted average of the original density functions. It then follows that the resulting distribution
X, whose density/probability function is f , has moments and mgf which are weighted averages of
the original distribution moments and mgf:

E[Xn] = α1E[Xn
1 ] + α2E[Xn

2 ] + · · ·+ αkE[Xn
k ] and

MX(t) = α1MX1(t) + α2MX2(t) + · · ·+ αkMXk
(t).

Normal approximation for binomial: If X has a binomial (n, p) distribution, then we can use
the approximation Y with a normal N(np, np(1−p)) distribution to approximate X in the following
way:

With integer correction: P (n ≤ X ≤ m) = P (n − 1/2 ≤ Y ≤ m + 1/2) and then convert to a
standard normal.

Some properties of the exponential distribution:
Lack of memory property: For x, y > 0, P [X > x + y|X > x] = P [X > y]
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Link between the exponential distribution and Poisson distribution: Suppose that X
has an exponential distribution with mean 1

λ and we regard X as the time between successive
occurrences of some type of event, where time is measured in some appropriate units. Now, we
imagine that we choose some starting time (say t = 0), and from now we start recording times
between successive events. Let N represent the number of events that have occurred when one unit
of time has elapsed. Then N will be a random variable related to the times of the occurring events.
It can be shown that the distribution of N is Poisson with parameter λ.

The minimum of a collection of independent exponential random variables: Suppose
that independent random variables Y1, Y2, . . . , Yn each have exponential distributions with means
1
λ1

, 1
λ2

, . . . , 1
λn

, respectively. Let Y = min{Y1, Y2, . . . , Yn}. Then Y has an exponential distribution

with mean
1

λ1 + λ2 + · · ·+ λn
.

Joint Distribution of random variables X and Y :
If X and Y are discrete random variables, then f(x, y) = P [(X = x) ∩ (Y = y)] is the joint
probability function, and it must satisfy:
(i) 0 ≤ f(x, y) ≤ 1 and (ii)

∑
x

∑
y

f(x, y) = 1.

If X and Y are continuous random variables, then f(x, y) must satisfy:

(i) f(x, y) ≥ 0 and (ii)
∫ ∞

−∞

∫ ∞

−∞
f(x, y)dydx = 1.

Cumulative distribution function of a joint distribution: If random variables X and Y have
a joint distribution, then the cumulative distribution function is F (x, y) = P [(X ≤ x) ∩ (Y ≤ y)].

In the discrete case: F (x, y) =
x∑

s=−∞

y∑
t=−∞

f(s, t).

In the continuous case: F (x, y) =
∫ x

−∞

∫ y

−∞
f(s, t)dtds, and

∂2

∂x∂y
F (x, y) = f(x, y).

Expectation of a function of jointly distributed random variables: If h(x, y) is a function
of two variables, and X and Y are jointly distributed random variables, then the expected value of
h(X, Y ) is defined to be

E[h(X, Y )] =
∑

x

∑
y

h(x, y)f(x, y) in the discrete case, and

E[h(X, Y )] =
∫ ∞

−∞

∫ ∞

−∞
h(x, y)f(x, y)dydx in the continuous case.

Marginal distribution of X found from a joint distribution of X and Y :
If X and Y have a joint distribution with joint density or probability function f(x, y) then the
marginal distribution of X has a probability function or density function denoted fX(x), which

is equal to fX(x) =
∑

y

f(x, y) in the discrete case, and is equal to fX(x) =
∫ ∞

−∞
f(x, y)dy in the

continuous case.

Note FX(x) = limy→∞ F (x, y) and similarly FY (y) = limx→∞ F (x, y).

Independence of random variables X and Y : Random variables X and Y with density function
fX(x) and fY (y) are said to be independent (or stochastically independent) if the probability space
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is rectangular (a ≤ x ≤ b, c ≤ y ≤ d, where the endpoints can be infinite) and if the joint density
function is of the form f(x, y) = fX(x)fY (y). Independence of X and Y is also equivalent to the
factorization of the cumulative distribution function F (x, y) = FX(x)FY (y) for all (x, y).

Conditional distribution of Y given X = x: The way in which a conditional distribution is

defined follows the basic definition of conditional probability, P (A|B) =
P (A ∩B)

P (B)
. In fact, given

a discrete joint distribution, this is exactly how a conditional distribution is defined. Also,
E[X|Y = y] =

∑
x

xfX|Y (x|Y = y) and

E[X2|Y = y] =
∑

x

x2fX|Y (x|Y = y). Then the conditional variance would be,

V ar[X|Y = y] = E[X2|Y = y]− (E[X|Y = y])2.

The expression for conditional probability used in the discrete case is fX|Y (x|Y = y) =
f(x, y)
fY (y)

.

This can be also applied to find a conditional distribution of Y given X = x, so that we define

fY |X(y|X = x) =
f(x, y)
fX(x)

.

We also apply this same algebraic form to define the conditional density in the continuous case,
with f(x, y) being the joint density and fX(x) being the marginal density. In the continuous case,
the conditional mean of Y given X = x would be

E[Y |X = x] =
∫

yfY |X(y|X = x)dy, where the integral is taken over the appropriate interval for
the conditional distribution of Y given X = x.

If X and Y are independent random variables, then fY |X(y|X = x) = fY (y) and similarly
fX|Y (x|Y = y) = fX(x), which indicates that the density of Y does not depend on X and vice-versa.

Note that if the marginal density of X, fX(x), is known, and the conditional density of Y given
X = x, fY |X(y|X = x), is also known, then the joint density of X and Y can be formulated as
f(x, y) = fY |X(y|X = x)fX(x).

Covariance between random variables X and Y : If random variables X and Y are jointly
distributed with joint density/probability function f(x, y), the covariance between X and Y is

Cov[X, Y ] = E[XY ]− E[X]E[Y ].

Note that now we have the following application:

V ar[aX + bY + c] = a2V ar[X] + b2V ar[Y ] + 2abCov[X, Y ].

Coefficient of correlation between random variables X and Y : The coefficient of correlation
between random variables X and Y is

ρ(X, Y ) = ρX,Y =
Cov[X, Y ]

σxσy
, where σx, σy are the standard deviations of X and Y , respectively.

Note that −1 ≤ ρX,Y ≤ 1 always!

Moment generating functions of a joint distribution: Given jointly distributed random
variables X and Y , the moment generating function of the joint distribution is MX,Y (t1, t2) =
E[et1X+t2Y ]. This definition can be extended to the joint distribution of any number of random
variables. And,

E[XnY m] =
∂n+m

∂n
t1

∂m
t2

MX,Y (t1, t2)
∣∣∣
t1=t2=0

.
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Some results and formulas:

(i) If X and Y are independent, then for any functions g and h, E[g(X)h(Y )] = E[g(X)]E[h(Y )].
And in particular, E[XY ] = E[X]E[Y ].

(ii) The density/probability function of jointly distributed variables X and Y can be written in the
form f(x, y) = fY |X(y|X = x)fX(x) = fX|Y (x|Y = y)fY (y).

(iii) Cov[X, Y ] = E[XY ] − µxµy = E[XY ] − E[X]E[Y ]. Cov[X, Y ] = Cov[Y, X]. If X, Y are
independent then Cov[X, Y ] = 0.

For constants a, b, c, d, e, f and random variables X, Y, Z, W ,

Cov[aX + bY + c, dZ + eW + f ] = adCov[X, Z] + aeCov[X, W ] + bdCov[Y, Z] + beCov[Y, W ]

(iv) If X and Y are independent then, V ar[X + Y ] = V ar[X] + V ar[Y ]. In general (regardless of
independence), V ar[aX + bY + c] = a2V ar[X] + b2V ar[Y ] + 2abCov[X, Y ].

(v) If X and Y have a joint distribution which is uniform (constant density) on the two dimensional

region R, then the pdf of the joint distribution is
1

Area of R
inside the region R (and 0 outside R).

The probability of any event A (where A ⊆ R) is the proportion
Area of A

Area of R
. Also the conditional

distribution of Y given X = x has a uniform distribution on the line segment(s) defined by the
intersection of the region R with the line X = x. The marginal distribution of Y might or might
not be uniform.

(vi) E[h1(X, Y )+h2(X, Y )] = E[h1(X, Y )]+E[h2(X, Y )], and in particular, E[X+Y ] = E[X]+E[Y ]
and E[

∑
Xi] =

∑
E[Xi].

(vii) limx→−∞ F (x, y) = limy→−∞ F (x, y) = 0.

(viii) P [(x1 < X ≤ x2) ∩ (y1 < Y ≤ y2)] = F (x2, y2)− F (x2, y1)− F (x1, y2) + F (x1, y1).

(ix) P [(X ≤ x) ∪ (Y ≤ y)] = FX(x) + FY (y)− F (x, y)

(x) For any jointly distributed random variables X and Y , −1 ≤ ρXY ≤ 1.

(xi) MX,Y (t1, 0) = E[et1X ] = MX(t1) and MX,Y (0, t2) = E[et2Y ] = MY (t2).

(xii) E[X] =
∂

∂t1
MX,Y (t1, t2)

∣∣∣
t1=t2=0

and E[Y ] =
∂

∂t2
MX,Y (t1, t2)

∣∣∣
t1=t2=0

.

In general, E[XrY s] =
∂r+s

∂rt1∂st2
MX,Y (t1, t2)

∣∣∣
t1=t2=0

.

(xiii) If M(t1, t2) = M(t1, 0)M(0, t2) for t1 and t2 in a region about (0,0), then X and Y are
independent.

(xiv) If Y = aX + b then MY (t) = E[etY ] = E[eatX+bt] = ebtMX(at).

(xv) If X and Y are jointly distributed, then E[E[X|Y ]] = E[X] and V ar[X] = E[V ar[X|Y ]] +
V ar[E[X|Y ]].

Distribution of a transformation of a continuous random variable X: Suppose that X is
a continuous random variable with pdf fX(x) and cdf FX(x) and suppose that u(x) is a one-to-one
function (usually u is either strictly increasing or strictly decreasing). As a one-to-one function, u
has an inverse function v, so that v(u(x)) = x. The random variable Y = u(X) is referred to as a
transformation of X. The pdf of Y can be found in one of two ways:
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(i) fY (y) = fX(v(y))|v′(y)|

(ii) If u is a strictly increasing function, then

FY (y) = P [Y ≤ y] = P [u(X) ≤ y] = P [X ≤ v(y)] = FX(v(y)), and then fY (y) = F ′
Y (y).

Distribution of a transformation of a discrete random variable X: Suppose that X is
a discrete random variable with probability function f(x). If u(x) is a function of x, and Y is a
random variable defined by the equation Y = u(X), then Y is a discrete random variable with
probability function g(y) =

∑
y=u(x)

f(x). Given a value of y, find all values of x for which y = u(x)

(say u(x1) = u(x2) = · · · = u(xt) = y), and then g(y) is the sum of those f(xi) probabilities.

If X and Y are independent random variables, and u and v are functions, then the random variables
u(X) and v(Y ) are independent.

Transformation of jointly distributed random variables X and Y : Suppose that the random
variables X and Y are jointly distributed with joint density function f(x, y). Suppose also that
u and v are functions of the variables x and y. Then U = u(X, Y ) and V = v(X, Y ) are also
random variables with a joint distribution. We wish to find the joint density function of U and V ,
say g(u, v). This is a two-variable version of the transformation procedure outlined above. In the
one variable case we required that the transformation had an inverse. In the two variable case we
must be able to find inverse functions h(u, v) and k(u, v) such that x = h(u(x, y), v(x, y)), and y =
k(u(x, y), v(x, y)). The joint density of U and V is then g(u, v) = f(h(u, v), k(u, v))

∣∣∣∂h
∂u

∂k
∂v −

∂h
∂v

∂k
∂u

∣∣∣.
This procedure sometimes arises in the context of being given a joint distribution between X and
Y , and being asked to find the pdf of some function U = u(X, Y ). In this case, we try to find a
second function v(X, Y ) that will simplify the process of finding the joint distribution of U and V .
Then, after we have found the joint distribution of U and V , we can find the marginal distribution
of U .

The distribution of a sum of random variables:

(i) If X1 and X2 are random variables, and Y = X1 + X2, then E[Y ] = E[X1] + E[X2] and
V ar[Y ] = V ar[X1] + V ar[X2] + 2Cov[X1, X2].

(ii) If X1 and X2 are discrete non-negative integer valued random variables with joint probability
function f(x1, x2), then for any integer k ≥ 0,

P [X1 + X2 = k] =
k∑

x1=0

f(x1, k − x1) (this considers all combinations of X1 and X2 whose sum is

k).

If X1 and X2 are independent with probability functions f1(x1), f2(x2) respectively, then,

P [X1 + X2 = k] =
k∑

x1=0

f1(x1)f2(k − x1) (this is the convolution method of finding the distribu-

tion of the sum of independent discrete random variables).

If X1 and X2 are continuous random variables with joint probability function f(x1, x2), then the
density function of Y = X1 + X2 is fY (y) =

∫∞
−∞ f(x1, y − x1)dx1
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If X1 and X2 are independent continuous random variables with density functions f1(x1) and
f2(x2), then the density function of Y = X1 + X2 is fY (y) =

∫∞
−∞ f1(x1)f2(y − x1)dx1 (this is the

continuous version of the convolution method).

(iv) If X1, X2, . . . , Xn are random variables, and the random variable Y is defined to be Y =
n∑

i=1

Xi,

then E[Y ] =
n∑

i=1

E[Xi] and V ar[Y ] =
n∑

i=1

V ar[Xi] + 2
n∑

i=1

n∑
j=i+1

Cov[Xi, Xj ].

If X1, X2, . . . , Xn are mutually independent random variables, then V ar[Y ] =
n∑

i=1

V ar[Xi] and

MY (t) =
n∏

i=1

MXi(t) = MX1(t)MX2(t) · · ·MXn(t).

(v) If X1, X2, . . . , Xn and Y1, Y2, . . . , Ym are random variables and a1, a2, . . . , an, b, c1, c2, . . . , cm,
and d are constants, then

Cov[
n∑

i=1

aiXi + b,
m∑

j=1

cjYj + d] =
n∑

i=1

m∑
j=1

aicjCov[Xi, Yj ]

(vi) The Central Limit Theorem: Suppose that X is a random variable with mean µ and
standard deviation σ and suppose that X1, X2, . . . , Xn are n independent random variables with
the same distribution as X. Let Yn = X1 + X2 + · · ·+ Xn. Then E[Yn] = nµ and V ar[Yn] = nσ2,
and as n increases, the distribution of Yn approaches a normal distribution N(nµ, nσ2).

(vii) Sums of certain distributions: Suppose that X1, X2, . . . , Xk are independent random

variables and Y =
k∑

i=1

Xi

distribution of Xi distribution of Y

Bernoulli B(1, p) binomial B(k, p)
binomial B(ni, p) binomial B(

∑
ni, p)

Poisson λi Poisson
∑

λi

geometric p negative binomial k, p
negative binomial ri, p negative binomial

∑
ri, p

normal N(µi, σ
2
i ) N(

∑
µi,

∑
σ2

i )
exponential with mean µ gamma with α = k, β = 1/µ
gamma with αi, β gamma with

∑
αi, β

Chi-square with ki df Chi-square with
∑

ki df

The distribution of the maximum or minimum of a collection of independent random
variables: Suppose that X1 and X2 are independent random variables. We define two new random
variables related to X1 and X2: U = max{X1, X2} and V = min{X1, X2}. We wish to find the
distributions of U and V . Suppose that we know that the distribution functions of X1 and X2

are F1(x) = P (X1 ≤ x) and F2(x) = P (X2 ≤ x), respectively. We can formulate the distribution
functions of U and V in terms of F1 and F2 as follows
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FU (u) = F1(u)F2(u) and FV (v) = 1− [1− F1(v)][1− F2(v)]

This can be generalized to n independent random variables (X1, . . . , Xn). Here we would have

FU (u) = F1(u)F2(u) · · ·Fn(u) and FV (v) = 1− [1− F1(v)][1− F2(v)] · · · [1− Fn(v)].

Order statistics: For a random variable X, a random sample of size n is a collection of n
independent Xi’s all having the same distribution as X. Now let us define new random variables
Y1, Y2, . . . , Yn where Y1 = min{X1, X2, . . . , Xn}, Y2 is the second smallest element in the random
sample, and so on, until Yn = max{X1, X2, . . . , Xn}.
The probability density function (pdf) of Yk can be described as follows:

gk(t) =
n!

(k − 1)!(n− k)!
[F (t)]k−1[1− F (t)]n−kf(t).

The joint density of Y1, . . . , Yn is g(y1, . . . , yn) = n!f(y1) · · · f(yn).

Mixtures of Distributions: Suppose that X1 and X2 are random variables with density (or
probability) functions f1(x) and f2(x), and suppose a is a number with 0 < a < 1. We define a
new random variable X by defining a new density function f(x) = af1(x) + (1 − a)f2(x). This
newly defined density function will satisfy the requirements for being a properly defined density
function. Furthermore, all moments, probabilities and moment generating function of the newly
defined random variable are of the form:

E[X] = aE[X1] + (1− a)E[X2], E[X2] = aE[X2
1 ] + (1− a)E[X2

2 ],

FX(x) = P (X ≤ x) = aP (X1 ≤ x) + (1− a)P (X2 ≤ x) = aF1(x) + (1− a)F2(x),

MX(t) = aMX1(t) + (1− a)MX2(t), V ar[X] = E[X2]− (E[X])2.

Loss Distributions and Insurance
Let X be a loss random variable. Then E[X] is referred to as the pure premium or expected
claim.

The unitized risk or coefficient of variation for the random variable X is defined to be√
V ar[X]
E[X]

=
σ

µ
.

Models for a loss random variable X:
Case 1: The complete distribution of X is given. X = K with probability q, X = 0 with probability
1− q.

Case 2: The probability q of a non-negative loss is given, and the conditional distribution B of
loss amount given that a loss has occurred is given: The probability of no loss occurring is
1 − q, and the loss amount X is 0 if no loss occurs; thus, P (X = 0) = 1 − q. If a loss does occur,
the loss amount is the random variable B, so that X = B.

E[X] = qE[B], E[X2] = qE[B2], V ar[X] = qE[B2] + (qE[B])2 = qV ar[B] + q(1− q)(E[B])2.

Keep in mind that B is the loss amount given that a loss has occurred, whereas X is the overall
loss amount.
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Modeling the aggregate claims in a portfolio of insurance policies: The individual risk
model assumes that the portfolio consists of a specific number, say n, of insurance policies, with the
claim for one period on policy i being the random variable Xi. Xi would be modeled in one of the
ways described above for an individual policy loss random variable. Unless mentioned otherwise,
it is assumed that the Xi’s are mutually independent random variables. Then the aggregate claim
is the random variable

S =
n∑

i=1

Xi, with E[S] =
n∑

i=1

E[Xi] and V ar[S] =
n∑

i=1

V ar[Xi].

If E[Xi] = µ and V ar[Xi] = σ2 for each i = 1, 2, . . . , n, then the coefficient of variation of the

aggregate claim distribution S is

√
V ar[S]
E[S]

=

√
nV ar[X]
nE[X]

=
σ

µ
√

n
, which goes to 0 as n →∞.

The normal approximation to aggregate claims: For an aggregate claims distribution S, if
the mean and variance of S are known (E[S], V ar[S]), it is possible to approximate probabilities
for S by using the normal approximation. The 95-th percentile of aggregate claims is the number Q
for which P (S ≤ Q) = .95. If S is assumed to have a distribution which is approximately normal,
then by standardizing S we have

P [S ≤ Q] = P

[
S − E[S]√

V ar[S]
≤ Q− E[S]√

V ar[S]

]
= .95, so that

Q− E[S]√
V ar[S]

is equal to the 95-th per-

centile of the standard normal distribution (which is 1.645), so that Q can be found; Q = E[S] +
1.645

√
V ar[S]. If the insurer collects total premium of amount Q, then (assuming that it is rea-

sonable to use the approximation) there is a 95% chance (approx.) that aggregate claims will
be less than the premium collected, and there is a 5% chance that aggregate claims will exceed
the premium. Since S is a sum of many independent individual policy loss random variables, the
Central Limit Theorem suggests that the normal approximation is not unreasonable.

Partial Insurance Coverage

(i) Deductible insurance: A deductible insurance specifies a deductible amount, say d. If a
loss of amount X occurs, the insurer pays nothing if the loss is less than d, and pays the policyholder
the amount of the loss in excess of d if the loss is greater than d. The amount paid by the insurer
can be described as Y = X − d if X > d and 0 if X ≤ d, so Y = max{X − d, 0}. This is
also denoted (X − d)+. The expected payment made by the insurer when a loss occurs would be∫∞
d (x − d)f(x)dx in the continuous case (this is also called the expected cost per loss). The

above integral is also equal to
∫∞
d [1−FX(x)]dx. This type of policy is also referred to as an ordinary

deductible insurance.

(ii) Policy Limit: A policy limit of amount u indicates that the insurer will pay a maximum
amount of u when a loss occurs. Therefore, the amount paid by the insurer is X if X ≤ u and u if
X > u. The expected payment made by the insurer per loss would be

∫ u
0 fX(x)dx + u[1− FX(u)]

in the continuous case. This is also equal to
∫ u
0 [1− FX(x)]dx.

Note: if you were to create a RV X = Y1 + Y2 where Y1 has deductible c, and Y2 has policy limit
c, then the sum would just be the total loss amount X.
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