Review of Calculus and Probability

arlocicel pixel|
not ( $A$ )

$\left.\begin{array}{c}\text { at last } A, B \\ A \text { or } B\end{array}\right\} \longrightarrow A \cup B$


$$
\begin{aligned}
P\left(A^{c} \cap B\right) & =P(B)-P(A \cap B) \\
P\left(A^{c} \cap B^{C}\right) & =1-P(A \cup B) \\
P(A \cap B) & =P\left(A \cap B^{C}\right)=P(A)-P(A \cap B) \\
P\left(A^{C}\right)= & 1-P(A) \\
P(A \cup B \cup C) & =P(A)+P(B)+P(C)-P(A \cap B) \\
& -P(A \cap C)-P(B \cap C)+P(A \cap B \cap C)
\end{aligned}
$$

$\rightarrow$ for disjoint (or mutually exclusive) events

$$
\begin{aligned}
& \text { } A \cap B=\varnothing \quad \therefore P(\Phi)=0 \\
& P(A \cup B)=P(A)+P(B) \\
& P(A \cup B \cup C)=P(A)+P(B)+P(C)
\end{aligned}
$$

Conditional probability

. - Hern

$$
P(A \mid B) \rightarrow \text { probability of }(A) \text { given }(B)
$$




$$
P(A / B)=\frac{P(A \cap B)}{P(B)}=\frac{n(A \cap B) / n(S)}{n(B) / n(S)}=\frac{n(A \cap B)}{n(B)}
$$

for equally likely outcomes

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

Suppose we draw a single card from a deck of 52 cards.
1-What is the probability that a heart or spade is drawn?
2 -What is the probability that the drawn card is not a 2 ?
3-Given that a red card has been drawn, what is the probability that it is a diamond? Are the eventsindependent events?
$E 1=$ red card is drawn
$E 2=$ diamond is drawn
4-Show that the events are independent events?
$E 1=$ spade is drawn
$E 2=2$ is drawn

## Solution:

1-What is the probability that a heart or spade is drawn?
1 Define the events

$$
\begin{aligned}
& E_{1}=\text { heart is drawn } \\
& E_{2}=\text { spade is drawn }
\end{aligned}
$$

$E_{1}$ and $E_{2}$ are mutually exclusive events with $P\left(E_{1}\right)=P\left(E_{2}\right)=\frac{1}{4}$. We seek $P\left(E_{1} \cup E_{2}\right)$. From probability rule 3 ,

$$
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)=\left(\frac{1}{4}\right)+\left(\frac{1}{4}\right)=\frac{1}{2}
$$

2 -What is the probability that the drawn card is not a 2 ?
2 Define event $E=$ a 2 is drawn. Then $P(E)=\frac{4}{52}=\frac{1}{13}$. We seek $P(E)$. From probability rule $4, P(\bar{E})=1-\frac{1}{13}=\frac{12}{13}$.

3- Given that a red card has been drawn, what is the probability that it is a diamond? Are the events independent events?
$E 1=$ red card is drawn
$E 2=$ diamond is drawn
3 From (1),

$$
\begin{aligned}
P\left(E_{2} \mid E_{1}\right) & =\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{1}\right)} \\
P\left(E_{1} \cap E_{2}\right) & =P\left(E_{2}\right)=\frac{13}{52}=\frac{1}{4} \\
P\left(E_{1}\right) & =\frac{26}{52}=\frac{1}{2}
\end{aligned}
$$

Thus,

$$
P\left(E_{2} \mid E_{1}\right)=\frac{\frac{1}{4}}{\frac{1}{2}}=\frac{1}{2}
$$

Since $P\left(E_{2}\right)=\frac{1}{4}$, we see that $P\left(E_{2} \mid E_{1}\right) \neq P\left(E_{2}\right)$. Thus, $E_{1}$ and $E_{2}$ are not independent events. (This is because knowing that a red card was drawn increases the probability that a diamond was drawn.)

4-Show that the events are independent events?
E1 = spade is drawn
$E 2=2$ is drawn
$4 P\left(E_{1}\right)=\frac{13}{52}=\frac{1}{4}, P\left(E_{2}\right)=\frac{4}{52}=\frac{1}{13}$, and $P\left(E_{1} \cap E_{2}\right)=\frac{1}{52}$. Since $P\left(E_{1}\right) P\left(E_{2}\right)=$ $P\left(E_{1} \cap E_{2}\right), E_{1}$ and $E_{2}$ are independent events. Intuitively, since $\frac{1}{4}$ of all cards in the deck are spades and $\frac{1}{4}$ of all 2 's in the deck are spades, knowing that a 2 has been drawn does not change the probability that the card drawn was a spade.

## Baye’s Rule

## 13aye＇s Rule：－


تُرْن





Three machines $A_{1}, A_{2}$ ，and $A_{1}$ make $20 \%, 30 \%$ ，and $50 \%$ ， respectively，of the products．It is known that $1 \mathrm{p} / \mathrm{e} 4 \%$ and $7 \%$ of the products made by each machine，respectively，ate defective．If a finished product is randomly selected，what is the probability that it is defective？

B：．The selected product is defective
$A_{1}:$ ：～$\sim$ is made by machine $\left(A_{1}\right)$
Av：－．．～product is made by machine $\left(A_{3}\right)$
A3：－te te selected product is made by $\left(A_{3}\right)$ ．

$$
\begin{aligned}
& \text { 皿. } \sim P\left(A_{2}\right)=\frac{30}{100}=0.3, P\left(B / A_{2}\right)=\frac{4}{100}=0.04 A_{2} \ldots, \\
& A_{3} \ldots P\left(A_{3}\right)=\frac{50}{100}=0.5, P\left(B / A_{3}\right)=\frac{7}{100}=0.07 \quad A_{3} \ldots \ldots \\
& \text { ~リン251 } \\
& \begin{array}{llll}
A_{1} & 0.2 & B / A_{1} \xrightarrow{0.01} & 0.002 \\
A_{2} & 0.3 & B / A_{2} \xrightarrow{0.04} & 0.012
\end{array} \\
& B / A_{3} \xrightarrow{0.07} 0.055 \\
& P(B)=0.049
\end{aligned}
$$

$$
\begin{aligned}
& P(B)=P(A) \cdot P\left(B / A_{1}\right)+P\left(A_{2}\right) \cdot P\left(B / A_{2}\right)+P\left(A_{3}\right) \cdot P\left(B / A_{3}\right) \\
& =0.2 * 0.01+0.3 * 0.012+0.5 * 0.035=0.049
\end{aligned}
$$

- If it is known that the selected product is defective, What is the probability that is made by $A_{2}, A_{3}$ machines?

$$
\begin{aligned}
& P\left(A_{2} / B\right)=\frac{P\left(A_{2}\right) \cdot P\left(B / A_{2}\right)}{P(B)}=\frac{0.012}{0.049}=0.2449 \\
& P\left(A_{3} / 13\right)=\frac{P\left(A_{3}\right) \cdot P\left(B / A_{3}\right)}{P(B)}=\frac{0.035}{0.049}=0.2449
\end{aligned}
$$

Suppose that $1 \%$ of all children have tuberculosis (TB). When a child who has TB is given the Mantoux test, a positive test result occurs $95 \%$ of the time. When a child who does not have TB is given the Mantoux test, a positive test result occurs $1 \%$ of the time. Given that a child is tested and a positive test result occurs, what is the probability that the child has TB?

The states of the world are

$$
\begin{aligned}
& S_{1}=\text { child has TB } \\
& S_{2}=\text { child does not have TB }
\end{aligned}
$$

The possible experimental outcomes are

$$
\begin{aligned}
& O_{1}=\text { positive test result } \\
& O_{2}=\text { nonpositive test result }
\end{aligned}
$$

We are given the prior probabilities $P\left(S_{1}\right)=.01$ and $P\left(S_{2}\right)=.99$ and the likelihoods $P\left(O_{1} \mid S_{1}\right)=.95, P\left(O_{1} \mid S_{2}\right)=.01, P\left(O_{2} \mid S_{1}\right)=.05$, and $P\left(O_{2} \mid S_{2}\right)=.99$. We seek $P\left(S_{1} \mid O_{1}\right)$. From (7),

$$
\begin{aligned}
P\left(S_{1} \mid O_{1}\right) & =\frac{P\left(O_{1} \mid S_{1}\right) P\left(S_{1}\right)}{P\left(O_{1} \mid S_{1}\right) P\left(S_{1}\right)+P\left(O_{1} \mid S_{2}\right) P\left(S_{2}\right)} \\
& =\frac{.95(.01)}{.95(.01)+.01(.99)}=\frac{95}{194}=.49
\end{aligned}
$$

## Probability Distributions

## Binomial Distribution:

$$
P\{x=k\}=C_{k}^{n} p^{k}(1-p)^{n-k}, k=0,1,2, \ldots, n
$$

al distribution with parameters $n$ and $p$. Its mean

$$
\begin{aligned}
E\{x\} & =n p \\
\operatorname{var}\{x\} & =n p(1-p)
\end{aligned}
$$

## Poisson Distribution:

$$
P\{x=k\}=\frac{\lambda^{k} e^{-\lambda}}{k!}, k=0,1,2, \ldots
$$

The mean and variance of the Poisson are

$$
\begin{aligned}
E\{x\} & =\lambda \\
\operatorname{var}\{x\} & =\lambda
\end{aligned}
$$

## Exponential Distribution:

$$
\begin{gathered}
f(x)=\lambda e^{-\lambda x}, \quad x>0 \\
E[X]=\frac{1}{\lambda} \quad \text { and } \quad \operatorname{Var}[X]=\frac{1}{\lambda}
\end{gathered}
$$

Normal Distribution:

$$
\begin{array}{r}
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)} \quad, \quad-\infty<x<+\infty \\
E[X]=\mu \text { and } \quad \operatorname{Var}[X]=\sigma^{2}
\end{array}
$$

