Q. 5 A random variable V has the distribution function

$$
F(v)= \begin{cases}0 & \text { for } v<0 \\ 1-(1-v)^{A} & \text { for } 0 \leq v \leq 1 \\ 1 & \text { for } v>1\end{cases}
$$

where $A>0$ is a parameter. Determine the density function, mean, and variance.

$$
\begin{gathered}
\int_{a}^{b} f=-\int_{b}^{a} f \\
f(v)=A(1-v)^{A-1} \\
E(v)=\int_{0}^{1} v A(1-v)^{A-1} d v
\end{gathered}
$$

بالتعو يض بـ u
$u=1-v \quad v=1-u$
$d v=-d u$

$$
\begin{gathered}
=A \int_{0}^{1}(1-u) u^{A-1} d u= \\
>A \int_{0}^{1} u^{A-1}-u^{A} d u=>A\left[\frac{u^{A}}{A}-\frac{u^{A+1}}{A+1}\right] 0 \\
E(v)=1-\frac{A}{A+1} \\
E\left(v^{2}\right)=\int_{0}^{1} v^{2} A(1-v)^{A-1} d v
\end{gathered}
$$

بالتعو يض بـ u
$\mathrm{u}=1-\mathrm{v} \quad \mathrm{v}=1-\mathrm{u}$
$d v=-d u$

$$
\begin{gathered}
=A \int_{0}^{1}(1-u)^{2} u^{A-1} d u=>A \int_{0}^{1}\left(1-2 u+u^{2}\right) u^{A-1} d u \\
=>A \int_{0}^{1}\left(u^{A-1}-2 u^{A}+u^{A+1}\right) d u \\
=>A\left[\frac{u^{A}}{A}-\frac{2 u^{A+1}}{A+1}+\frac{u^{A+2}}{A+2}\right] \begin{array}{l}
1 \\
0
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
E\left(v^{2}\right) & =1-\frac{2 A}{A+1}+\frac{A}{A+2} \\
V(v)=E\left(v^{2}\right)-(E(v))^{2} & =>1-\frac{2 A}{A+1}+\frac{A}{A+2}-\left(1-\frac{A}{A+1}\right)^{2}
\end{aligned}
$$

Q. 6 Determine the distribution function, mean, and variance corresponding to the triangular density.

$$
\begin{gathered}
f(x)= \begin{cases}x & \text { for } 0 \leq x \leq 1, \\
2-x & \text { for } 1 \leq x \leq 2, \\
0 & \text { elsewhere. }\end{cases} \\
\mathrm{F}(\mathrm{x})=\left\{\begin{array}{cc}
0 & \mathrm{x}<0 \\
\frac{\mathrm{x}^{2}}{2} & 0 \leq x \leq 1 \\
2 \mathrm{x}-\frac{\mathrm{x}^{2}}{2}-1 & 1 \leq x \leq 2 \\
1 & 2<x
\end{array}\right. \\
E(x)=\int_{0}^{1} x^{2} d x+\int_{1}^{2} x(2-x) d x=\frac{1}{3}+\frac{2}{3}=1 \\
E\left(x^{2}\right)=\int_{0}^{1} x^{3} d x+\int_{1}^{2} x^{2}(2-x) d x=\frac{1}{4}+\frac{11}{12}=\frac{7}{6}
\end{gathered}
$$

OR

$$
V(x)=\int_{0}^{1}(x-1)^{2} x d x+\int_{1}^{2}(x-1)^{2}(2-x) d x=\frac{1}{12}+\frac{1}{12}=\frac{1}{6}
$$

Q. 7 Suppose X is a random variable with finite mean μ and variance σ^{2}, and $Y=a+b X$ for certain constants $a, b \neq 0$. Determine the mean and variance for Y.

$$
\begin{gathered}
E(Y)=E(a+b X)=a+b E(X) \\
V(Y)=V(a+b X)=b^{2} V(X)
\end{gathered}
$$

Q. 9 Random variables X and Y are independent and have the probability mass functions

$$
\begin{array}{ll}
p_{X}(0)=\frac{1}{2}, & p_{Y}(1)=\frac{1}{6}, \\
p_{X}(3)=\frac{1}{2}, & p_{Y}(2)=\frac{1}{3}, \\
& p_{Y}(3)=\frac{1}{2} .
\end{array}
$$

Determine the probability mass function of the sum $Z=X+Y$.

X	Y	Z	$\mathrm{P}(\mathrm{Z})=\mathrm{P}(\mathrm{X})+\mathrm{P}(\mathrm{Y})$
0	1	1	$\frac{1}{2} * \frac{1}{6}=\frac{1}{12}$
	2	2	$\frac{1}{2} * \frac{1}{3}=\frac{1}{6}$
	3	3	$\frac{1}{2} * \frac{1}{2}=\frac{1}{4}$
	1	4	$\frac{1}{2} * \frac{1}{6}=\frac{1}{12}$
	2	5	$\frac{1}{2} * \frac{1}{3}=\frac{1}{6}$
	3	6	$\frac{1}{2} * \frac{1}{2}=\frac{1}{4}$

Z	1	2	3	4	5	6
$\mathrm{P}(\mathrm{Z})$	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{4}$

Q. 10 Random variables U and V are independent and have the probability mass functions

$$
\begin{array}{ll}
p_{U}(0)=\frac{1}{3}, & p_{V}(1)=\frac{1}{2}, \\
p_{U}(1)=\frac{1}{3}, & p_{V}(2)=\frac{1}{2} . \\
p_{U}(2)=\frac{1}{3}, &
\end{array}
$$

Determine the probability mass function of the sum $W=U+V$.

U	V	W	$\mathrm{P}(\mathrm{W})=\mathrm{P}(\mathrm{U})+\mathrm{P}(\mathrm{V})$
0		1	$\frac{1}{2} * \frac{1}{3}=\frac{1}{6}$
1		2	$\frac{1}{2} * \frac{1}{3}=\frac{1}{6}$
			3
		3	$\frac{1}{3}=\frac{1}{6}$
0		2	$\frac{1}{2} * \frac{1}{3}=\frac{1}{6}$
1	2	3	$\frac{1}{2} * \frac{1}{3}=\frac{1}{6}$
		3	
		4	$\frac{1}{2} * \frac{1}{3}=\frac{1}{6}$

Z	1	2	3	4
$\mathrm{P}(\mathrm{Z})$	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{2}{6}$	$\frac{1}{6}$

Q.12 A fair die is rolled 10 times.
$\mathrm{n}=10 \quad \mathrm{P}=0.5 \quad \Omega=\{1,2,3,4,5,6\} \quad \mathrm{x}:$ An even number will show
$=>\{2,4,6\}$

$$
\mathrm{P}(\mathrm{X}=\mathrm{x})=\binom{n}{x} p^{x} q^{n-x}
$$

a- What is the probability that the rolled die will not show an even number?

$$
P(X=0)=\binom{10}{0}(0.5)^{0}(0.5)^{10-0}=
$$

b- What is the probability that the rolled die will show an even number 7 times?

$$
(X=7)=\binom{10}{7}(0.5)^{7}(0.5)^{10-7}=
$$

c-What is the probability that the rolled die will show an odd number3 times?

$$
(X=7)=\binom{10}{7}(0.5)^{7}(0.5)^{10-7}=
$$

d-What is the probability that the rolled die will show an odd number 3,5,7,9 times?
e-What is the probability that the rolled die will show an odd number one times?

$$
(X=9)=\binom{10}{9}(0.5)^{9}(0.5)^{10-9}=
$$

f -What is the probability that the rolled die will show just an even number?

$$
(X=10)=\binom{10}{10}(0.5)^{9}(0.5)^{10-9}=
$$

g-What is the probability that the rolled die will show an even number 5 times?

$$
(X=5)=\binom{10}{5}(0.5)^{10}(0.5)^{10-10}=
$$

Q.13. Suppose that five fair coins are tossed independently.
$\mathrm{n}=5 \quad \mathrm{P}=0.5 \quad \Omega=\{H, T\} \quad \mathrm{x}$: AHead will show $=>\{H\}$

$$
\mathrm{P}(\mathrm{X}=\mathrm{x})=\binom{n}{x} p^{x} q^{n-x}
$$

a- What is the probability that exactlyone of the coins will be different from the remaining four?

$$
P(X=1)+P(X=4)=\binom{5}{1}(0.5)^{1}(0.5)^{5-1}+\binom{5}{4}(0.5)^{4}(0.5)^{5-4}
$$

b-What is the probability that Head will show 3 times?

$$
P(X=3)=\binom{5}{3}(0.5)^{3}(0.5)^{5-3}
$$

c -What is the probability that Head will show at least 3 times?

$$
P(X \geq 3)=
$$

d-What is the probability that Head will show at most 3 times?

$$
\mathrm{P}(\mathrm{X} \leq 3)=
$$

e-What is the probability that Head will show less than 3 times?

$$
\mathrm{P}(\mathrm{X}<3)=
$$

f -What is the probability that Head will show more than 3 times?

$$
\mathrm{P}(\mathrm{X}>3)
$$

Q1. Suppose two dice are tossed (for each die, it is equally likely that $1,2,3,4,5$, or 6 dots will show).
a) What is the probability that the total of the two dice will add up to 7 or 11 ?
b) What is the probability that the total of the two dice will add up to a number other than 2 or 12 ?
c) Are the events

E1 $=$ first die shows a 3
$\mathrm{E} 2=$ total of the two dice is 6
Independent events?
d) Are the events

E1 $=$ first die shows a 3
$\mathrm{E} 2=$ total of the two dice is 7 independent events?
e) Given that the total of the two dice is 5 , what is the probability that the first die showed 2 dots?
f) Given that the first die shows 5 , what is the probability that the total of the two dice is even?

Q2. A desk contains three drawers. Drawer 1 contains twogold coins. Drawer 2 contains one gold coin and one silvercoin. Drawer 3 contains two silver coins. I randomly choosea drawer and then randomly choose a coin. If a silver coinis chosen, what is the probability that I chose drawer 3?

