Chapter 13

External Problem

Design the formwork for an 8 -in.-thick concrete floor slab based on the following data. Hand concrete buggies will be used to place concrete. Formwork is estimated to weight $10 \mathrm{lb} / \mathrm{sq} \mathrm{ft}$. Decking will be $3 / 4$-in. class I Plyform with face grain across supports. Joists will be 2×12 's and stringers will be 4 \times 10's. All lumber will be Douglas fir (use allowable stress from Table 12-6 and 7-day load duration). Maximum deflection must be limited to $1 / 360$ span length. Shores of $8000-\mathrm{lb}$. capacity will be used. The slab will be 40 ft wide $\times 50 \mathrm{ft}$ long, poured at one time. Guy-wire bracing capable of caring a load of 2000 lb. each will be used on all four sides of the form, attached at slab elevation and making a 45° angle with the ground.

Solution

$\underline{\text { Design Load }}$

Concrete $=1 \mathrm{sq} \mathrm{ft} \times \frac{8 \mathrm{in}}{12 \mathrm{in} / \mathrm{ft}} \times 150 \mathrm{lb} / \mathrm{cu} \mathrm{ft}=100 \mathrm{lb} / \mathrm{sq} \mathrm{ft}$
Form work $=10 \mathrm{lb} / \mathrm{sq} \mathrm{ft}$
Live load (@ Hand concrete buggies) $=75 \mathrm{lb} / \mathrm{sq} \mathrm{ft}$
Design load
$=185 \mathrm{lb} / \mathrm{sq} \mathrm{ft}$

> Deck Design

$w=(1 \mathrm{sq} \mathrm{ft} /$ linear ft$) \times(185 \mathrm{lb} / \mathrm{sq} \mathrm{ft})=185 \mathrm{lb} / \mathrm{ft}$
Properties of Decking (3 /4-in Class I Plyform with face grain a cross support). (Table 12-4)

$$
E I=0.298 \times 10^{6} \frac{\frac{\mathrm{bin}^{2}}{\mathrm{ft}}}{\mathrm{ft}}, \quad \mathrm{FbKS}=0.878 \times 10^{3} \frac{\mathrm{lbin}}{\mathrm{ft}}, \quad \mathrm{Fslb} / Q=0.517 \times 10^{3} \frac{\mathrm{lb}}{\mathrm{ft}}
$$

Assume three or more span

a) Bending

$$
l=10.95\left(\frac{F_{b} K S}{w}\right)^{1 / 2}=10.95\left(\frac{0.878 \times 10^{3}}{185}\right)^{1 / 2}=23.9 \mathrm{in} .
$$

b) Shear

$$
l=20 \frac{F_{s} \mathrm{~b} / \mathrm{Q}}{w}+2 d=20 \frac{0.517 \times 10^{3}}{185}+2 \times 0.75=57.4 \mathrm{in} .
$$

c) Deflection

$$
l=1.94\left(\frac{E I}{w}\right)^{1 / 3}=1.94\left(\frac{0.298 \times 10^{6}}{185}\right)^{1 / 3}=19.81 \text { in } \leftarrow
$$

\therefore Deflection governs in this design and the maximum allowable span is 19.81 in . Will select a 18 in (1.5 ft) joist spacing for design.

Joist Design

$$
w=(1.5 \mathrm{ft}) \times(185 \mathrm{lb} / \mathrm{sq} \mathrm{ft})=277.5 \mathrm{lb} / \mathrm{ft}
$$

Allowable stress of Douglas fir lumber (used for Joist and Stringer lumber). (Table 12-6)

$$
\begin{array}{lll}
F_{b}=1450 \mathrm{psi} & F_{c \perp}=385 \mathrm{psi} & F_{t}=850 \mathrm{psi} \\
F_{v}=185 \mathrm{psi} & F_{c}=1000 \mathrm{psi} & E=1.7 \times 10^{6} \mathrm{psi}
\end{array}
$$

Properties section of Stringer lumber ($2 \times 12 \mathrm{in}$). (Table 11-5)

$$
A=1.5 \times 11.25=16.88 \mathrm{in}^{2} \quad \& \quad I=178 \mathrm{in}^{4} \quad \& \quad S=31.64 \mathrm{in}^{3}
$$

Assume three or more span

a) Bending

$$
l=10.95\left(\frac{F_{b} S}{w}\right)^{1 / 2}=10.95\left(\frac{1,450 \times 31.64}{277.5}\right)^{1 / 2}=140.8 \mathrm{in} . \leftarrow
$$

b) Shear

$$
l=13.3 \frac{F_{v} A}{w}+2 d=13.3 \frac{185 \times 16.88}{277.5}+2 \times 11.25=172.17 \mathrm{in} .
$$

c) Deflection

$$
l=1.69\left(\frac{E I}{w}\right)^{1 / 3}=1.69\left(\frac{1.7 \times 10^{6} \times 178}{277.5}\right)^{1 / 3}=173.95 \mathrm{in}
$$

\therefore Thus bending governs and maximum joist span is $140.8-\mathrm{in}$. Select a stringer spacing (Joist span) of 138 in (11.5 ft).

Stringer Design

$w=11.5 \mathrm{ft} \times 185 \mathrm{lb} / \mathrm{sq} \mathrm{ft}=2127.5 \mathrm{lb} / \mathrm{ft}$
Allowable stress of Douglas fir lumber (used for Joist and Stringer lumber). (Table 12-6)

$$
\begin{array}{lll}
F_{b}=1450 \mathrm{psi} & F_{c \perp}=385 \mathrm{psi} & F_{t}=850 \mathrm{psi} \\
F_{v}=185 \mathrm{psi} & F_{c}=1000 \mathrm{psi} & E=1.7 \times 10^{6} \mathrm{psi}
\end{array}
$$

Properties section of Stringer lumber ($4 \times 10 \mathrm{in}$). (Table 12-5)

$$
A=3.5 \times 9.25=32.38 \mathrm{in}^{2} \& \quad I=230.8 \mathrm{in}^{4} \quad \& \quad S=49.91 \mathrm{in}^{3}
$$

a) Bending

$$
l=10.95\left(\frac{F_{b} S}{w}\right)^{1 / 2}=10.95\left(\frac{1,450 \times 49.91}{2127.5}\right)^{1 / 2}=63.9 \mathrm{in} .
$$

b) Shear

$$
l=13.3 \frac{F_{v} A}{w}+2 d=13.3 \frac{185 \times 32.38}{2127.5}+2 \times 9.25=55.9 \mathrm{in} .
$$

c) Deflection

$$
l=1.69\left(\frac{E I}{w}\right)^{1 / 3}=1.69\left(\frac{1.7 \times 10^{6} \times 230.8}{2127.5}\right)^{1 / 3}=96.2 \mathrm{in}
$$

d) Shore strength

$$
l=\frac{8000}{2127.5} \times 12 \mathrm{in} / \mathrm{tt}=45.1 \mathrm{in} \leftrightarrows
$$

\therefore Thus the maximum stringer span is limited by shore strength to 45.1 in. Select a shore spacing of 42 in (3.5 ft).

Check Crushing point

$P=277.5 \mathrm{lb} / \mathrm{ft} \times 11.5 \mathrm{ft}=3191.25 \mathrm{lb}$
Bearing area $(A)=3.5 \mathrm{in} \times 4.75 \mathrm{in}=16.625 \mathrm{sq}$. in.
$f_{c \perp}=\frac{P}{A}=\frac{3191.25}{16.625}=191.95 \mathrm{psi}<385 \mathrm{psi} \quad \therefore$ Ok.

- Check for Lateral Braces

Concrete $=1 \mathrm{sq} \mathrm{ft} \times \frac{8 \mathrm{in}}{12 \mathrm{in} / \mathrm{ft}} \times 150 \mathrm{lb} / \mathrm{cu} \mathrm{ft}=100 \mathrm{lb} / \mathrm{sq} \mathrm{ft}$

Form work	$=10 \mathrm{lb} / \mathrm{sq} \mathrm{ft}$
Design dead load $(d l)$	$=110 \mathrm{lb} / \mathrm{sq} \mathrm{ft}$

$\mathrm{H}=0.02 \times d l \times w s$ equation (12-4)

- For the 40 - ft face, width of slab ($w s$) is 50 ft .
$\mathrm{H}_{40}=0.02 \times 110 \times 50=110 \mathrm{lb} / \mathrm{lin} \mathrm{ft}>100 \mathrm{lb} / \mathrm{lin} \mathrm{ft} \therefore$ Ok.
\therefore in this face, we need lateral brace $=\mathrm{H}_{40} \times 40 \mathrm{ft}=4400 \mathrm{lb}$.
Where we have Guy-wire bracing capable of carrying a load of 2000 lb , so we need:

$$
\frac{4400 \mathrm{lb} / 40-\mathrm{ft} \mathrm{face}}{2000 \mathrm{lb} / \mathrm{Guy}-\text { wire }}=2.2 \approx 3 \text { Guy-wire } / 40-\mathrm{ft} \mathrm{face}
$$

- For the 50 -ft face, width of slab ($w s$) is 40 ft .
$\mathrm{H}_{50}=0.02 \times 110 \times 40=88 \mathrm{lb} / \mathrm{lin} \mathrm{ft}<100 \mathrm{lb} / \mathrm{lin} \mathrm{ft} . \therefore \mathrm{H}_{50}=100 \mathrm{lb} / \mathrm{lin} \mathrm{ft}$
\therefore in this face, we need lateral brace $=\mathrm{H}_{50} \times 50 \mathrm{ft}=5000 \mathrm{lb}$.
Where we have Guy-wire bracing capable of carrying a load of 2000 lb , so we need:

$$
\frac{5000 \mathrm{lb} / 50-\mathrm{ft} \text { face }}{2000 \mathrm{lb} / \text { Guy }- \text { wire }}=2.5 \approx 3 \text { Guy-wire } / 50-\mathrm{ft} \text { face }
$$

> Final Design

Decking: $3 / 4$ in lumber. (Class I Plyform with face grain a cross support).
Joists: 2×12 's at 18 -in spacing. (Douglas fir lumbers)
Stringer: 4×10 's at $138-\mathrm{in}$ spacing. (Douglas fir lumbers).

Shores: 8000-lb commercial at 42-in spacing, with 3 Guy-wire bracing on all four sides of the form, attached at slab elevation and making a 45° angle with the ground.

