## Exercises 4



| Factors for <br> Comparison | Cluster Sampling | Stratified Sampling |
| :---: | :--- | :--- |
| Definition | Members of this sample are chosen <br> from naturally divided groups called <br> clusters, by randomly selecting <br> elements to be a part of the sample. | Members of this sample are <br> randomly chosen from non- <br> overlapping, homogeneous <br> strata. |
| Purpose | Cost reduction and increased <br> efficiency. | Enhanced precision and <br> population depiction. |
| Sample selection | Selection of the sample is done by <br> randomly selected clusters and <br> including all the members from these <br> clusters. | Selection of the sample is <br> done by randomly selecting <br> members from various <br> formed strata. |
| Selection of <br> elements that form <br> a Sample | Conjointly | Distinctively |
| Division type | Naturally formed | Depends on the researcher |
| Heterogeneity | Internally, with the clusters | Externally, between various <br> strata |
| Homogeneity | Externally, between various clusters | Internally, with the strata |

## \#Cluster Sampling

Estimation of clusters Mean using simple random sampling WOR:
Unbiased estimator of population mean when $\mathrm{M}=\sum_{i=1}^{N} M_{i}$ is known:

$$
\bar{y}_{c l u}=\frac{N}{n} \frac{\sum_{i=1}^{n} t_{i}}{M}=\frac{1}{\bar{M} n} \sum_{i=1}^{n} t_{i}
$$

Variance of estimator $\bar{y}_{c l u}$ :

$$
\begin{equation*}
\operatorname{Var}\left(\bar{y}_{c l u}\right)=\frac{N(N-n)}{n M^{2}} \frac{1}{N-1} \sum_{i=1}^{N}\left(T_{i}-\frac{T}{N}\right)^{2} \tag{10.2}
\end{equation*}
$$

## Estimator of Variance $\operatorname{Var}\left(\bar{y}_{c l u}\right)$ :

$$
\begin{equation*}
\operatorname{var}\left(\bar{y}_{c l u}\right)=\frac{N(N-n)}{n M^{2}} \frac{1}{n-1} \sum_{i=1}^{n}\left(t_{i}-\frac{t}{n}\right)^{2} \tag{10.3}
\end{equation*}
$$

Other equivalent formula

$$
\begin{equation*}
\operatorname{var}\left(\bar{y}_{c l u}\right)=\frac{(N-n)}{N n \bar{M}^{2}} \frac{1}{n-1} \sum_{i=1}^{n}\left(t_{i}-\bar{M} \bar{y}_{c l u}\right)^{2} \tag{10.3}
\end{equation*}
$$

Where,
$\mathrm{N}=$ number of clusters in the population
$\mathrm{n}=$ number of clusters in the sample
$M_{i}=$ number of units in the i-th cluster of the population
$\mathrm{M}=\sum_{i=1}^{N} M_{i}=$ total number of units in the population
$Y_{i j}=$ value of the character under study for the j -th unit in the i-th cluster,
$\mathrm{j}=1,2, \ldots, M_{i} ; \mathrm{i}=1,2, \ldots, \mathrm{~N}$
$t_{i}=\sum_{j=1}^{M_{i}} y_{i j}=\mathrm{i}^{\text {th }}$ sample cluster total
$T_{i}=\sum_{j=1}^{M_{i}} Y_{i j}=\mathrm{i}^{\text {th }}$ cluster tota
$t=\sum_{i=1}^{n} t_{i}=$ total of y (values for units in the Sample)
$T=\sum_{i=1}^{N} T_{i}=$ total of y (values for all units in the population)
$\bar{M}=\frac{\sum_{i=1}^{N} M_{i}}{N}=$ average number of units per cluster in the population

If the clusters are selected using WR sampling, then $\mathrm{fpc}=(\mathrm{N}-\mathrm{n}) /(\mathrm{N}-1)$ in relation (10.2) and the sampling fraction $\mathrm{f}=\mathrm{n} / \mathrm{N}$ in (10.3) are taken as $\mathbf{1}$ and $\mathbf{0}$ respectively to get the corresponding results for the with replacement case.

Note: ( fpc) Finite population correction.
When $M=\sum_{i=1}^{N} M_{i}$ is not known and the values of $M_{i}$ are known only for the sample clusters, then $\bar{Y}$ can be estimated by using the following estimator .

Estimator of population mean when $M=\sum_{i=1}^{N} M_{i}$ unknown:

$$
\bar{y}_{c l u}=\frac{1}{n} \sum_{i=1}^{n} \bar{y}_{i}
$$

Variance of estimator $\bar{y}_{c l u}$ :

$$
\operatorname{Var}\left(\bar{y}_{c l u}\right)=\frac{N-n}{n N} \frac{1}{N-1} \sum_{i=1}^{N}\left(\bar{Y}_{i}-\bar{y}_{c l u}\right)^{2}
$$

Estimator of variance $\operatorname{Var}\left(\bar{y}_{c l u}\right)$ :

$$
\operatorname{var}\left(\bar{y}_{c l u}\right)=\frac{N-n}{n N} \frac{1}{n-1} \sum_{i=1}^{n}\left(\bar{y}_{i}-\bar{y}_{c l u}\right)^{2}
$$

Where,
$\bar{y}_{i}=\frac{t_{i}}{M_{i}}=$ per unit $\mathrm{i}^{\text {th }}$ sample cluster mean
$\bar{Y}_{i}=\frac{T_{i}}{M_{i}}$ per unit $\mathrm{i}^{\text {th }}$ cluster mean

## Example 1 :

A random sample of 8 clusters is drawn from a population of 200 clusters. Each of the cluster has 10 units. The means of sample clusters are respectively $32,25,41,42,36,47,39$ and 43 . Estimate population mean with a $95 \%$ confidence interval.
Solution: we have $\mathrm{n}=8, \mathrm{~N}=200$ and $\mathrm{M}=10$. The estimator of population mean in cluster sampling its variance estimator are

$$
\begin{gathered}
\bar{y}_{c l u}=\frac{1}{n} \sum_{i=1}^{n} \bar{y}_{i} \\
\operatorname{var}\left(\bar{y}_{c l u}\right)=\frac{N-n}{n N} \frac{1}{n-1} \sum_{i=1}^{n}\left(\bar{y}_{i}-\bar{y}_{c l u}\right)^{2}
\end{gathered}
$$

Further, a $100(1-\alpha) \%$ confidence interval for true population mean is

$$
\bar{y}_{c l u} \pm Z_{1-\frac{\alpha}{2}} \sqrt{\operatorname{var}\left(\bar{y}_{c l u}\right)}
$$

Now estimate of population mean is:

$$
\begin{aligned}
& \begin{aligned}
& \bar{y}_{c l u}=\left(\frac{1}{8}\right)(32+25+41+42+36+47+39+43)=38.125 \\
\operatorname{var}\left(\bar{y}_{c l u}\right)= & \frac{200-8}{8 * 200} \frac{1}{8-1}\left[(32-38.125)^{2}+(25-38.125)^{2}+\cdots\right. \\
& \left.\quad+(43-38.125)^{2}\right]
\end{aligned} \\
& \operatorname{var}\left(\bar{y}_{c l u}\right)= \\
& 5.844
\end{aligned}
$$

For a $95 \%$ confidence interval we have $Z_{0.975}=1.96$ The interval for population mean is therefore
$38.125 \pm 1.96 * \sqrt{5.844}$
$38.125 \pm 4.7382$
[33.3868 ,42.8632]

## Example 2:

The recommended dose of nitrogen for wheat crop is 120 kg per hectare. A survey project was undertaken by the Department of Agriculture with a view to estimate the amount of nitrogen actually applied by the farmers. For this purpose, 12 villages from a population of 170 villages of a development block were selected using equal probabilities WOR sampling, and the information regarding the nitrogen use was collected from all the farmers in the selected villages. The data collected are presented in table 10.1. The total number of farmers in these 170 villages is available from the patwari's record as 2890.

Estimate the average amount of nitrogen used in practice by a farmer. Also, obtain standard error of the estimate, and place $95 \%$ confidence limits on the population mean.

Table 10.1 Per hectare nitrogen (in kg ) applied to wheat crop by farmers

| Village | M ${ }_{\text {i }}$ | Nitrogen applied (in kg ) by a farmer |  |  |  |  |  |  |  |  | $t_{i}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 15 | 105 | 128 | 130 | 108 | 135 | 122 | 120 | 138 | 126 | 1843 |
|  |  | 117 | 125 | 126 | 123 | 118 | 122 |  |  |  |  |
| 2 | 18 | 135 | 128 | 105 | 130 | 120 | 125 | 114 | 128 | 121 | 2206 |
|  |  | 109 | 128 | 122 | 129 | 112 | 133 | 117 | 119 | 131 |  |
| 3 | 25 | 124 | 118 | 128 | 106 | 132 | 121 | 126 | 108 | 136 | 3085 |
|  |  | 121 | 128 | 125 | 136 | 128 | 121 | 127 | 122 | 113 |  |
|  |  | 117 | 132 | 128 | 125 | 130 | 109 | 124 |  |  |  |
| 4 | 21 | 108 | 116 | 111 | 129 | 119 | 137 | 129 | 121 | 118 | 2582 |
|  |  | 126 | 131 | 128 | 134 | 125 | 112 | 121 | 116 | 114 |  |
|  |  | 129 | 127 | 131 |  |  |  |  |  |  |  |
| 5 | 11 | 114 | 105 | 126 | 132 | 116 | 125 | 104 | 121 | 132 | 1292 |
|  |  | 106 | 111 |  |  |  |  |  |  |  |  |
| 6 | 13 | 128 | 116 | 132 | 136 | 121 | 122 | 129 | 123 | 127 | 1627 |
|  |  | 118 | 134 | 126 | 115 |  |  |  |  |  |  |
| 7 | 22 | 103 | 118 | 107 | 128 | 132 | 136 | 124 | 129 | 130 | 2686 |
|  |  | 134 | 108 | 106 | 117 | 129 | 113 | 118 | 126 | 127 |  |
|  |  | 129 | 119 | 125 | 128 |  |  |  |  |  |  |
| 8 | 12 | 109 | 121 | 114 | 128 | 133 | 135 | 114 | 128 | 107 | 1471 |
|  |  | 125 | 126 | 131 |  |  |  |  |  |  |  |
| 9 | 10 | 119 | 128 | 117 | 131 | 105 | 128 | 136 | 113 | 127 | 1234 |
|  |  | 130 |  |  |  |  |  |  |  |  |  |
| 10 | 20 | 130 | 127 | 116 | 128 | 114 | 120 | 127 | 123 | 134 | 2449 |
|  |  | 122 | 126 | 121 | 117 | 125 | 129 | 122 | 113 | 111 |  |
|  |  | 126 | 118 |  |  |  |  |  |  |  |  |
| 11 | 10 | 126 | 117 | 124 | 121 | 131 | 133 | 126 | 120 | 128 | 1242 |
|  |  | 116 |  |  |  |  |  |  |  |  |  |
| 12 | 16 | $124$ | $121$ | $127$ | $119$ | $120$ | $123$ | $128$ | 117 | 121 | 1935 |
|  |  | 93 | $115$ | $120$ | $124$ | $121$ | $130$ | $132$ |  |  |  |

Solution:

$$
\begin{gathered}
N=170, M=2890, \text { and } n=12 \\
\bar{M}=\frac{M}{N}=\frac{2890}{170}=17
\end{gathered}
$$

Estimate of the average amount of nitrogen used per hectare, by a farmer:

$$
\begin{gathered}
\bar{y}_{c l u}=\frac{N}{n} \frac{\sum_{i=1}^{n} t_{i}}{M}=\frac{1}{\bar{M} n} \sum_{i=1}^{n} t_{i} \\
=\frac{1}{17 * 12}(1843+\cdots+1935)=\frac{23652}{17 * 12}=115.941
\end{gathered}
$$

Estimate of variance:

$$
\begin{gathered}
\operatorname{var}\left(\bar{y}_{c l u}\right)=\frac{(N-n)}{N n \bar{M}^{2}} \frac{1}{n-1} \sum_{i=1}^{n}\left(t_{i}-\bar{M} \bar{y}_{c l u}\right)^{2} \\
\bar{M} \bar{y}_{c l u}=(17)(115.941)=1970.997 \\
=\left(\frac{170-12}{170 * 12 *(17)^{2}}\right) \frac{1}{11}\left[(\mathbf{1 8 4 3}-1970.997)^{2}+(\mathbf{2 2 0 6}-1970.997)^{2}\right. \\
\left.+\cdots+(1935-1970.997)^{2}\right] \\
=\frac{(170-12)(4331060)}{(170)(12)(17)^{2}(11)}=105.519
\end{gathered}
$$

Using above calculated estimate of variance, the standard error of mean will be

$$
s d\left(\bar{y}_{c l u}\right)=\sqrt{\operatorname{var}\left(\bar{y}_{c l u}\right)}=\sqrt{105.519}=10.272
$$

The required confidence limits for population mean are obtained as

$$
\begin{gathered}
\bar{y}_{c l u} \pm Z_{1-\frac{\alpha}{2}} \sqrt{\operatorname{var}\left(\bar{y}_{c l u}\right)} \\
115.941 \pm 1.96(10.272)
\end{gathered}
$$

[ 95.8079, 136.0741]

## H.W

## Example 3:

The Department of Education of a state has been providing fixed medical allowance at the rate of \$ 60 per head, for a quarter, to its teachers and their dependents for the last five years. With a view to examine the rationality of this policy today, when the price index has gone up about 1.5 times during the preceding five years, a simple random WOR sample of 10 schools was drawn from a total of 104 schools in a development block by the investigator. Since some of the teachers might be on long leave, the total number of teachers available could not be known in advance. All the teachers (M), except those on long leave, in the sample schools were interviewed. They were requested to give per head medical expenses (in rupees), for themselves and their dependents, during the past 3 months. The results are as follows :

| School | $\mathbf{M}_{\mathbf{i}}$ | Per head medical expenses for 3 months |  |  |  |  |  |  |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | :--- | :---: |
| 1 | 4 | 50 | 100 | 120 | 110 |  |  |  |
| 2 | 4 | 90 | 70 | 40 | 140 |  |  |  |
| 3 | 5 | 85 | 33 | 122 | 60 | 105 |  |  |
| 4 | 6 | 55 | 80 | 130 | 70 | 240 | 80 |  |
| 5 | 4 | 130 | 70 | 40 | 120 |  |  |  |
| 6 | 3 | 85 | 65 | 45 |  |  |  |  |
| 7 | 4 | 30 | 75 | 65 | 115 |  |  |  |
| 8 | 6 | 150 | 105 | 0 | 25 | 185 | 100 |  |
| 9 | 5 | 100 | 60 | 130 | 40 | 125 |  |  |
| 10 | 7 | 50 | 45 | 110 | 120 | 60 | 140 |  |

1. Estimate the average per head money spent as medical expenses during the past 3 months.
2. Build up the $95 \%$ confidence interval for the population average.
3. Use R Program to solve previous part .
