KING SAUD UNIVERSITY DEPARTMENT OF MATHEMATICS TIME: 3H, FULL MARKS: 40, 27/02/1434 MATH 204

Question 1. a) [3] Determine the largest region for which the following initial value problem admits a unique solution

$$
\ln (x-2) \cdot \frac{d y}{d x}=\sqrt{y-2}, \quad y\left(\frac{5}{2}\right)=4
$$

b) [3].Solve the linear first order differential equation:

$$
(y-x+x y \cot x) d x+x d y=0, \quad x \in(0, \pi)
$$

Question 2. a) [4]. Verify that $\mu(x, y)=x y^{2}$ is an integrating factor for the equation

$$
\left(4 x^{2} y+2 y^{2}\right) d x+\left(3 x^{3}+4 x y\right) d y=0
$$

and hence solve it.
b) [4]. Find the family of orthogonal trajectories for the family of curves: $x^{2}-y^{2}=C$. Which curve of the orthogonal family passes through $(0,0)$.

Question 3. a) [4]. Find the general solution of the differential equation

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x}, \quad x>0
$$

b) [4]. Write down the general form of the particular solution y_{p} for the differential equation

$$
y^{(4)}-y^{\prime \prime}=x+x e^{x}+x e^{-x}
$$

Question 4. a) [4] Solve the initial value problem:

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}+2 y=0, \quad y(1)=0, y^{\prime}(1)=1, \quad x>0
$$

b) [4]. Solve the following differential equation by using the method of power series about $x=0$.

$$
y^{\prime \prime}-2 x^{2} y^{\prime}+8 y=0
$$

Question 5. a) [5]. Expand in Fourier series the function $f(x)=\left\{\begin{array}{c}0,-\pi<x<0 \\ \pi-x, \quad 0<x<\pi\end{array}\right.$ and deuduce that $\sum_{n=1}^{\infty} \frac{1}{(2 n+1)^{2}}=\frac{\pi^{2}}{8}$.
b) [5]. Find the Fourier integral representation of the function

$$
g(x)=\left\{\begin{array}{cc}
0, & -\infty<x<-1 \\
2, & -1<x<1 \\
0, & 1<x<\infty
\end{array}\right.
$$

and deduce that $\int_{0}^{\infty} \frac{\sin \lambda}{\lambda} d \lambda=\frac{\pi}{2}$.

