
Math 541: Statistical Theory II

Fisher Information and Cramér-Rao Bound

Instructor: Songfeng Zheng

In the parameter estimation problems, we obtain information about the parameter from a
sample of data coming from the underlying probability distribution. A natural question is:
how much information can a sample of data provide about the unknown parameter? This
section introduces such a measure for information, and we can also see that this information
measure can be used to find bounds on the variance of estimators, and it can be used to
approximate the sampling distribution of an estimator obtained from a large sample, and
further be used to obtain an approximate confidence interval in case of large sample.

In this section, we consider a random variable X for which the pdf or pmf is f(x|θ), where
θ is an unknown parameter and θ ∈ Θ, with Θ is the parameter space.

1 Fisher Information

Motivation: Intuitively, if an event has small probability, then the occurrence of this event
brings us much information. For a random variable X ∼ f(x|θ), if θ were the true value of
the parameter, the likelihood function should take a big value, or equivalently, the derivative
log-likelihood function should be close to zero, and this is the basic principle of maximum
likelihood estimation. We define l(x|θ) = log f(x|θ) as the log-likelihood function, and

l′(x|θ) =
∂

∂θ
log f(x|θ) =

f ′(x|θ)
f(x|θ)

where f ′(x|θ) is the derivative of f(x|θ) with respect to θ. Similarly, we denote the second
order derivative of f(x|θ) with respect to θ as f ′′(x|θ).
According to the above analysis, if l′(X|θ) is close to zero, then it is expected, thus the
random variable does not provide much information about θ; on the other hand, if |l′(X|θ)|
or [l′(X|θ)]2 is large, the random variable provides much information about θ. Thus, we can
use [l′(X|θ)]2 to measure the amount of information provided by X. However, since X is
a random variable, we should consider the average case. Thus, we introduce the following
definition:

Fisher information (for θ) contained in the random variable X is defined as:

I(θ) = Eθ

{
[l′(X|θ))]2} =

∫
[l′(x|θ))]2f(x|θ)dx. (1)
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We assume that we can exchange the order of differentiation and integration, then

∫
f ′(x|θ)dx =

∂

∂θ

∫
f(x|θ)dx = 0

Similarly, ∫
f ′′(x|θ)dx =

∂2

∂θ2

∫
f(x|θ)dx = 0

It is easy to see that

Eθ[l
′(X|θ)] =

∫
l′(x|θ)f(x|θ)dx =

∫
f ′(x|θ)
f(x|θ) f(x|θ)dx =

∫
f ′(x|θ)dx = 0

Therefore, the definition of Fisher information (1) can be rewritten as

I(θ) = Varθ [l′(X|θ))] (2)

Also, notice that

l′′(x|θ) =
∂

∂θ

[
f ′(x|θ)
f(x|θ)

]
=

f ′′(x|θ)f(x|θ)− [f ′(x|θ)]2
[f(x|θ)]2 =

f ′′(x|θ)
f(x|θ) − [l′(x|θ)]2

Therefore,

Eθ[l
′′(x|θ)] =

∫ [
f ′′(x|θ)
f(x|θ) − [l′(x|θ)]2

]
f(x|θ)dx =

∫
f ′′(x|θ)dx− Eθ

{
[l′(X|θ)]2} = −I(θ)

Finally, we have another formula to calculate Fisher information:

I(θ) = −Eθ[l
′′(x|θ)] = −

∫ [
∂2

∂θ2
log f(x|θ)

]
f(x|θ)dx (3)

To summarize, we have three methods to calculate Fisher information: equations (1), (2),
and (3). In many problems, using (3) is the most convenient choice.

Example 1: Suppose random variable X has a Bernoulli distribution for which the pa-
rameter θ is unknown (0 < θ < 1). We shall determine the Fisher information I(θ) in
X.

The point mass function of X is

f(x|θ) = θx(1− θ)1−x for x = 1 or x = 0.

Therefore
l(x|θ) = log f(x|θ) = x log θ + (1− x) log(1− θ)
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and

l′(x|θ) =
x

θ
− 1− x

1− θ
and l′′(x|θ) = − x

θ2
− 1− x

(1− θ)2

Since E(X) = θ, the Fisher information is

I(x|θ) = −E[l′′(x|θ)] =
E(X)

θ2
+

1− E(X)

(1− θ)2
=

1

θ
+

1

1− θ
=

1

θ(1− θ)

Example 2: Suppose that X ∼ N(µ, σ2), and µ is unknown, but the value of σ2 is given.
find the Fisher information I(µ) in X.

For −∞ < x < ∞, we have

l(x|µ) = log f(x|µ) = −1

2
log(2πσ2)− (x− µ)2

2σ2

Hence,

l′(x|µ) =
x− µ

σ2
and l′′(x|µ) = − 1

σ2

It follows that the Fisher information is

I(µ) = −E[l′′(x|µ)] =
1

σ2

If we make a transformation of the parameter, we will have different expressions of Fisher
information with different parameterization. More specifically, let X be a random variable
for which the pdf or pmf is f(x|θ), where the value of the parameter θ is unknown but must
lie in a space Θ. Let I0(θ) denote the Fisher information in X. Suppose now the parameter
θ is replaced by a new parameter µ, where θ = φ(µ), and φ is a differentiable function. Let
I1(µ) denote the Fisher information in X when the parameter is regarded as µ. We will have
I1(µ) = [φ′(µ)]2I0[φ(µ)].

Proof: Let g(x|µ) be the p.d.f. or p.m.f. of X when µ is regarded as the parameter. Then
g(x|µ) = f [x|φ(µ)]. Therefore,

log g(x|µ) = log f [x|φ(µ)] = l[x|φ(µ)],

and
∂

∂µ
log g(x|µ) = l′[x|φ(µ)]φ′(µ).

It follows that

I1(µ) = E

{[
∂

∂µ
log g(X|µ)

]2
}

= [φ′(µ)]2E
(
{l′[X|φ(µ)]}2

)
= [φ′(µ)]2I0[φ(µ)]

This will be verified in exercise problems.
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Suppose that we have a random sample X1, · · · , Xn coming from a distribution for which the
pdf or pmf is f(x|θ), where the value of the parameter θ is unknown. Let us now calculate
the amount of information the random sample X1, · · · , Xn provides for θ.

Let us denote the joint pdf of X1, · · · , Xn as

fn(x|θ) =
n∏

i=1

f(xi|θ)

then

ln(x|θ) = log fn(x|θ) =
n∑

i=1

log f(xi|θ) =
n∑

i=1

l(xi|θ).

and

l′n(x|θ) =
f ′n(x|θ)
fn(x|θ) (4)

We define the Fisher information In(θ) in the random sample X1, · · · , Xn as

In(θ) = Eθ

{
[l′n(X|θ)]2} =

∫
· · ·

∫
[l′n(X|θ)]2fn(x|θ)dx1 · · · dxn

which is an n-dimensional integral. We further assume that we can exchange the order of
differentiation and integration, then we have

∫
f ′n(x|θ)dx =

∂

∂θ

∫
fn(x|θ)dx = 0

and, ∫
f ′′n(x|θ)dx =

∂2

∂θ2

∫
fn(x|θ)dx = 0

It is easy to see that

Eθ[l
′
n(X|θ)] =

∫
l′n(x|θ)fn(x|θ)dx =

∫
f ′n(x|θ)
fn(x|θ)fn(x|θ)dx =

∫
f ′n(x|θ)dx = 0 (5)

Therefore, the definition of Fisher information for the sample X1, · · · , Xn can be rewritten
as

In(θ) = Varθ [l′n(X|θ))] .
It is similar to prove that the Fisher information can also be calculated as

In(θ) = −Eθ [l′′n(X|θ))] .

From the definition of ln(x|θ), it follows that

l′′n(x|θ) =
n∑

i=1

l′′(xi|θ).
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Therefore, the Fisher information

In(θ) = −Eθ [l′′n(X|θ))] = −Eθ

[
n∑

i=1

l′′(Xi|θ)
]

= −
n∑

i=1

Eθ [l′′(Xi|θ)] = nI(θ).

In other words, the Fisher information in a random sample of size n is simply n times the
Fisher information in a single observation.

Example 3: Suppose X1, · · · , Xn form a random sample from a Bernoulli distribution for
which the parameter θ is unknown (0 < θ < 1). Then the Fisher information In(θ) in this
sample is

In(θ) = nI(θ) =
n

θ(1− θ)
.

Example 4: Let X1, · · · , Xn be a random sample from N(µ, σ2), and µ is unknown, but
the value of σ2 is given. Then the Fisher information In(θ) in this sample is

In(µ) = nI(µ) =
n

σ2
.

2 Cramér-Rao Lower Bound and Asymptotic Distri-

bution of Maximum Likelihood Estimators

Suppose that we have a random sample X1, · · · , Xn coming from a distribution for which
the pdf or pmf is f(x|θ), where the value of the parameter θ is unknown. We will show how
to used Fisher information to determine the lower bound for the variance of an estimator of
the parameter θ.

Let θ̂ = r(X1, · · · , Xn) = r(X) be an arbitrary estimator of θ. Assume Eθ(θ̂) = m(θ), and
the variance of θ̂ is finite. Let us consider the random variable l′n(X|θ) defined in (4), it was
shown in (5) that Eθ[l

′
n(X|θ)] = 0. Therefore, the covariance between θ̂ and l′n(X|θ) is

Covθ[θ̂, l
′
n(X|θ)] = Eθ

{
[θ̂ − Eθ(θ̂)][l

′
n(X|θ)− Eθ(l

′
n(X|θ))]

}
= Eθ {[r(X)−m(θ)]l′n(X|θ)}

= Eθ[r(X)l′n(X|θ)]−m(θ)Eθ[l
′
n(X|θ)] = Eθ[r(X)l′n(X|θ)]

=

∫
· · ·

∫
r(x)l′n(x|θ)fn(x|θ)dx1 · · · dxn

=

∫
· · ·

∫
r(x)f ′n(x|θ)dx1 · · · dxn (Use Equation 4)

=
∂

∂θ

∫
· · ·

∫
r(x)fn(x|θ)dx1 · · · dxn

=
∂

∂θ
Eθ[θ̂] = m′(θ) (6)
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By Cauchy-Schwartz inequality and the definition of In(θ),

{
Covθ[θ̂, l

′
n(X|θ)]

}2

≤ Varθ[θ̂]Varθ[l
′
n(X|θ)] = Varθ[θ̂]In(θ)

i.e.,
[m′(θ)]2 ≤ Varθ[θ̂]In(θ) = nI(θ)Varθ[θ̂]

Finally, we get the lower bound of variance of an arbitrary estimator θ̂ as

Varθ[θ̂] ≥ [m′(θ)]2

nI(θ)
(7)

The inequality (7) is called the information inequality, and also known as the Cramér-Rao
inequality in honor of the Sweden statistician H. Cramér and Indian statistician C. R. Rao
who independently developed this inequality during the 1940s. The information inequality
shows that as I(θ) increases, the variance of the estimator decreases, therefore, the quality
of the estimator increases, that is why the quantity is called “information”.

If θ̂ is an unbiased estimator, then m(θ) = Eθ(θ̂) = θ, m′(θ) = 1. Hence, by the information
inequality, for unbiased estimator θ̂,

Varθ[θ̂] ≥ 1

nI(θ)

The right hand side is always called the Cramér-Rao lower bound (CRLB): under certain
conditions, no other unbiased estimator of the parameter θ based on an i.i.d. sample of size
n can have a variance smaller than CRLB.

Example 5: Suppose a random sample X1, · · · , Xn from a normal distribution N(µ, θ),
with µ given and the variance θ unknown. Calculate the lower bound of variance for any
estimator, and compare to that of the sample variance S2.

Solution: We know

f(x|θ) =
1√
2πθ

exp

{
−(x− µ)2

2θ

}

then

l(x|θ) = −(x− µ)2

2θ
− 1

2
log 2π − 1

2
log θ.

Hence

l′(x|θ) =
(x− µ)2

2θ2
− 1

2θ
,

and

l′′(x|θ) = −(x− µ)2

θ3
+

1

2θ2
.
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Therefore,

I(θ) = −E[l′′(X|θ)] = −E

[
−(X − µ)2

θ3
+

1

2θ2

]
=

1

2θ2
,

and
In(θ) = nI(θ) =

n

2θ2
.

Finally, we have the Cramér-Rao lower bound 2θ2

n
.

The sample variance is defined as

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

and it is known that
(n− 1)S2

θ
∼ χ2

n−1

then,

Var

(
n− 1

θ
S2

)
=

(n− 1)2

θ2
Var

(
S2

)
= 2(n− 1).

Therefore,

Var
(
S2

)
=

2θ2

n− 1
>

2θ2

n

i.e., the variance of the estimator S2 is bigger than the Cramér-Rao lower bound.

Now, let us consider the MLE θ̂ of θ, to make notations clear, let us assume the true value of θ
is θ0. We shall prove that as the sample size n is very big, the distribution of MLE estimator
θ̂ is approximately normal with mean θ0 and variance 1/[nI(θ0)]. Since this is merely a
limiting result, which holds as the sample size tends to infinity, we say that the MLE is
asymptotically unbiased and refer to the variance of the limiting normal distribution as
the asymptotic variance of the MLE. More specifically, we have the following theorem:

Theorem (The asymptotic distribution of MLE): Let X1, · · · , Xn be a sample of size
n from a distribution for which the pdf or pmf is f(x|θ), with θ the unknown parameter.
Assume that the true value of θ is θ0, and the MLE of θ is θ̂. Then the probability distribution
of

√
nI(θ0)(θ̂− θ0) tends to a standard normal distribution. In other words, the asymptotic

distribution of θ̂ is

N

(
θ0,

1

nI(θ0)

)

Proof: we shall prove that √
nI(θ0)(θ̂ − θ0) ∼ N(0, 1)

asymptotically. We will only give a sketch of the proof; the details of the argument are
beyond the scope of this course.
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Remember the log-likelihood function is

l(θ) =
n∑

i=1

log f(Xi|θ)

and θ̂ is the solution to l′(θ) = 0. We apply Tylor expansion of l′(θ̂) at the point θ0, yielding

0 = l′(θ̂) ≈ l′(θ0) + (θ̂ − θ0)l
′′(θ0)

Therefore,

θ̂ − θ0 ≈ −l′(θ0)

l′′(θ0)

and
√

n(θ̂ − θ0) ≈ −n−1/2l′(θ0)

n−1l′′(θ0)

First, let us consider the numerator of the last expression above. Its expectation is

E[−n−1/2l′(θ0)] = n−1/2

n∑
i=1

E

[
∂

∂θ
log f(Xi|θ0)

]
= n−1/2

n∑
i=1

E [l′(Xi|θ0)] = 0,

and its variance is

Var[−n−1/2l′(θ0)] =
1

n

n∑
i=1

E

[
∂

∂θ
log f(Xi|θ0)

]2

=
1

n

n∑
i=1

E [l′(Xi|θ0)]
2

= I(θ0).

Next, we consider the denominator:

1

n
l′′(θ0) =

1

n

n∑
i=1

∂2

∂θ2
log f(Xi|θ0)

By the law of large number, this expression converges to

E

[
∂2

∂θ2
log f(Xi|θ0)

]
= −I(θ0)

We thus have
√

n(θ̂ − θ0) ≈ n−1/2l′(θ0)

I(θ0)

Therefore,

E
[√

n(θ̂ − θ0)
]
≈ E[n−1/2l′(θ0)]

I(θ0)
= 0,

and

Var
[√

n(θ̂ − θ0)
]
≈ Var[n−1/2l′(θ0)]

I2(θ0)
=

I(θ0)

I2(θ0)
=

1

I(θ0)
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As n →∞, applying central limit theorem, we have

√
n(θ̂ − θ0) ∼ N

(
0,

1

I(θ0)

)

i.e., √
nI(θ0)(θ̂ − θ0) ∼ N (0, 1) .

This completes the proof.

This theorem indicates the asymptotic optimality of maximum likelihood estimator since
the asymptotic variance of MLE can achieve the CRLB. For this reason, MLE is frequently
used especially with large samples.

Example 6: Suppose that X1, X2, · · · , Xn are i.i.d. random variables on the interval [0, 1]
with the density function

f(x|α) =
Γ(2α)

Γ(α)2
[x(1− x)]α−1

where α > 0 is a parameter to be estimated from the sample. It can be shown that

E(X) =
1

2

V ar(X) =
1

4(2α + 1)

What is the asymptotic variance of the MLE?

Solution. Let’s calculate I(α): Firstly,

log f(x|α) = log Γ(2α)− 2 log Γ(α) + (α− 1) log[x(1− x)]

Then,
∂ log f(x|α)

∂α
=

2Γ′(2α)

Γ(2α)
− 2Γ′(α)

Γ(α)
+ log[x(1− x)]

and

∂2 log f(x|α)

∂α2
=

2Γ′′(2α)2Γ(2α)− 2Γ′(2α)2Γ′(2α)

Γ(2α)2
− 2Γ′′(α)Γ(α)− 2Γ′(α)Γ′(α)

Γ(α)2

=
4Γ′′(2α)Γ(2α)− (2Γ′(2α))2

Γ(2α)2
− 2Γ′′(α)Γ(α)− 2 (Γ′(α))2

Γ(α)2

Therefore,

I(α) = −E

(
∂2 log f(x|α)

∂α2

)
=

2Γ′′(α)Γ(α)− 2 (Γ′(α))2

Γ2(α)
− 4Γ′′(2α)Γ(2α)− (2Γ′(2α))2

Γ2(2α)

The asymptotic variance of the MLE is 1
nI(α)

.
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Example 7: The Pareto distribution has been used in economics as a model for a density
function with a slowly decaying tail:

f(x|x0, θ) = θxθ
0x
−θ−1, x ≥ x0, θ > 1

Assume that x0 > 0 is given and that X1, X2, · · · , Xn is an i.i.d. sample. Find the asymptotic
distribution of the mle.

Solution: The asymptotic distribution of θ̂MLE is N
(
θ, 1

nI(θ)

)
. Let’s calculate I(θ).

Firstly,
log f(x|θ) = log θ + θ log x0 − (θ + 1) log x

Then,
∂ log f(x|θ)

∂θ
=

1

θ
+ log x0 − log x

and
∂2 log f(x|θ)

∂θ2
= − 1

θ2

So,

I(θ) = −E

[
∂2 log f(x|θ)

∂θ2

]
=

1

θ2

Therefore, the asymptotic distribution of MLE is

N

(
θ,

1

nI(θ)

)
= N

(
θ,

θ2

n

)

3 Approximate Confidence Intervals

In previous lectures, we discussed the exact confidence intervals. However, to construct an
exact confidence interval requires detailed knowledge of the sampling distribution as well as
some cleverness. An alternative method of constructing confidence intervals is based on the
large sample theory of the previous section.

According to the large sample theory result, the distribution of
√

nI(θ0)(θ̂ − θ0) is approx-
imately the standard normal distribution. Since the true value of θ, θ0, is unknown, we
will use the estimated value θ̂ to estimate I(θ0). It can be further argued that the distribu-

tion of

√
nI(θ̂)(θ̂ − θ0) is also approximately standard normal. Since the standard normal

distribution is symmetric about 0,

P

(
−z(1− α/2) ≤

√
nI(θ̂)(θ̂ − θ0) ≤ z(1− α/2)

)
≈ 1− α
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Manipulation of the inequalities yields

θ̂ − z(1− α/2)
1√

nI(θ̂)
≤ θ0 ≤ θ̂ + z(1− α/2)

1√
nI(θ̂)

as an approximate 100(1− α)% confidence interval.

Example 8: Let X1, · · · , Xn denote a random sample from a Poisson distribution that has
mean λ > 0.

It is easy to see that the MLE of λ is λ̂ = X̄. Since the sum of independent Poisson random
variables follows a Poisson distribution, the parameter of which is the sum of the parameters
of the individual summands, nλ̂ =

∑n
i=1 Xi follows a Poisson distribution with mean nλ.

Therefore the sampling distribution of λ̂ is know, which depends on the true value of λ.
Exact confidence intervals for λ may be obtained by using this fact, and special tables are
available.

For large samples, confidence intervals may be derived as follows. First, we need to calculate
I(λ). The probability mass function of a Poisson random variable with parameter λ is

f(x|λ) = e−λ λx

x!
for x = 0, 1, 2, · · ·

then
log f(x|λ) = x log λ− λ− log x!

It is easy to verify that
∂2

∂λ2
log f(x|λ) = − x

λ2

therefore

I(λ) = −E

[
−X

λ2

]
=

1

λ

Thus, an approximate 100(1− α)% confidence interval for λ is
[
X̄ − z(1− α/2)

√
X̄

n
, X̄ + z(1− α/2)

√
X̄

n

]

Note that in this case, the asymptotic variance is in fact the exact variance, as we can verify.
The confidence interval, however, is only approximate, since the sampling distribution is
only approximately normal.

4 Multiple Parameter Case

Suppose now there are more than one parameters in the distribution model, that is, the
random variable X ∼ f(x|θ) with θ = (θ1, · · · , θk)

T . We denote the log-likelihood function
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as
l(θ) = log f(x|θ),

and its first order derivative with respect to θ is a k-dimensional vector, which is

∂l(θ)

∂θ
=

(
∂l(θ)

∂θ1

, · · · ,
∂l(θ)

∂θk

)T

,

The second order derivative of l(θ) with respect to θ is a k × k matrix, which is

∂2l(θ)

∂θ2 =

[
∂2l(θ)

∂θi∂θj

]

i=1,··· ,k;j=1,··· ,k

We define the Fisher information matrix as

I(θ) = E

[
∂l(θ)

∂θ

(
∂l(θ)

∂θ

)T
]

= Cov

[
∂l(θ)

∂θ

]
= −E

[
∂2l(θ)

∂θ2

]

Since the covariance matrix is symmetric and semi-positive definite, these properties hold
for the Fisher information matrix as well.

Example 9: Fisher information for normal distribution N(µ, σ2). We have

θ = (µ, σ2)T ,

and

l(θ) = −1

2
log(2πσ2)− (x− µ)2

2σ2
.

Thus,

∂l(θ)

∂θ
=

(
∂l(θ)

∂µ
,
∂l(θ)

∂σ2

)T

=

(
x− µ

σ2
,− 1

2σ2
+

(x− µ)2

2(σ2)2

)T

,

and
∂2l(θ)

∂θ2 =

[
− 1

σ2 − x−µ
(σ2)2

− x−µ
(σ2)2

1
2(σ2)2

− (x−µ)2

(σ2)3

]

For X ∼ N(µ, σ2), since E(X − µ) = 0 and E((X − µ)2) = σ2, we can easily get the Fisher
information matrix as

I(θ) = −E

[
∂2l(θ)

∂θ2

]
=

[
1
σ2 0
0 1

2σ4

]

Similar to the one parameter case, the asymptotic distribution of MLE θ̂MLE is approximately
multi variate normal distribution with the true value of θ as the mean and [nI(θ)]−1 as the
covariance matrix.
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5 Exercises

Problem 1: Suppose that a random variable X has a Poisson distribution for which the
mean θ is unknown (θ > 0). Find the Fisher information I(θ) in X.

Problem 2: Suppose that a random variable X has a normal distribution for which the
mean is 0 and the standard deviation σ is unknown (σ > 0). Find the Fisher information
I(σ) in X.

Problem 3: Suppose that a random variable X has a normal distribution for which the
mean is 0 and the standard deviation σ is unknown (σ > 0). Find the Fisher information
I(σ2) in X. Note that in this problem, the variance σ2 is regarded as the parameter, whereas
in Problem 2 the standard deviation σ is regarded as the parameter.

Problem 4: The Rayleigh distribution his defined as:

f(x|θ) =
x

θ2
e−x2/(2θ2), x ≥ 0, θ > 0

Assume that X1, X2, · · · , Xn is an i.i.d. sample from the Rayleigh distribution. Find the
asymptotic variance of the mle.

Problem 5: Suppose that X1, · · · , Xn form a random sample from a gamma distribution
for which the value of the parameter α is unknown and the value of parameter β is known.
Show that if n is large, the distribution of the MLE of α will be approximately a normal
distribution with mean α and variance

[Γ(α)]2

n{Γ(α)Γ′′(α)− [Γ′(α)]2}

Problem 6: Let X1, X2, · · · , Xn be an i.i.d. sample from an exponential distribution with
the density function

f(x|τ) =
1

τ
e−x/τ , x ≥ 0, τ > 0

a. Find the MLE of τ .

b. What is the exact sampling distribution of the MLE.

c. Use the central limit theorem to find a normal approximation to the sampling distribution.

d. Show that the MLE is unbiased, and find its exact variance.

e. Is there any other unbiased estimate with smaller variance?

f. Using the large sample property of MLE, find the asymptotic distribution of the MLE. Is
it the same as in c.?

g. Find the form of an approximate confidence interval for τ .

h. Find the form of an exact confidence interval for τ .


