King Saud University Department of Mathematics

106
Final Exam, December 2015

NAME:

Group Number/Instructor's Name:

ID:

Question	Grade
I	
II	
III	
IV	
V	
Total	

Question	1	2	3	4	5	6	7	8	9	10
Answer										

I) Choose the correct answer (write it on the table above):

1) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i}{n^{2}}$ equals
(A) $\frac{1}{2}$
(B) 1
(C) 0
(D) None
2) $\int_{0}^{1} \ln \left(e^{2 x}\right) d x$ equals
(A) 0
(B) e
(C) 1
(D) None
3) If the polar coordinates of a point are $(r, \theta)=\left(-3, \frac{3 \pi}{2}\right)$, then its rectangular coordinates are
(A) $(x, y)=(-3,0)$
(B) $(x, y)=(0,3)$
(C) $(x, y)=(0,-3)$
(D) None
4) If $f^{\prime}(x)=2 x$ and $f(0)=2$, then
(A) $f(x)=x^{2}$
(B) $f(x)=x^{2}+2$
(C) $f(x)=2 x^{2}$
(D) None
5) If $\int_{1}^{3} f(x) d x=3$ and $\int_{1}^{7} f(x) d x=7$, then
(A) $\int_{1}^{4} f(x) d x=4$
(B) $\int_{1}^{10} f(x) d x=10$
(C) $\int_{3}^{7} f(x) d x=4$
(D) None
6) The number c satisfying the Mean Value Theorem for $\int_{0}^{2} x d x$ is
(A) $c=1$
(B) $c=0$
(C) $c=-1$
(D) None
7) If $x=\log _{3} 9$, then
(A) $x=6$
(B) $x=3$
(C) $x=2$
(D) None
8) If $\sinh x=3$, then
(A) $\cosh x=\sqrt{10}$
(B) $\cosh x=-\sqrt{10}$
(C) $\cosh x=2 \sqrt{2}$
(D) None
9) $\int \tan (2 x) d x$ equals
(A) $\frac{1}{2} \ln |\cos (2 x)|+c$
(B) $-\frac{1}{2} \ln |\cos (2 x)|+c$
(C) $\ln |\cos (2 x)|+c$
(D) None
10) The Simpson's rule for approximating $\int_{1}^{3} \frac{1}{x} d x$, for $n=4$, is

$$
\frac{1}{6}\left(1+\frac{8}{3}+1+\frac{8}{5}+\frac{1}{3}\right) \quad \frac{1}{4}\left(1+\frac{4}{3}+1+\frac{4}{5}+\frac{1}{3}\right) \quad \text { (C) } \frac{1}{2}\left(\frac{4}{5}+1+\frac{4}{7}+\frac{4}{9}+\frac{4}{11}\right) \quad \text { (D) None }
$$

II) A) Compute the following integrals:

1) $\int\left(\frac{3}{1+x^{2}}+2 e^{-x}+\frac{1}{x}\right) d x$
2) $\int \sin ^{-1} x d x$
3) $\int x \sqrt{x^{2}+1} d x$
B) If $F(x)=\int_{0}^{x^{2}} \tan \left(t^{2}\right) d t$, find $F^{\prime}(x)$.
III) A) Compute the following integrals:
4) $\int \frac{2 x}{x^{2}-6 x+9} d x$
5) $\int \tan ^{3 / 2} x \sec ^{4} x d x$.
B) Determine whether the improper integrals converge or diverge:
6) $\int_{0}^{1} \frac{x}{x^{2}-1} d x$
7) $\int_{2}^{\infty} \frac{1}{\sqrt{x^{3}}} d x$
C) Solve for x the equation $\cosh (\ln x)=1$.
IV) A) Find the arc length of the portion of the curve $y=\frac{2}{3} x \sqrt{x}$, for $0 \leq x \leq 3$.
B) Find the area of the region enclosed by the graphs of $y=x^{2}, y=-x+2$ and the x-axis.
C) Find the volume of the solid resulting from revolving about the x-axis the region enclosed by the graph of $y=\sqrt{x}$ and the x-axis, on the interval $[0,1]$.
D) Find the volume of the solid resulting from revolving about the y-axis the region enclosed by the graphs of $y=x^{2}+2, y=6$ and $x=0$.
V) A) Find the equation, in rectangular coordinates, of the curve whose polar equation is

$$
r \sin \theta=\ln r+\ln \cos \theta .
$$

B) Compute the area of the region enclosed by the graph of $r=2-2 \sin \theta$, for $\theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
C) Sketch the graph of the curve whose parametric equations are $x=t, y=t^{2}+1$, for $0 \leq t \leq 3$. Then, find the equation of the curve, in rectangular coordinates.

- $\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)$
- $\cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}-1}\right), x \geq 1$
- $\tanh ^{-1} x=\frac{1}{2} \ln \frac{1+x}{1-x},|x|<1$
- $\operatorname{sech}^{-1} x=\ln \frac{1+\sqrt{1-x^{2}}}{x}, 0<x \leq 1$
- $\frac{d}{d x}\left(\sinh ^{-1} x\right)=\frac{1}{\sqrt{x^{2}+1}}$
- $\frac{d}{d x}\left(\cosh ^{-1} x\right)=\frac{1}{\sqrt{x^{2}-1}}, x>1$
- $\frac{d}{d x}\left(\tanh ^{-1} x\right)=\frac{1}{1-x^{2}},|x|<1$
- $\frac{d}{d x}\left(\operatorname{sech}^{-1} x\right)=-\frac{1}{x \sqrt{1-x^{2}}}, 0<x<1$
- $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}},|x|<1$
- $\frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}},|x|<1$
- $\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$
- $\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{|x| \sqrt{x^{2}-1}},|x|>1$

