Linear Congruential Generator (LCG)

$$
\begin{equation*}
R_{i+1}=\left(a R_{i}+c\right) \bmod m \quad \text { for } i=0,1,2, \ldots . \tag{2.1}
\end{equation*}
$$

where R_{0} is called the seed of the sequence, a is called the constant multiplier, c is called the increment, and m is called the modulus. (m, a, c, R_{0}) are integers with $a>0$, $c \geq 0, m>a, m>c, m>R_{0}$, and $0 \leq R_{i} \leq m-1$.

To compute the corresponding pseudorandom uniform number, we use

$$
\begin{equation*}
U_{i}=\frac{R_{i}}{m} \tag{2.2}
\end{equation*}
$$

The mod operator is defined as:

$$
\begin{aligned}
z & =y \bmod m \\
& =y-m\left\lfloor\frac{y}{m}\right\rfloor \quad \text { where }\lfloor\cdot\rfloor \text { is the floor operator, }
\end{aligned}
$$

How it is computed when $\mathrm{y}=17$ and $\mathrm{m}=3$?

$$
\begin{aligned}
z & =17 \bmod 3 \\
& =17-3\left\lfloor\frac{17}{3}\right\rfloor \\
& =17-\lfloor 5 . \overline{66}\rfloor \\
& =17-3 \times 5=2
\end{aligned}
$$

EXAMPLE:

Consider an LCG with parameters ($m=8, a=5, c=1, R O=5$). Compute the first nine values for Ri and Ui from the defined sequence. how to compute using the mod operator.

```
In our example
\(\mathrm{m}=8\)
\(a=5\)
\(\mathrm{c}=1\)
\(\mathrm{R}_{0}=5\)
```

$$
\begin{aligned}
& R_{1}=\left(5 R_{0}+1\right) \bmod 8=26 \bmod 8=2 \Rightarrow U_{1}=0.25 \\
& R_{2}=\left(5 R_{1}+1\right) \bmod 8=11 \bmod 8=3 \Rightarrow U_{2}=0.375 \\
& R_{3}=\left(5 R_{2}+1\right) \bmod 8=16 \mathrm{mod} 8=0 \Rightarrow U_{3}=0.0 \\
& R_{4}=\left(5 R_{3}+1\right) \bmod 8=1 \mathrm{mod} 8=1 \Rightarrow U_{4}=0.125 \\
& R_{5}=6 \Rightarrow U_{5}=0.75 \\
& R_{6}=7 \Rightarrow U_{6}=0.875 \\
& R_{7}=4 \Rightarrow U_{7}=0.5 \\
& R_{8}=5 \Rightarrow U_{8}=0.625 \\
& R_{9}=2 \Rightarrow U_{9}=0.25
\end{aligned}
$$

Theorem: (LCG Full Period Conditions)

An LCG has full period if and only if the following three conditions hold:

1. The only positive integer that (exactly) divides both m and c is 1 (i.e., c and m have no common factors other than 1).
2. If q is a prime number that divides m then q should divide $(a-1)$ (i.e., $(a-1)$ is a multiple of every prime number that divides m).
3. If 4 divides m, then 4 should divide $(a-1)$ (i.e., $(a-1)$ is a multiple of 4 if m is a multiple of 4).

EXAMPLE:

To apply the theorem, you must check if each of the three conditions holds for the generator.
$m=8, a=5, c=1$

Cond-1. c and m have no common factors other than 1:

factors of $m=8$ are $(1,2,4,8)$, since $c=1$ (with factor 1) condition 1 is true.

Cond-2. $(a-1)$ is a multiple of every prime number that divides m :

The first few prime numbers are $(1,2,3,5,7)$. The prime numbers, q, that divide $m=8$ are $(q=1,2)$. Since $a=5$ and $(a-1)=4$, clearly $q=1$ divides 4 and $q=2$ divides 4 . Thus, condition 2 is true.

Cond. 3: If 4 divides m, then 4 should divide ($a-1$):

Since $m=8$, clearly 4 divides m. Also, 4 divides $(a-1)=4$. Thus, condition 3 holds.

Exercise:

Analyze the following LCG:

$$
x_{i}=\left(11 x_{i-1}+5\right) \bmod 16
$$

What is the maximum possible period length for this generator? Does this generator achieve the maximum possible period length? Justify your answer.

