## Exercise 2

\#Systematic Sampling
Example: A company's desired to estimate employee savings. The savings $\mathbf{( \$ 1 0 , 0 0 0 )}$ of 40 employees are arranged in the following Table :

| $\mathbf{i}$ | savings | $\mathbf{i}$ | savings | $\mathbf{i}$ | savings | $\mathbf{i}$ | savings |
| :--- | :---: | :--- | :---: | :--- | :---: | :--- | :---: |
| 1 | $\mathbf{2 3}$ | 11 | $\mathbf{1 4}$ | 21 | $\mathbf{1 4}$ | 31 | $\mathbf{1 5}$ |
| 2 | $\mathbf{3 0}$ | 12 | $\mathbf{1 7}$ | 22 | $\mathbf{2 2}$ | 32 | $\mathbf{1 4}$ |
| 3 | $\mathbf{1 9}$ | 13 | $\mathbf{4 0}$ | 23 | $\mathbf{2 4}$ | 33 | $\mathbf{1 5}$ |
| 4 | $\mathbf{3 8}$ | 14 | $\mathbf{1 7}$ | 24 | $\mathbf{1 4}$ | 34 | $\mathbf{2 9}$ |
| 5 | $\mathbf{2 3}$ | 15 | $\mathbf{4 0}$ | 25 | $\mathbf{1 7}$ | 35 | $\mathbf{1 0}$ |
| 6 | $\mathbf{3 8}$ | 16 | $\mathbf{2 3}$ | 26 | $\mathbf{1 2}$ | 36 | $\mathbf{1 0}$ |
| 7 | $\mathbf{1 9}$ | 17 | $\mathbf{2 0}$ | 27 | $\mathbf{3 0}$ | 37 | $\mathbf{1 6}$ |
| 8 | $\mathbf{1 8}$ | 18 | $\mathbf{2 0}$ | 28 | $\mathbf{1 4}$ | 38 | $\mathbf{2 2}$ |
| 9 | $\mathbf{4 3}$ | 19 | $\mathbf{2 4}$ | 29 | $\mathbf{2 0}$ | 39 | $\mathbf{1 6}$ |
| 10 | $\mathbf{2 3}$ | 20 | $\mathbf{1 4}$ | 30 | $\mathbf{1 4}$ | 40 | $\mathbf{1 2}$ |

A- List all possible systematic samples of size 10, that can be drawn from this set of employees using systematic sampling. Also, obtain corresponding sample means and variance.
B- Compute variance of the systematic sample mean, and variance of the SRS mean. Also, compare the precision systematic sample and SRS.

## Solution

$\mathbf{N}=40, \quad \mathrm{n}=10, \mathrm{k}=40 / 10=4,1 \leq r \leq 4$
so we can draw 4 groups of size 10. In actual sampling, one of the four samples will be selected randomly.

|  | Samples |  |  |  |
| :--- | :---: | :--- | :--- | :---: |
|  | 1 | 2 | 3 | 4 |
|  | 23 | 30 | 19 | 38 |
|  | 23 | 38 | 19 | 18 |
|  | 43 | 23 | 14 | 17 |
|  | 40 | 17 | 40 | 23 |
|  | 20 | 20 | 24 | 14 |
|  | 14 | 22 | 24 | 14 |
|  | 17 | 12 | 30 | 14 |
|  | 20 | 14 | 15 | 14 |
|  | 15 | 29 | 10 | 10 |
|  | 16 | 22 | 16 | 12 |
| Means | 23.1 | 22.7 | 21.1 | 17.4 |
| Variances | 104.1 | 62.01 | 77.66 | 65.16 |

sample Mean and Variance of $h^{\text {th }}$ sample are
$\bar{y}_{h}=\frac{\sum_{i=1}^{n} y_{i}}{n}, \quad s_{h}^{2}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}_{h}\right)^{2}}{n-1} \quad, h=1, \ldots, k$
variance of the systematic sample mean is
$V\left(\bar{y}_{s y s}\right)=\frac{1}{k} \sum_{h=1}^{k}\left(\bar{y}_{h}-\bar{Y}\right)^{2}$
$\mu=\bar{Y}=\frac{\sum_{i=1}^{n} Y_{i}}{N}=21.075$
$V\left(\bar{y}_{\text {sys }}\right)=\frac{1}{4}\left[(23.1-21.075)^{2}+(22.7-21.075)^{2}+(21.1-21.075)^{2}+(17.4-21.075)^{2}\right]$ $=5.062$
variance of the SRS is
$V\left(\bar{y}_{s r S}\right)=\frac{N-n}{N} \frac{S^{2}}{n}$
$S^{2}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\mu\right)^{2}}{N-1}=76.48$
$V\left(\bar{y}_{s r s}\right)=\frac{40-10}{40} \frac{76.48}{10}=5.736$

The difference in the variances of the mean $\bar{y}$ of a simple random sample and $\bar{y}_{\text {sys }}$ is

$$
V(\bar{y})-V\left(\bar{y}_{s y s}\right)=5.736-5.062=0.674
$$

Therefore, the precision of the systematic mean is higher. The precision of systematic sampling is larger with a gain of $\frac{V(\bar{y})-V\left(\bar{y}_{s y s}\right)}{V\left(\bar{y}_{s y s}\right)} 100 \%=13 \%$

## NOTE:

- Systematic sampling is precise when units within the same sample are heterogeneous and his imprecise when they are homogeneous.
- If the units in the population are arranged at random then systematic sampling is equivalent to SRS without replacement.


## By use R program

```
#popuLation(employee savings)
Y=c(23, 30,19, 38, 23, 38,19,18,43,23,14,17,40,17,40, 23, 20, 20, 24,14,14, 22, 24,14,1
7,12,30,14, 20,14,15,14,15, 29, 10, 10,16, 22,16,12)
# compute population mean:
mean(Y)
```

[1] 21.075

```
# perform all 1-in-4 systematic samples
k=4 ; n=10 ; N=40
sys_samples=matrix(0,10,4)
sys_samples
```

|  | $[, 1]$ | $[, 2]$ | $[, 3]$ | $[, 4]$ |
| :---: | ---: | ---: | ---: | ---: |
| $[1]$, | 0 | 0 | 0 | 0 |
| $[2]$, | 0 | 0 | 0 | 0 |
| $[3]$, | 0 | 0 | 0 | 0 |
| $[4]$, | 0 | 0 | 0 | 0 |
| $[5]$, | 0 | 0 | 0 | 0 |
| $[6]$, | 0 | 0 | 0 | 0 |
| $[7]$, | 0 | 0 | 0 | 0 |
| $[8]$, | 0 | 0 | 0 | 0 |
| $[9]$, | 0 | 0 | 0 | 0 |
| $[10]$, | 0 | 0 | 0 | 0 |

for (i in 1:4) sys_samples[,i]=Y[seq(i,40,k)]
sys_samples

| $[, 1]$ |  |  |  | $[, 2]$ |
| :---: | :---: | :---: | :---: | ---: |
| $[, 3]$ | $[, 4]$ |  |  |  |
| $[1]$, | 23 | 30 | 19 | 38 |
| $[2]$, | 23 | 38 | 19 | 18 |
| $[3]$, | 43 | 23 | 14 | 17 |
| $[4]$, | 40 | 17 | 40 | 23 |
| $[5]$, | 20 | 20 | 24 | 14 |
| $[6]$, | 14 | 22 | 24 | 14 |
| $[7]$, | 17 | 12 | 30 | 14 |
| $[8]$, | 20 | 14 | 15 | 14 |
| $[9]$, | 15 | 29 | 10 | 10 |
| $[10]$, | 16 | 22 | 16 | 12 |

To compute all systematic sample mean $y_{\text {sys }}$

```
sys_mean=apply(sys_samples, 2, mean)
#compare their mean with the population mean
mean(sys_mean)
```


## [1] 21.075

mean $(Y)$
[1] 21.075
conclude: the systematic mean is an unbiased estimator of the population mean.

```
# compute the variance of the systematic sample mean
    var_sys_mean=1/k*sum((sys_mean-mean(Y))**2)
var_sys_mean
```

[1] 5.061875

```
# compute the variances of the systematic samples s_{i}}\mp@subsup{}{}{2
sys_var=apply(sys_samples, 2,var)
sys_var
[1] 104.10000 62.01111 77.65556 65.15556
# compute the variance of the SRS mean V(ybar)
S=sd(Y)
varSRS=((40-10)/(40*10))*(S^2)
varSRS
[1] 5.736106
```

compute the difference between the variance of the SRS mean and the variances of the systematic mean

```
varSRS-var_sys_mean
```

[1] 0.6742308
Conclude: the precision of the systematic mean is higher. The precision of systematic sampling is larger with a gain of $13 \%$

## \# Estimation of Proportion (SRS)

## Example 1:

Punjab Agricultural University, Ludhiana, is interested in estimating the proportion P of teachers who consider semester system to be more suitable as compared to the trimester system of education. A with replacement simple random sample of $\mathrm{n}=120$ teachers is taken from a total of $\mathrm{N}=1200$ teachers. The response is denoted by $\mathbf{0}$ if the teacher does not think the semester system suitable, and $\mathbf{1}$ if he/she does.

From the sample observations given below, Estimate the proportion and total number of teachers who consider semester system is suitable with $95 \%$ confidence interval for each.

| Teacher | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\ldots$. | $\mathbf{1 1 9}$ | $\mathbf{1 2 0}$ | total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Response | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ |  | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{7 2}$ |

## Solution:

Total number with response 1 is $a=\sum_{i=1}^{N} Y_{i}=72$, sample WR
The Estimate of proportion and total number of teachers who consider semester system to be more suitable are

$$
\begin{aligned}
& p=\frac{a}{n}=\frac{72}{120}=0.6 ; q=1-p=1-0.6=0.4 \\
& A=N p=1200(0.6)=720
\end{aligned}
$$

Estimate of the standard error of $\boldsymbol{p}$ will then be obtained as

$$
\begin{gathered}
v(p)=\widehat{V(p)}=\frac{p q}{n-1}=\frac{(0.6)(0.4)}{119}=\frac{0.24}{119}=0.0022 \\
\operatorname{se}(p)=\sqrt{\frac{p q}{n-1}}=\sqrt{\frac{0.24}{119}}=0.0449
\end{gathered}
$$

The $95 \%$ confidence interval for $\mathbf{P}$ would be obtained following

$$
\begin{gathered}
p \mp Z_{1-\frac{\alpha}{2}} \operatorname{se}(p) \\
Z_{1-\frac{\alpha}{2}}=Z_{1-\frac{0.05}{2}}=Z_{0.975}=1.96 \\
0.6 \mp 1.96(0.0449) \\
{[0.5119,0.688]}
\end{gathered}
$$

The proportion of teachers in the university favoring semester system is, therefore, likely to be in the closed interval [ $0.5119,0.688]$. or We are $95 \%$ confidence that the proportion of teachers in the university favoring semester system belong in the closed interval [ $0.5119,0.688$ ]

The $95 \%$ confidence interval for total number of teachers who consider semester system to be more suitable is

$$
\begin{gathered}
1200(0.5119)<A<1200(0.688) \\
614<A<826
\end{gathered}
$$

## Example 2

From the data given in Example 1, suppose that the SRS without replacement samples.

- Estimate proportion P along with the standard error of your estimate.
- Estimate the proportion and total number of teachers who consider semester system is suitable.
- Calculate confidence interval for P and total number of teacher.


## Solution:

$$
\begin{aligned}
& p=\frac{a}{n}=\frac{72}{120}=0.6 ; q=1-p=1-0.6=0.4 \\
& A=N p=1200(0.6)=720
\end{aligned}
$$

Estimate of the standard error of $\boldsymbol{p}$ will then be obtained as

$$
\begin{gathered}
v(p)=\widehat{V(p)}=\frac{p q}{n-1} \frac{N-n}{N}=\frac{(0.6)(0.4)}{119} \frac{1200-120}{1200}=\frac{27}{14875}=0.001815 \\
\operatorname{se}(p)=\sqrt{\frac{p q}{n-1} \frac{N-n}{N}}=\sqrt{\frac{27}{14875}}=0.0426
\end{gathered}
$$

The $95 \%$ confidence interval for $\mathbf{P}$ would be obtained following

$$
\begin{gathered}
p \mp Z_{1-\frac{\alpha}{2}} \operatorname{se}(p) \\
0.6 \mp 1.96(0.0426) \\
{[0.5165,0.6835]}
\end{gathered}
$$

The $95 \%$ confidence interval for total number of teachers who consider semester system to be more suitable is

$$
620<A<821
$$

H.W

Example: A geneticist is interested in the proportion of African males who have a certain minor blood disorder. In replacement simple random sample of 100 African males, 24 are found to be afflicted.
(a) Compute a $99 \%$ confidence interval for the proportion and total number of African males who have this blood disorder.
(b) What can we assert with $99 \%$ confidence about the possible size of our error if we estimate the proportion of African males with this blood disorder to be 0.24 ?

