Solution of the Final Examination Math 244 Semester I, (1441, H)

Question $1[2+2+3]$
a) $|A|=\left|\begin{array}{ccc}1 & 0 & 0 \\ -1 & 3 x-4 & 1 \\ 1 & -2 & 2\end{array}\right|=6 x-6$. Then $x=2$.
b) Let $A=\left(\begin{array}{ll}x & y \\ z & t\end{array}\right) \cdot A X_{1}=\binom{3}{1}$ and $A X_{2}=\binom{2}{2}$ is equivalent to: $\left\{\begin{array}{c}2 x+y=3 \\ x+y=2\end{array}\right.$ and $\left\{\begin{aligned} 2 z+t & =1 \\ z+t & =2\end{aligned}\right.$. Then $x=y=1, z=-1, t=3$ and $A=\left(\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right)$.
c) The augmented matrix is $\left[\begin{array}{ccc|c}m & 1 & 2 & 3 \\ m & m & 3 & 5 \\ 3 m & m+2 & m+6 & 2 m+9\end{array}\right]$.

This matrix is row equivalent to $\left[\begin{array}{ccc|c}m & 1 & 2 & 3 \\ 0 & m-1 & 1 & 2 \\ 0 & m-1 & m & 2 m\end{array}\right] \Longleftrightarrow\left[\begin{array}{ccc|c}m & 1 & 2 & 3 \\ 0 & m-1 & 1 & 2 \\ 0 & 0 & m-1 & 2(m-1)\end{array}\right]$. If $m=1$ there are infinitely many solutions.

Question $2[2+3+(2+2)]$
a) $|A|=0$ then A cannot be a transition matrix between two bases of any 3 -dimensional vector space.
b) This system is equivalent to: $x-3 y+z=0$. The set of solutions is $S=\{(3 y-z, y, z): y, z \in \mathbb{R}\}=\{y(3,1,0)+z(-1,0,1): y, z \in \mathbb{R}\}$. Then $\{(3,1,0),(-1,0,1)\}$ is a basis for the solution space of linear system.
c) Consider the bases $B=\left\{u_{1}=(1,1,0), u_{2}=(1,1,1), u_{3}=(1,0,1)\right\}$ and
$C=\left\{v_{1}=(1,-1,0), v_{2}=(1,-1,1), v_{3}=(-1,0,1)\right\}$ for \mathbb{R}^{3}.
Find the matrices ${ }_{C} P_{B}$ and ${ }_{B} P_{C} .\left[{ }_{C} P_{B}\right.$ is the transition matrix from B to C.]
${ }_{C} P_{B}=\left(\begin{array}{ccc}-3 & -4 & -2 \\ 2 & 3 & 2 \\ -2 & -2 & -1\end{array}\right)$ and ${ }_{B} P_{C}=\left(\begin{array}{ccc}1 & 0 & -2 \\ -2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right)$
Question 3 [3+(2+2)]
а) $T(-5,1,3)=(0,0,0) \Longleftrightarrow\left\{\begin{array}{rl}-5 a+2 b & =-3 \\ -5 a-b & =-6 \\ -10 a+b & =-9\end{array} \Longleftrightarrow a=b=1\right.$.
b) (i) $A=\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1\end{array}\right)$.
(ii) The rank of A is 3 and the nullity is 2 .

Question $4[(1+1)+2+2]$
(i) $T\left(v_{1}\right)=-w_{1}-4 w_{2}+w_{3}-2 w_{4}, T\left(v_{3}\right)=-2 w_{1}+w_{2}+4 w_{3}-4 w_{4}$.
(ii) $[T]_{B}^{C}=\left(\begin{array}{ccc}-1 & 2 & -2 \\ -4 & 1 & 1 \\ 1 & -1 & 4 \\ -2 & 3 & -4\end{array}\right)$.
(iii) $[T(v)]_{C}=\left(\begin{array}{c}9 \\ 17 \\ -3 \\ 14\end{array}\right)$.

Question $5[(2+2)+2+2+3]$
a) (i) $v_{4}=v_{3}-v_{1}$ and $x v_{1}+y v_{2}+z v_{3}=(0,0,0,0) \Longleftrightarrow\left\{\begin{array}{cl}x+z & =0 \\ x+y & =0 \\ -x+y+z & =0 \\ y+z & =0\end{array} \Longleftrightarrow\right.$ $x=y=z=0$. Then $\left\{v_{1}, v_{2} . v_{3}\right\}$ is a basis for F.
(ii) $\left\langle v_{1}, v_{2}\right\rangle=0$ and $\left\langle v_{1}, v_{3}\right\rangle=0$.
$u_{1}=\frac{1}{\sqrt{3}} v_{1}, u_{2}=\frac{1}{\sqrt{3}} v_{2}$.
$\left\langle v_{3}, v_{2}\right\rangle=2, v_{3}-\frac{2}{3} v_{2}=\frac{1}{3}(3,-2,1,1)$. Then $u_{3}=\frac{1}{\sqrt{15}}(3,-2,1,1)$.
b) If $X=\binom{1}{-1}$, then $A X=\lambda X \Longleftrightarrow a=4$.
c) 3 is an eigenvalue of the matrix $A=\left(\begin{array}{cc}2 & -1 \\ 1 & b\end{array}\right)$ if and only if $b=4$.
d) The matrix is diagonalizable then there exists an invertible matrix P such that

$$
P^{-1} A P=D=\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -3
\end{array}\right) . A^{17}=P D^{17} P^{-1}=3^{16} P D P^{-1}=3^{16} A
$$

