A FISTFUL OF FRACTURES

James Webley, MD
Clinical Professor of Emergency Medicine
Michigan State University College of Osteopathic Medicine
Michigan State University College of Human Medicine
Genesys Regional Medical Center
Grand Blanc, Michigan

Billy Bob Blasted comes in Sunday afternoon to see you in the emergency department with wrist pain after a fall last night. The x-rays of the wrist are negative but there is tenderness in the anatomic snuffbox. What is the current treatment for Billy?

Scaphoid (Carpal Navicular) Fracture

Fractures of the wrist are common because gravity and bipedalism create falls and self preservation makes us stick our arms out to break a fall. (It is better to break the arm than the neck.) The carpal navicular is the most commonly fractured of the carpal bones in all ages. An emergency physician should be aware of the possibility of poor patient outcomes as well as the diagnostic dilemmas that surround this injury. (1,2)

Mechanism

The carpal navicular (scaphoid) is usually injured by a fall on the outstretched pronated hand (FOSH). (1,2) That this mechanism would injure the scaphoid is not surprising since it spans the two rows of carpal bones stabilizing the wrist. A FOSH mechanism applies extension stress across the waist of the scaphoid bone and fracture is a relatively common result. (60% of carpal fractures are of the scaphoid bone.) (2) (Figures 1a, 1b)
Figure 1a-AP view of carpal bones
Scaphoid fracture is an injury of younger patients. The wrist of an elderly patient is more likely to fail at the distal radial metaphysis. Thus, suspecting a scaphoid fracture in a patient more than 50 years old is itself a suspect activity. (3)

Physical findings

Tenderness in the anatomic snuffbox is the most important physical finding associated with a scaphoid fracture. The scaphoid bone’s waist is located in the anatomic snuffbox when the wrist is in ulnar deviation. (Figure 2)
Figure 2 - Arrow points at the scaphoid bone from the anatomic **snuffbox**

Surface anatomy locates the anatomical snuffbox in the hollow between the extensor pollicis longus, abductor pollicis longus and the radial styloid. (Figures 3a, 3b)
Figure 3a- Anatomic snuffbox

Figure 3b- Figure 3a labeled

- Extensor pollicis longus
- Abductor pollicis longus
- Snuffbox
- Radial styloid
A less well-known or under-utilized physical examination finding is scaphoid tubercle tenderness. The scaphoid bone rotates from a longitudinal orientation in wrist ulnar deviation to an anterior/posterior orientation when the wrist is in radial deviation. (Figures 4a, 4b, 4c, 4d)(4)

Figure 4a-Wrist in ulnar deviation

Figure 4b-Figure 4a with orientation of scaphoid demonstrated
The scaphoid tubercle is easily palpated as a volar prominence that forms the radial border of the carpal tunnel. (Figure 5) It is most prominent when radial deviation of the wrist places it in its AP orientation. (Figure 6)
Figure 5 - Location of scaphoid tubercle (black circle)
Freeland (4) found that tenderness over the scaphoid tubercle was as sensitive (87%) as snuffbox tenderness (90%) but slightly more specific (57% vs 40%). In a post hoc analysis, neither test alone
picked up all 30 cases of scaphoid fracture but the combination did (suggesting the combination might be useful).

The scaphoid compression test is still another physical finding that may be helpful in identifying scaphoid fractures. This test is performed by holding the patient’s thumb and applying pressure down the long axis of the first metacarpal toward the scaphoid bone. (5)(Figure 7)
Figure 7-Scaphoid compression test
In a very small patient sample Grover (5) found scaphoid compression to be more specific than either snuffbox tenderness or scaphoid tubercle tenderness. Yet, Waizenegger (6) found the same test to be inaccurate.

Combining all 3 tests was prospectively studied by Parvizi et al in 1998 and they found that each test was 100% sensitive but had poor specificity (as low as 19%). (7) Requiring all three tests to be positive would result in the same 100% sensitivity but increase the sensitivity to 74%. They recommend use of the combination when assessing a patient with suspected scaphoid fracture.

As an interesting aside some authors have suggested that it is easier to make the clinical diagnosis several days after the injury since the point of tenderness is more easily localized and the physical examination may be more reliable. (8) (As all emergency physicians know-the acute injury examination is often confounded by patient anxiety making it suboptimal.)

Imaging

Due to the enclosed position and orientation of the scaphoid bone evaluation is difficult and fractures often hard to see with x-rays. In order to ensure the best views of this difficult bone one should order wrist x-rays with scaphoid views. This is typically 4 views: posteroanterior, lateral, semipronated oblique, and posteroanterior with ulnar deviation. (9) There have been a number of special films proposed but x-ray departments have a standard scaphoid series of films planned. It is the onus of the emergency physician to request a scaphoid series when interested in this particular bone.

Scaphoid fracture x-rays follow. (Figures 8, 9a, 9b, 10a, 10b, 11a, 11b, 12a, 12b)
Figure 8: Scaphoid fracture indicated by arrow
Figure 9a-Scaphoid waist fracture
Figure 9b-Figure 9a with fracture outlined in orange
Figure 10a-Scaphoid waist fracture
Figure 10b-Figure 10a with fracture indicated by orange line
Figure 11a- Proximal scaphoid fracture

Figure 11b- Figure 11a with fracture indicated by orange line
Figure 12a-Fracture of the distal pole of the scaphoid. Healed fracture of the waist from 8 months before.

Figure 12b-Figure 12a with new distal pole fracture indicated by an orange line and healed waist fracture indicated in dashed blue

Complications

The blood supply of the scaphoid is from 2 blood vessels: one to the distal tubercle and the other into the dorsal, distal, third that feeds the bone proximally. (2) (Figure 13)
Thus, the scaphoid’s blood supply is more tenuous proximally. As a result, poor healing is expected and occurs. Nonunion is common ranging from 5%-25% in different series. (2)(Figures 14a, 14b)
Factors associated with nonunion include more than 1mm displacement, a proximal fracture, osteonecrosis, vertical oblique fracture and smoking. Mack (10) and Ruby (11) have shown that arthritis and joint degeneration were universal following nonunion with its consequent poor patient outcome. Thus, the problem with healing revolves around blood supply (as is so often the case in orthopedics).

Another common problem with scaphoid fractures is missing a concurrent wrist fracture in 5-13%. (10, 13) These concurrent fractures may be difficult to find just like the scaphoid fracture itself. (Figures 15a, 15b)
The frequency of the dreaded avascular necrosis varies with the site of the scaphoid fracture. Distal pole fractures rarely have a problem, but avascular necrosis occurs in up to 30% of scaphoid fractures of the proximal pole due to the tenuous blood supply. (12) (Figures 16, 17, 18)
Figure 16-Nonunion with dense bone in the proximal pole indicating avascular necrosis
Figure 17-Proximal pole avascular necrosis
MRI with STIR (short Ti inversion recovery) demonstrating avascular necrosis of the proximal pole of the scaphoid

Treatment

Thumb spica immobilization is recommended for scaphoid fractures. (Figure 19)

The length of treatment will vary depending on the location of the fracture and the relative stresses on it with motion from 6 to 12 weeks. Initial surgery is recommended by some authors for displaced waist fractures of more than 1mm, proximal pole fractures and nonunions. (2, 14)

Fortunately for emergency physicians the details of how to treat is not our bailiwick and time to definitive treatment is not of the essence with these fractures. Our role involves recognition, immobilization, and referral to an orthopedic surgeon as an outpatient in about a week.

The Problem

A significant number of fractures of the scaphoid bone are not diagnosed by the initial x-rays.
The number of initially missed fractures of the scaphoid varies from a few percent to 22%. However, most series run in the 5-10% range. Since there are always some missed fractures there has been a multigenerational debate about how the initially treating physician should proceed.

Russe’s classic algorithm (15) is as follows:
If a patient has anatomic snuffbox tenderness after a FOSH injury and has negative x-rays with special views of the scaphoid bone.

- Apply a cast for 2 weeks and x-ray.
 - If a fracture is revealed, treat as fractured.
 - If no fracture but still tender in the snuffbox: recast and repeat the x-ray in 2 weeks.
 - If a fracture is revealed, treat as fractured.
 - If no fracture, discontinue therapy since fractures show up by 4 weeks.

Figure 20-Russe’s algorithm

Variations on this theme have been proposed with initial follow-ups at 1 week (16) and another with additional exams fortnightly extending for up to 6 weeks. (17)

This traditional conservative approach is very sensitive but not specific at picking up scaphoid fractures. 85% of the patients are unnecessarily immobilized in some studies. Many authors have questioned this approach citing expense, repeat visits, inconvenience, lost time from work for the patient, and protocol fatigue causing patients to abandon their follow-up. (18) Some authors even
question whether undischplaced fractures have the same natural history as displaced fractures. They suggest that all these occult, undischplaced fractures would heal very well without immobilization. (19) Exasperatingly, others question the very existence of the unseen fracture when adequate x-rays are taken. (13) (This whole subject seems to be a bit of a mess.)

In order to increase the specificity of the initial physical exam, and decrease the false positive rate, investigators have changed the definition of clinical fracture to include patients with tenderness in the anatomic snuffbox, tenderness over the scaphoid tubercle, and longitudinal compression of the thumb tenderness. (15) As previously mentioned, this had 100% sensitivity and improved the specificity to 74%. This concept has the happy result of fewer over-treated patients.

Early use of advanced imaging has been proposed as an alternative approach to clinically following the occult scaphoid fracture over several weeks. The concept is: Discovery of a fracture at the initial visit will allow definitive treatment. If there is no fracture the patients are not subjected to the burdensome classic clinically guided protocol. The three advanced imaging modalities most likely to help in this area are CT, bone scan, and MRI. (Figure 21a, 21b)

![Figure 21a-Normal x-ray wrist (occult fracture)](image1)
![Figure 21b-Fracture of scaphoid waist revealed by CT](image2)

There are numerous studies comparing one to another and evaluating cost effectiveness. A recent meta-analysis by Yin summarizes the heterogeneous data, plagued by lack of a consistent gold standard, in a cogent manner. (Table 1)(9) (Isn’t it always the case that meta-analyses are from heterogeneous data?)

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity %</th>
<th>Specificity %</th>
<th>Pos likelihood</th>
<th>Neg likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone Scan</td>
<td>97</td>
<td>89</td>
<td>8.82</td>
<td>0.03</td>
</tr>
<tr>
<td>CT Scan</td>
<td>93</td>
<td>99</td>
<td>93</td>
<td>0.07</td>
</tr>
<tr>
<td>MRI</td>
<td>96</td>
<td>99</td>
<td>96</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Table 1-Synopsis of Yin’s data
Yin et al.’s conclusions are that: MRI is highly accurate for ruling in and ruling out scaphoid fractures, bone scintigraphy is only useful in ruling out scaphoid fractures, and that CT scan (due to lack of studies) requires more data to assess its proper place in the work-up. (9)

There are other advantages of initial advanced imaging. CT may pick up other occult wrist fractures, which as noted previously are not uncommon. Whether or not this would impact patient outcomes is unknown due to lack of data.

MRI is able to identify alternate causes of wrist pain (sprains, other fractures, etc.) Problems result from over-calling bone bruises as fractures. In addition, MRI has difficulty distinguishing subtle displacement of a fracture, which is important for the orthopedist to know when considering ORIF. Further, a small and as yet unpublished study found numerous false positive examinations and very poor interobserver reliability. They question the use of MRI as the gold standard. (20)

Diagnosis and best treatment has been debated by orthopedists for more than a generation with no clear resolution or even an undisputed gold standard test. It is fortunate that most of this debate is unimportant to emergency physicians. As much as things change, for us, they have stayed the same. It seems appropriate to still recommend initial treatment for a suspected scaphoid fracture is the same as for a definitive fracture, thumb spica splinting and referral to orthopedics for reevaluation as an outpatient in the 1-2 week time period.

The Solution
In the right setting examine a patient using all 3 physical examination tests for scaphoid bone fracture. X-ray with special scaphoid views. If occult fracture is suspected apply a thumb spica splint and refer to orthopedics for reevaluation in 1-2 weeks.

References (Scaphoid fracture):

1) Evenski AJ et al.
 Clinically Suspected Scaphoid Fractures in Children

2) Haisman JM et al.
 Acute Fractures of the Scaphoid
 JBJS 2006;88A:2749-2758

3) Ring D, Jupiter JB, Herndon JH
 Acute Fracture of the Scaphoid

4) Freeland P
 Scaphoid tubercle tenderness: a better indicator of scaphoid fractures?
 Archives of Emergency Medicine, 1989;6:46-50

5) Grover R
 Clinical Assessment of Scaphoid Injuries and the Detection of Fractures
 J Hand Surg 1996;21B:341-343
Clinical Signs in Scaphoid Fractures
J Hand Surg 1994;19B:743-747

7) Parvizi J, et al.
Combining the clinical signs improves diagnosis of scaphoid fractures
J Hand Surg 1998;23B:324-327

8) DaCruz DJ, Bodiwala GG, Finlay DBL
The suspected fracture of the scaphoid: a rational approach to diagnosis
Injury 1988;19:149-152

9) Yin ZG, et al.
Diagnosing Suspected Scaphoid Fractures: A Systematic Review and Meta-analysis
Clin Orthop Relat Res 2010;468:723-734

10) Mack GR, et al.
The natural history of scaphoid non-union
JBJS 1984;66A:504-509

The natural history of scaphoid non-union. A review of the fifty-five cases
JBJS 1985;67A:428-432

12) Boles CA
Wrist, Scaphoid Fractures and Complications
eMedicine 11/30/2010

13) Pillai A, Jain M
Management of clinical fractures of the scaphoid: results of an audit and literature review
European J of Em Med 2005;12:47-51

14) Lindström G, Nyström Å
NATURAL HISTORY OF SCAPHOID NON-UNION, WITH SPECIAL REFERENCE TO “ASYMPTOMATIC” CASES
J Hand Surg 1992;17B:697-700

15) Russe O
Fracture of the Carpal Navicular
JBJS 1960;42A:759-708

16) Duncan DS, Thurston AJ
Clinical Fracture of the Carpal Scaphoid-An Illusionary Diagnosis
J Hand Surg 1985;10B:375-376

17) Dias JJ, et al.
SUSPECTED SCAPHOID FRACTURES: The value of radiographs
JBJS 1990;72B:98-101
Role of MRI in the diagnosis of clinically suspected scaphoid fracture: analysis of 611 consecutive cases and literature review
Em Med J 2010;27:266-269

19) McLaughlin HL, Parker JC
Fracture of the Carpal Navicular (Scaphoid) Bone: Gradations in Therapy Based upon Pathology
J Trauma 1969;9:311-319

20) Amadino, PC
Specialty Update: What’s New in Hand Surgery
JBJS 2011;93A:985-989
Sam B. Sotted, a 23-year-old man fell during a Saturday sojourn. Sunday afternoon he visits the emergency department because his wrist hurts when he awakens. His friends have video of a “watch this” event. This video reveals Sam falling forward with the injured arm to the side breaking the fall. Examination demonstrates slight swelling dorsally and a little ecchymosis. There is no snuffbox tenderness. The lateral wrist x-ray reveals the avulsion fracture shown in Figure 1.

![Figure 1](image)

The problem:
What do I do with a dorsal avulsion fracture of the wrist?

Triquetrum Avulsion Fracture
The triquetrum is the second most commonly fractured carpal bone. Avulsion fracture of the dorsum is the most common fracture of the triquetrum. (1) This is because the dorsal process protrudes and is a site of attachment for numerous dorsal ligamentous structures. (Figures 2a, 2b)
Figure 2b-Figure 2a with the dorsal triquetrum outlined in orange

The black dot in Figure 3 locates the dorsal process of the triquetrum.
Mechanism of injury

There are two mechanisms for fracturing the dorsal prominence:
First, a fall with hyperextension of the wrist and ulnar deviation may cause the ulnar styloid to shear off the protruding prominence. (Figure 4)
The second mechanism is the more unusual fall with hyperflexion of the wrist and avulsion of the prominence by the attached ligaments. (1) (Figure 5)

In all events, since the exact mechanism is rarely precisely known, a fall on the outstretched hand (FOSH) is the usual presenting mechanism of injury.
Imaging

X-rays will show the avulsion fracture in the lateral view. *There are no os calculi on the dorsum of the hand or wrist.* Consequently, all avulsion-type fragments that show up dorsally in the lateral wrist views are abnormal. If the fragment is not corticated, it invariably represents an acute avulsion fracture of the triquetrum. (Figures 6a, 6b, 7) If the avulsion is corticated, it is an old fracture. Careful attention to the dorsal process of the triquetrum in the lateral view is important to detect this subtle injury.
Figure 6b-Figure 6a with the avulsion fracture of the triquetrum colored orange
Treatment

Treatment is short arm immobilization with an ulnar gauntlet gutter splint and referral for follow-up in the usual hand specialist/ortho/primary care pattern. 2 or 3 weeks immobilization may be all that is necessary for healing.

This is a fracture that is probably commonly missed. Patients heal well even if the avulsion fracture is not noticed on the x-rays. Avulsion fracture of the triquetrum is important to emergency physicians only as a matter of pride. Discovering the source of the patient’s problem in a timely fashion is gratifying to both the physician and the patient.

The Solution

Dorsal avulsion fractures of the wrist are from the triquetrum and short arm immobilization with routine outpatient follow-up are appropriate.

References (Triquetrum avulsion fracture):

1) *Fractures in Adults*
 Rockwood and Green Sixth Edition
 Lippincott, Williams and Wilkins 2006

2) *Carpal Fractures*
 G Kouris
A 43-year-old woman presents to the ED with pain in the hypothenar eminence of her right hand of several weeks duration. The pain began when she was hitting a 7 iron out of the rough and it caught a branch ruining the shot (bummer) and bending the club (insult to injury). The last few days she has begun to have pain radiating into fingers four and five. X-rays are negative. Now what?

Hamulus (Hook of the Hamate) Fracture
The hamulus (hook of the hamate) is located in the hypothenar eminence. It is located easily by palpating the pisiform prominence which is on the ulnar side of the distal wrist crease. (Figure 1) The hamulus will be 1 cm away toward the center of the palm. (Figure 2)
The hamulus serves as the attachment site for several ligaments and intrinsic muscles of the hand. It constitutes part of the ulnar border of the carpal tunnel and acts to redirect flexor digiti minimi toward the small finger. (Figure 3) It also acts as the superomedial border of Guyon’s canal that contains the ulnar nerve. (Figures 4, 5) Consequently, damage to the hamulus may cause irritation of flexor digiti minimi or the ulnar nerve.

![Hamulus redirecting flexor digiti minimi](image3.png)

Figure 3-Hamulus redirecting flexor digiti minimi

![Bony structure of Guyon’s canal](image4.png)

Figure 4-Bony structure of Guyon’s canal
Mechanism
Hamulus injuries are most commonly caused by a direct blow to the hypothenar eminence base. This is frequent when the handle of a racquet, bat or club strikes the protuberant hamulus. Golf is the sport most commonly associated with this mechanism. (8,9) A direct blow to the hamulus is caused by the handle of a golf club when the club face strikes an immovable object. (2,3) (Figure 6)

Other sports that involve racquet or bat use may injure the hamulus in the same way. (1,8,9)

Direct blows (crush injuries) are frequent mechanisms of injury of the hamulus. FOSH injuries also are associated with hamulus fractures in every series. The mechanism of fracture may be a direct blow to the hamulus during the fall, but it could also be an avulsion fracture from traction on the hamulus by the support structures that use the hamulus as an attachment site. (1,8,9)
One additional and interesting mechanism of hamulus injury is repeated minor trauma. This repetition results in a stress fracture. Thus, the patient presents with the same symptoms as a patient with a direct blow but without the obvious instigating injury. Stress fractures are described in racquet sports but can occur in other activities such as bouldering. (4) Though there are no large series and hamulus fracture is an unusual condition, golfers seem particularly prone to this stress injury in their nondominant hand (lead hand in the golf swing). (5)

Symptoms and Signs
The patient usually demonstrates the expected pain and tenderness in the base of the hypothenar eminence, pain with gripping, pain with dorsiulnar deviation of the wrist, and pain with flexion of finger 5 if the flexor digiti minimi is irritated by the fracture. (3) (Figure 7)

Figure 7-Flexor digiti minimi irritated by a fractured hamulus

Dorsal wrist pain is often felt over the body of the hamate, which is fairly superficial dorsally. Paresthesias along the ulnar nerve may result from impingement of the nerve in Guyon’s canal. (Figure 8)

Figure 8-Impingement of the ulnar nerve in Guyon’s canal
Chronic hamulus injuries often have mild carpal tunnel syndrome symptoms that are common but not specific. (3)

The Problem
Hamulus fractures do not show up well in plain wrist or hand films.

Standard wrist x-rays include AP, lateral and oblique views. This does not show the hamulus well or at all. The plain x-ray view most likely to delineate this fracture is the carpal tunnel view. How this x-ray is performed is demonstrated in Figure 9.

![Figure 9-Wrist position for a carpal tunnel x-ray](image)

The carpal tunnel view appears as shown in Figure 10.
Figure 10-Carpal tunnel view (hamulus marked with H)

X-rays of hamulus fractures are shown in Figures 11a, 11b and 12.

Figure 11a-Fracture of the hamulus
Figure 11b-Figure 11a with fracture marked by flesh colored lines

Figure 12-Hamulus fracture indicated by arrow

Plain films with carpal tunnel view had a sensitivity of finding a fracture of the hamulus of 70% and 53% in two small series each including 14 patients. (3,8)
Pain in an acute injury may prevent proper positioning of the wrist for the carpal tunnel view x-ray. If suspicion is high and adequate plain films cannot be obtained, CT of the wrist may be useful. (4,6) Some authors even say not to bother with special plain films and go directly to CT to make the diagnosis. (9) (Figures 13a, 13b, 14a, 14b, 15)
MRI is also a modality that may reveal a difficult hamulus fracture. (Figure 16a, 16b)
Treatment
Controversy surrounds the treatment of this injury. This stems from a plethora of problems: lack of any randomized controlled trials, small case series making up the bulk of the relevant information, and inclusion bias confounding these same series.

The initial injury of the hamulus is often ignored by the patients or undiagnosed by the physicians at their initial visit. The injury is usually diagnosed by an orthopedist when there is already chronic pain. (8,9) The patients in many case series have good results with removal of the hamulus. Therefore, several authors believe that excision is the treatment of choice. (7) Nevertheless, some authors feel ORIF is effective and preferable. (3) Fortunately, emergency physicians do not have to decide between these options.

On the other hand, there are some patients in these same small case series with acute fractures treated with short arm gauntlet splinting for 6-12 weeks that heal well. (10,8) Whalen, et al. had a series of 6 patients that all healed with casting. All but one of these patients was not diagnosed at the initial visit but each person was initially immobilized and follow-up arranged. It would seem that good results are attainable without surgery if the diagnosis is made during the initial visit. (3,7,8)

Since hamulus fractures are often initially ignored by the patient and easily missed by the unwary physician, it is possible that hamulus fractures are much more common than the reported 2% of carpal bones and may have a more benign course than the literature suggests. There is clearly an inclusion bias in case series that are reported by hand specialists that include only patients that are still having trouble weeks, months and years after the injury. It is quite possible that the natural history of the hamulus fracture is to heal well without any intervention at all. It is also possible that early discovery and immobilization will decrease the incidence of chronic problems. Perhaps, early diagnosis is where emergency physicians can make a difference.

The Solution
The emergency physician should be aware that injuries of the hypothenar eminence, especially if **golf related**, may be hamulus fractures. These patients should be imaged appropriately (carpal tunnel view, possibly CT scan). Short arm, ulnar, gauntlet immobilization and referral to hand surgery for follow up is likely to obtain the best results for the patient.
References (Hamulus fracture):

1) Guha AR, Marynissen H
 Stress Fracture of the Hook of the Hamate

2) Evans MW
 Hamate Hook Fracture in a 17-Year-old Golfer: Importance of Matching Symptoms to Clinical Evidence
 Journal of Manipulative and Physiological Therapeutics 2003;27:516-518

 Hook of Hamate Fractures: Critical Evaluation of Different Therapeutic Procedures
 Plastic and Reconstructive Surgery 2005;115:488-497

4) Williams G, Roche A
 Stress fracture of the hook of the hamate as a result of intensive climbing
 J Hand Surg 2009;34E:276-277

5) Aldridge JA, Mallon WJ
 Hook of the Hamate Fractures in Competitive Golfers: Results of Treatment by Excision of the Fractured Hook of the Hamate
 Orthopedics 2003;26:717-718

6) Gill NW, Rendeiro DG
 Hook of the Hamate Fracture
 J Ortho and Sports Phy Therapy 2010;40:45-47

7) Hirano K, Inoue G
 Classification and Treatment of Hamate Fractures

8) Bishop AT, Beckenbaugh RD
 Fracture of the Hamate Hook
 J Hand Surg 1988;13A:135-139

 Diagnostic Imaging for Fracture of the Hook of the Hamate
 Hand Surg 2000;5:19-24

10) Whalen JL, Bishop AT, Linscheid RL
 Nonoperative treatment of acute hamate hook fractures
Punch Injuries

A 20-year-old man presents to your ED Sunday afternoon with right hand pain. He is not sure how he was injured. In fact, he is unsure of most of the previous night’s activities.

Post pugilistic problems of the hand are common. Is boxer’s fracture the whole story? Is there anything else to worry about?

The Problem
Some post fight hand injuries require special attention and some even do best with surgery. Which ones are they?

Boxer’s fracture (Fifth metacarpal neck fracture)

A direct blow to the fifth metacarpal head while the metacarpophalangeal joint (MCP) is in flexion (as in a clenched fist) may fracture the relatively weak metacarpal neck. (Figure 1)
This is the most common hand injury accounting for up to 1/3 of all hand fractures (finger injury is a separate category). (1) Interestingly, this injury very rarely occurs in professional boxers. Rather, it is associated with amateur pugilistic incidents. A more apropos name for this injury has been suggested: ‘brawler’s fracture.’ This is more mechanistically descriptive. (1) Unfortunately, this was never adopted and the moniker remains ‘boxer’s fracture.’

Diagnosis is not difficult since plain films clearly delineate the problem. (Figures 2a, 2b, 3)

Figure 2a-Fracture fifth metacarpal neck
Figure 2b-Figure 2a with fracture outlined in orange

Figure 3-Fracture distal fifth metacarpal

These fractures all have volar angulation. (Figure 4)
How much volar angulation is acceptable in a healed metacarpal neck fracture? Some background helps answer this question.

The carpometacarpal (CMC) joints of fingers 2 and 3 allow no motion since they form the center and fixed skeletal unit of the hand. (1,2) In contradistinction, CMC joint 4 has significant motion and CMC joint 5 a great deal more. This mobility is demonstrated by the amount of excursion of the metacarpal heads when clenching a fist. (Figures 5a, 5b, 6a, 6b)
This increased motion of CMC joints 4 and 5, as well as the extraordinary mobility of the thumb CMC joint, permits opposition and the familiar hand dexterity. The increased mobility also permits more metacarpal angular deformity without functional compromise. (3, 4) Good functional results are thus possible despite significant volar angulation of some of the metacarpal heads. Figure 7 displays the generally acceptable angular deformity of the MCP joint (although there is some dispute about the optimum amounts). (3)
Hence, the fifth MCP joint, which is the most mobile, also tolerates the most volar angulation. In fact, sometimes very large angulations (much in excess of that demonstrated above) are associated with a good outcome.

Treatment
Although angulation may be acceptable with boxer’s fracture some reduction is often desirable. This is usually a closed reduction after a metacarpal block. The proximal phalanx is used as a lever arm to force the metacarpal head up. (Figure 8)
A well-molded short arm, ulnar, gauntlet, gutter splint is applied. Surgery is very rarely necessary. Follow-up within a week with primary care or a hand/orthopedic specialist is appropriate depending on the local referral patterns.

Transverse Midshaft Metacarpal Fractures

Transverse, midshaft, metacarpal fractures typically occur from a blow to the metacarpal head (fight injury) (5) or a direct blow to the dorsal hand. (3)

X-ray will clearly show the dorsal tilt of the shaft and volar angulation of the metacarpal head. These fractures are easy to reduce but it is difficult to maintain the reduction in a cast. Why is that?

Recollection of pertinent anatomy answers the question elegantly. The interosseous muscles are attached proximally and distally in a way that tends to displace this fracture in the direction of its original injury. (Figures 1, 2, 3)
Dorsal angulation may lead to a persistent bony deformity and irritation of the extensor tendon as it passes nearby. This may contribute to tendon rupture. The acceptable volar angle is the same as that for MCP joints and is virtually none in fingers 2 and 3 with 20 degrees in finger 4 and 30 degrees in finger 5. (3)

Treatment
Gauntlet immobilization and referral to the hand/ortho specialist is appropriate. Definitive treatment usually involves surgery. (Figure 4)
Oblique Metacarpal Fractures

A rotational force with the finger acting as the long lever arm may cause an oblique metacarpal fracture. This spiral fracture has a tendency to shorten and rotate as time passes.

The oblique metacarpal fracture shortening is less pronounced in fingers 3 and 4 due to the tethering of the metacarpal heads as opposed to fingers 2 and 5, which are only tethered on one side. (Figure 1)
Figure 1-Tethering of the metacarpal heads

This shortening is significant for hand function in that 2 mm of shortening causes 7° less extension of the MCP joint. (3)

As much a problem as shortening of the metacarpal is, a more critical problem is rotational deformity. The fingers must come together in an organized fashion to permit grasping. In an uninjured state the partially closed hand will have all the fingers line up pointing at the medial radius. (Figure 2)

Figure 2-Alignment of the fingers in a normally closing hand

5 degrees of metacarpal shaft rotation results in 1.5 cm of digit overlap while making a fist. (3) Any rotation will manifest as overlap or finger scissoring and can be very debilitating. (3) (Figure 3)
Imaging
Oblique fractures may be obvious on routine hand x-rays. Nevertheless, occasionally an undisplaced oblique fracture is subtle, seen only in one image, and with difficulty. (Figures 4a, 4b, 5a, 5b, 5c, 5d, 6)

Figure 4a Figure 4b-Figure 4a with fracture in orange
Figure 5a

Figure 5b - Figure 5a with subtle fracture in orange

Figure 5c

Figure 5d - Figure 5c with fracture in orange
Notice how much less displaced and more difficult it is to see the fracture in Figures 4 and 5 than in Figure 6. This is related to the tethering of the metacarpal heads. (Figure 1 and below)

Treatment
Oblique fractures tend to shorten and rotate with time—even in a cast. Consequently, definitive treatment is almost always operative.

Emergency treatment consists of gauntlet immobilization and referral to a hand/orthopedic specialist within a week.

References (Metacarpal fractures):
1) Gudmundsen TE, Borgen L
 Fractures of the Fifth Metacarpal
 Acta Radiologica 2009;3:296-300

2) Melone CP, et al.
 Disabling Hand Injuries in Boxing: Boxer’s Knuckle and Traumatic Carpal Boss

 Management of Metacarpal Fractures
 J Hand Ther 2003;16:143-151

4) Singletary S, Freeland AE, Jarrett CA
Metacarpal Fractures in Athletes: Treatment, Rehabilitation and Safe Early Return to Play
J Hand Ther 2003;16:171-179

5) Soong M, Got C, Kararincic J
 Ring and Little Finger Metacarpal Fractures: Mechanisms, Locations, and Radiographic Parameters
J Hand Surg 2010;35A:1256-1259
Bennett’s Fracture

Fractures that have a surgeon’s eponym are almost always associated with a problem injury. Bennett’s fracture is not an exception. The mechanism of injury frequently involves an errant punch that delivers an axial load to the first metacarpal head. The force is transmitted to the base of the first metacarpal resulting in a fracture and usually a concomitant dislocation. (Figures 1, 2)

Figure 1
Figure 2

The following x-rays demonstrate a variety of presentations of this fracture. (Figures 3a, 3b, 4a, 4b, 5a, 5b, 6a, 6b)
Figure 3a-Bennett’s fracture Figure 3b-Figure 3a with fracture outlined in orange
Figure 4a-Bennett’s fracture

Figure 4b-Figure 4a with fracture outlined in orange
The problem with this fracture is that the powerful muscle abductor pollicis longus is attached to the proximal end of the dislocated piece of metacarpal continuing to displace it. To make matters worse the adductor hallucis it attached to the distal end of the same piece of metacarpal also contributing to its displacement. (Figure 7)
Treatment
The highly mobile first CMC joint usually heals with significant arthritis if the bone isn’t accurately reduced. The distracting forces of adductor hallucis and abductor pollicis longus prevent a closed reduction from being maintained in a cast. Thus, it does not stay reduced without surgery and invariably gets it.

Emergency physicians should apply thumb spica immobilization and refer to hand/orthopedic specialist for outpatient surgery. (1,2)

References (Bennett’s fracture):
1) Huang JI, Fernandez DL

Fractures of the Base of the Thumb Metacarpal
AAOS Instructional Course Lectures 2010;59:343-356

2) Carlesen BT, Moran SL

Thumb Trauma: Bennett Fractures, Rolando Fractures, and Ulnar Collateral Ligament Injuries
J Hand Surg 2009;34A:945-952
FOR A FEW FRACTURES MORE

Fights may lead to additional fractures and dislocations. Some of these can be subtle and easily overlooked. Among these are metacarpal base fractures, metacarpal head fractures, and dislocations of the CMC joints. The canny physician should be aware of these injuries when examining a pugilist.

Metacapal Base Fractures

Metacarpal base fractures are caused by a strong axial load along the metacarpal and may result from pugilisitic activities. (1) (Figures 1a, 1b, 2a, 2b, 2c)

![Figure 1-Metacarpal base fracture](image)
Figure 2a-Fracture base of fifth metacarpal

Figure 2b-Figure 2a enlarged
Figure 2c-Figure 2b with the fracture fragment colored orange

Figure 2 demonstrates how subtle these fractures may be. Look carefully for these fractures when circumstances warrant.

Treatment
Intraarticular metacarpal base fractures usually require surgery for best results. The ED treatment is a gauntlet immobilization and referral to hand/orthopedic specialist for definitive care.

Carpometacarpal (CMC) Dislocation
Occasionally a blow to the metacarpal head causes a dislocation of the carpometacarpal (CMC) joint. These injuries will be associated with pain, deformity and tenderness in the dorsal proximal hand. Examination of this area usually suggests the CMC dislocation.

Standard hand films will show the injury but it can be subtle if the physician is not cognizant of the possibility. (Figure 3a, 3b)
This injury is somewhat subtle and best seen in the lateral view of the same patient. (Figures 3c, 3d)

In the long run a CMC joint instability may lead to chronic pain, metacarpal boss deformity (2) and require arthrodesis. Consequently, surgery is usually required for optimum outcome. (Figure 3e)
Figure 3e-Surgical correction of CMC dislocation in 3a

Treatment
Emergency treatment consists of gauntlet immobilization and referral to hand/orthopedic specialist within a week for definitive care.

Metacarpal Head Fractures
Metacarpal head fractures are usually associated with open fractures. They occur in fights and by a direct blow to the MCP joint. (1) (Figure 1a, 1b)
Treatment
Treatment for an open metacarpal head fracture begins with thorough cleansing which is often performed in the operating room. If the fracture is not open, gauntlet immobilization is the initial treatment. Referral to a hand/ortho specialist is appropriate since many of these fractures require surgery.

References (FOR A FEW FRACTURES MORE):
1) McNemar TB, Howell JW, Chang E
 Management of Metacarpal Fractures
 J Hand Ther 2003;16:143-151

2) Malone CP, et al.
 Disabling Hand Injuries in Boxing: Boxer’s Knuckle and Traumatic Carpal Boss

The Solution
The following fractures usually need referral to a hand/orthopedic specialist:
 - Significantly angulated fifth and fourth metacarpal neck fractures
 - More than 10 degrees angulation of metacarpal 2 and 3 necks
 - Oblique fractures of the metacarpal shaft
Transverse fractures of the metacarpal shaft
Metacarpal head fractures
Base of the thumb fractures
Dislocations of the CMC joints
Intraarticular CMC fractures
Still others not discussed

In general, most hand fractures need immobilization and referral to a hand specialist. Our job isn’t all that hard: know the possibilities, find the fractures, immobilize, and properly refer them.