Department of Statistics \& Operations Research College of Science, King Saud University

STAT 145
Final Examination
Second Semester1431-1432 H

		اسم الطالب
	رقّم التحضير	الرقم الجمامع
	اسم الدكتور	رقم الشعبة

- Mobile Telephones are not allowed in the classrooms.
- Time allowed is 3 Hours.
- Answer all questions.
- Choose the nearest number to your answer.
- For each question, put the code (Capital Letters) of the correct answer in the following table beneath the question number. Do not use pencil or red pen.

1	2	3	4	5	6	7	8	9	10
B	D	A	C	A	C	B	C	B	D
11	12	13	14	15	16	17	18	19	20
D	D	B	A	B	A	A	B	C	A
21	22	23	24	25	26	27	28	29	30
C	D	C	B	B	D	D	A	C	C
31	32	33	34	35	36	37	38	39	40
B	A	D	D	C	A	B	C	C	A
41	42	43	44	45	46	47	48	49	50
B	D	D	B	A	A	D	A	C	B

Term Marks	Final Exam. Marks	Total Marks

" ")

Following are the weights (in $\mathbf{k g}$) for a sample of 6 children. $13,20,18,12,15$, and 12.
(1) The mean of the data is:
A) 12
B) $\underline{\underline{15}}$
C) 10
D) 18
(2) The median of the data is:

A)	17	B)	12	C)	10	D)	14

(3) The mode of the data is:
A) $\underline{12}$
B) 20
C) 15
D) 2
(4) The variance of the data is:
A) 3.347
B) 3.055
C) $\underline{11.200}$
D) 9.333
(5) The coefficient of variation (C.V.) of the data is:
A) 22.3%
B) 17.4%
C) 74.7%
D) 62.22%
" >>
Temperatures recorded at $\mathbf{2} \mathbf{~ p m}$ for 5 days of a year, for a city are:

$$
7, \quad 4, \quad 0, \quad-5, \quad \text { and } \quad 40 .
$$

(6) The range of temperatures is:
A) 33
B) 40
C) $\underline{45}$
D) 5
(7) The most suitable measure of centre for the data is:

A)	Mean	B)	Median	C)	Mode	D)	Range

" ")

Let A and B denote two events defined on the same sample space with $P(A)=0.6, P(B)=$ 0.4 , and $P(A \cup B)=0.74$, then:
(8) The events A and B are:

A)	independent	B)	mutually exclusive	C)	dependent	D)	impossible

(9) The $P(\bar{A} \cap \bar{B})$ is:

A)	0.18	B)	$\underline{0.26}$	C)	0.50	D)	1.00

")>
Consider the following cumulative frequency distribution table for the ages of all workers in a certain factory.

Age	Cumulative frequency
$26-35$	10
$36-45$	40
$46-55$	50

(10) Percentage of workers in the age group 36-45 is:
A) 40%
B) 80%
C) 30%
D) $\underline{\underline{60 \%}}$
(11) Number of workers having age 36 or more is:
A) 90
B) 50
C) 10
D) 40
(12) The true class limits for the first class are:

A)	$26-35$	B)	$21.5-35.5$	C)	$25.5-34.5$	D)	$\underline{25.5-35.5}$

" ")
Let A and B be two independent events. Suppose that $P(A)=0.6$ and $P(B)=0.3$ then
(13) $P(\bar{A} \cap B)$ is equal to:

A)	0.08

B) $\underline{\underline{0.12}}$
C) 0.20
D) 0.42
(14) $P(A \cup B)$ is equal to:
A) $\underline{0.72}$
B) 0.90
C) 0.10
D) 0.7

" ${ }^{\prime}$)

Suppose that a town has 20% of men known to have a certain disease. A certain medical test is applied to randomly selected 500 men. The following data is obtained.

	Disease		
Test	Present	Absent	Total
Positive	$\mathbf{8 2}$	$\mathbf{8 0}$	$\mathbf{1 6 2}$
Negative	$\mathbf{3 8}$	$\mathbf{3 0 0}$	$\mathbf{3 3 8}$
Total	$\mathbf{1 2 0}$	$\mathbf{3 8 0}$	500

Let an individual be selected at random from the sample.
(15) The probability that the selected person has the disease is:

A)	0.20	B)	$\underline{0.24}$	C)	0.68	D)	0.32

(16) The probability that the test gives a false negative result is:
A) $\underline{\underline{0.32}}$
B) 0.68
C) 0.21
D) 0.79
(17) The sensitivity of the test is:
A) $\underline{\underline{0.68}}$
B) 0.16
C) 0.51
D) 0.79
(18) Suppose that 20% of men in the town have the disease, the predictive probability negative for the test is:

A)	0.37

B) $\underline{0.91}$
C) 0.09
D) 0.89

" ")

In a large population of people, 34% have blood type $A+$. We choose randomly 8 persons from this population. Let $X=$ the number of persons having blood type A+ among the 8.
(19) The values of the parameters of the distribution of X are:
A) 3 and 0.34
B) 8 , and 0.66
C) 8 and 0.34
D) 8 and 34
(20) The probability that there is exactly one person with blood type A+ is:

A)	$\underline{0.1484}$	B)	0.0028	C)	0.3400	D)	0.0185

(21) The probability that there is at least one person with blood type A+, is :
A) 0.1484
B) 0.1844
C) 0.9640
D) 0.0360

" ")

The number of serious surgical operations that are performed in a hospital during a day follows a Poisson distribution with an average of 5 persons per day, then:
(22) The probability that no operations is performed in the next day is:

A)	0.99996	B)	0.08972	C)	0.54210	D)	$\underline{0.0067}$

(23) The probability that 5 operations are performed in the next day is:

A)	0.2145	B)	0.8521	C)	$\underline{0.175}$	D)	0.5124

(24) The average number of operations that are performed in two days is:
A) 20
B) $\underline{10}$
C) 5
D) 30

" ")

In a population of people, $X=$ the body mass index (in $\mathrm{kg} / \mathrm{m}^{2}$) is normally distributed with mean $\mu=25$ and standard deviation $\sigma=2$. For a randomly chosen person,
(25) $\mathrm{P}(24<\mathrm{X}<26)=$

A)	0.6915	B)	$\underline{0.3830}$	C)	0.2085	D)	1

(26) $\mathrm{P}(\mathrm{X}=21)=$

A)	0.9772	B)	0.0228	C)	1	D)	$\underline{0}$

(27) The value of k such that $\mathrm{P}(\mathrm{X}>\mathrm{k})=0.2578$, is:

A)	0.257	B)	25	C)	-0.65	D)	$\underline{26.3}$

" ")
A sample of size 100 is taken from a population having a proportion $p_{1}=0.8$. Another independent sample of size 400 is taken from a population having a proportion $p_{2}=0.5$.
(28) The sampling distribution for the difference in sample proportions has a mean equal to:

A)	0.3	B)	1.3	C)	0	D)	0.8

(29) The sampling distribution for the difference in sample proportions has a standard error equal to:

" ")
Suppose it has been established that for a certain type of clients, the average length of a home visit by a public health nurse is $\mathbf{4 5}$ minutes with a standard deviation of 15 minutes, and that for a second type of clients, the average home visit time is 30 minutes with a standard deviation of 20 minutes. If a nurse randomly visits 35 clients from the first population and 40 from the second population, then
(31) The mean of the difference between two sample means is:

A)	5	B)	$\underline{5}$	C)	20	D)	35

(32) The standard error of the difference between two sample means is:

A)	$\underline{4.0532}$	B)	16.4286	C)	8.2143	D)	0.5241

(33) The probability that the average length of home visit will differ between the two groups by 20 or more is:

A)	0.8907	B)	0.4215	C)	0.5	D)	$\underline{0.1093}$

" ${ }^{\prime \prime}$
A researcher wishes to determine if vitamin E supplements could increase cognitive ability among elderly women. In 1999 the researcher recruits a sample of elderly women age 7580. At the time of the enrollment into the study, the women were randomized to either take Vitamin E, or a placebo for six months. At the end of the six month period, the women were given a cognition test. Higher scores on this test indicate better cognition. The mean of the test scores of 81 women who took vitamin E supplements was $\bar{X}_{1}=27$, while the mean of the test scores of the 90 women who took placebo supplements was $\bar{X}_{2}=24$ Assuming the two populations follow approximately two different normal distributions with standard deviations, $\sigma_{1}=6.9$ and , $\sigma_{2}=6.2$, respectively.
(34) The point estimate for the difference between the two population means $\left(\mu_{1}-\mu_{2}\right)$:
A) 27
B) 24
C) $\quad 6.2$
D) 3
(35) The standard error for the difference between the two sample means is:

| A) | 6.9 | B) | 6.2 | C) $\underline{1.007}$ | D) | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(36) A lower limit of a 95% confidence interval for the difference between the two population means is:

| A) $\underline{1.0263}$ | B) | 4.9745 | C) | 5.9120 | D) | 1.2354 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

" ${ }^{\prime \prime}$

Six healthy three year old female sheep were injected with the antibiotic Gentamicin, at a dosage of $10 \mathrm{mg} / \mathrm{kg}$ body weight. Their blood serum concentrations ($\mathrm{mg} / \mathrm{ml}$) of Gentamicin after injection were $33 ; 26 ; 34 ; 31 ; 23 ; 25$, the summary statistics for these data are

\mathbf{n}	mean	Standard deviation	SE of mean
6	28.67	4.59	1.87

Assuming the data follows approximately a normal distribution,
(37) At the 90% level of confidence, the reliability coefficient is:

A)	2.33	B)	$\underline{2.015}$	C)	3.215	D)	1.96

(38) The 90% confidence interval for the population mean score on this test is:

A)	$(27.412,30.145)$	B)	$(24.48,29.10)$	C)	$(24.902,32.438)$	D)	$(32.48,39.55)$

(39) The value of the test statistic, for testing the hypothesis $H_{0}: \mu=30$ vs $H_{1}: \mu<30$ is:

A)	-2.2587	B)	2.5812	C)	$\underline{-0.7112}$	D)	3.3412

(40) At the 5% significance level, the critical region is :
A) (- $\infty,-2.015)$
B) $(-2.015,2.015)$
C) $(2.015, \infty)$
D) $(2.58, \infty)$
(41) At the 5% significance level, we are able to :

A)	Reject H_{0}	B)	$\underline{\text { Can not reject }} \underline{\underline{H_{0}}}$	C)	Decision is not possible

" ${ }^{\prime \prime}$
A Biostatistician, found that among 2000 boys in the age group 7 to 12 years, 400 were overweight. On the basis of this study:
(42) The standard error of the sample proportion of the overweight boys in the age group 7 to 12 years is:

A)	0.0500

B) 0.0221
C) 0.6587
D) $\underline{\underline{0.0089}}$
(43) The 99% upper confidence limit for the population proportion of the overweight boys in the age group 7 to 12 years is:

A)	0.5000	B)	0.0221	C)	0.6587	D)	$\underline{0.223}$

(44) The value of the test statistic for testing the hypotheses the proportion of boys in the age group 7 to 12 years is 0.18 , is:

A)	-2.2587	B)	2.33

C) -0.7112
D) 3.3412
(45) At the 5% significance level, can we conclude that more than 18% of boys in the age group 7 to 12 years are overweight:

A) Yes	B)	No	C)	Decision is not possible

" ")

A sample of 25 freshman nursing students made a mean score of 77 on a test designed to measure the attitude toward the dying patients. The sample standard deviation was 10. Assume that the data comes from a normal population.
(46) The statistical hypothesis for testing the hypothesis that the mean score is different than 80 is:

A)	$H_{0}: \mu=80$ vs $H_{1}: \mu \neq 80$	B)	$H_{0}: \mu=80$ vs $H_{1}: \mu<80$
C)	$H_{0}: \mu=80$ vs $H_{1}: \mu>80$	D)	$H_{0}: \mu=77$ vs $H_{1}: \mu<77$

(47) The appropriate test statistic for testing the mean score is different than 80 is:

A)	$z=\frac{x-80}{\sigma}$	B)	$z=\frac{\bar{x}-80}{\sigma / \sqrt{n}}$
C)	$t=\frac{x-80}{S / \sqrt{n}}$	D)	$t=\frac{\bar{x}-80}{S / \sqrt{n}}$

(48) The value of the test statistic for the statistical hypothesis is:
A) $\underline{\underline{-1.500}}$
B) -2.025
C) 3.258
D) 0
(49) The test rejects, at 5% significance level, the hypothesis that the mean score is 80 if:

A)
C)

$z>1.96$
$\underline{t<-2.064 \text { or } t>2.064}$

B)	$z<-1.96$ or $\quad z>1.96$
D)	$t>1.71$

(50) At the 5% significance level we are able to :
A) Reject H_{0}
B) $\underline{\text { Can not reject }} \underline{H_{0}}$
C) \quad D Decision is not possible

