Exercise (Baye's Theorem)

Q 3.5.1

	D (Has the disease)	\bar{D} (Dose not has the disease)	Total
T (+ve result)	$\mathbf{7 4 4}$	$\mathbf{2 1}$	1390
\bar{T} (-ve result)	31	1359	765
Total	$\mathbf{7 7 5}$	$\mathbf{1 3 8 0}$	2155

a) In the context of this exercise, what is a false positive?

A false positive is when the person has a +ve result but does not have the disease
b) What is a false negative?

A false positive is when the person has the disease but has the a-ve result
c) Compute the sensitivity of the symptom.
$\mathrm{P}(\mathrm{T} \mid \mathrm{D})=744 / 775=0.96$
d) Compute the specificity of the symptom.
$\mathrm{P}(\bar{T} \mid \bar{D})=1359 / 1380=0.9848$
e) Suppose it is known that the rate of the diseases in the general population is 0.1%. what is the predictive value positive of the symptom?

Using $\mathrm{P}(\mathrm{D})=0.001$
$P(\bar{D})=1-P(D)=0.999$
$\mathrm{P}(\mathrm{D} \mid \mathrm{T})=\frac{\mathrm{P}(\mathrm{T} \mid \mathrm{D}) \mathrm{P}(\mathrm{D})}{\mathrm{P}(\mathrm{T} \mid \mathrm{D}) \mathrm{P}(\mathrm{D})+\mathrm{P}(T \mid \bar{D}) \cdot \mathrm{P}(\bar{D})}=\frac{\text { sensitivity } \mathrm{P}(\mathrm{D})}{\text { sensitivity } \mathrm{P}(\mathrm{D})+[1-\text { specificity }] \cdot \mathrm{P}(\bar{D})}$
$=\frac{0.96 \times 0.001}{0.96 \times 0.001+(1-0.9848) \times(1-0.001)}=\frac{0.00096}{0.00096+(0.0152) \times(0.999)}=0.0595$
f) What is the predictive value negative of the symptom?

$$
\begin{aligned}
& \mathrm{P}(\bar{D} \mid \bar{T})=\frac{\mathrm{P}(\bar{T} \mid \bar{D}) \mathrm{P}(\bar{D})}{\mathrm{P}(\bar{T} \mid \bar{D}) \mathrm{P}(\bar{D})+\mathrm{P}(\bar{T} \mid \mathrm{D}) \mathrm{P}(D)}=\frac{\text { specificity } \mathrm{P}(\bar{D})}{\text { specificity } \mathrm{P}(\bar{D})+[1-\operatorname{sensitivity}] \mathrm{P}(D)} \\
& =\frac{(0.9848) \times(1-0.001)}{(0.9848) \times(1-0.001)+(1-0.96) \mathrm{x}(0.001)}=0.9999
\end{aligned}
$$

