GROWTH, DECAY and NEWTON'S LAW OF COOLING

1.The initial population 5000 of a town is increased by 20% in first 10 years. What will be the population after 20 years? The rate of growth of population is proportional to the population at that instant. Ans: 7200
2. Number of bacteria in a certain culture doubles in 6 hours and becomes 1000 in 8 hours. If the rate of growth of bacteria is proportional to the number present at that instant, find the initial number of bacteria Ans: $1000(0.5)^{\frac{4}{3}}$.
3. Initially 10 grams of a Radioactive substance disintegrates to 8 grams in 10 years. The rate of decay of the substance is proportional to the amount present at time t. What is the half-life of the substance? What amount of substance will be left after 20 years? Ans: $10\left(\frac{\ln 2}{\ln 5-\ln 4}\right) . / 6.4$ grams.
4. A cake is put in a preheated oven at temperature $120^{\circ} C$ reaches $40^{\circ} C$ in 5 seconds and to $50^{\circ} C$ in 10 seconds. What was the initial temperature of the cake? Ans: $29^{0} C$.
5. A coin is put in a boiling water, whose temperature is recorded after 2 minutes and 4 minutes to be $40^{\circ} C$ and $50^{\circ} C$ respectively. What was the initial temperature of the coin? Ans: $28^{0} C$.
6. A thermometer with reading $20^{\circ} C$ is taken outside of a room, which after 1 minute reads $25^{0} \mathrm{C}$ and after 2 minutes reads $28^{\circ} \mathrm{C}$. What is the temperature outside? Ans: $32.5^{0} C$.
7. The population of a town grows by 5% in 10 years and it becomes 10000 in 15 years. If the rate of growth of population is proportional to the population at that instant, what is the initial population? Ans: $1000(1.1)^{-\frac{3}{2}}$. (Hint: Assume intial population is P_{0}, then at $\left.t=10, P=P+\frac{P_{0}}{20}=\frac{21 P_{0}}{20}=(1.05) P_{0}\right)$

