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Chapter 1

The Indefinite Integrals

1.1 Anti-derivatives and Definition of Indefinite Integrals

1.1.1 Anti-derivatives

Definition 1.1.1 A function F is called an anti-derivative of f on an interval I if

F
′
(x) = f (x) for every x ∈ I .

Example 1.1.1 1. Let F(x) = x2 +3x+1 and f (x) = 2x+3.

Since F
′
(x) = f (x), the function F(x) is an anti-derivative of f (x).

2. Let G(x) = sin(x)+ x and g(x) = cos(x)+1.

We know that G
′
(x) = cos(x)+1 and this means the function G(x) is an anti-derivative of g(x).

Generally, if F(x) is an anti-derivative of f (x), then every function F(x)+c is also anti-derivative of f (x), where c is a constant.

Theorem 1.1.1 If the functions F(x) and G(x) are anti-derivatives of a function f (x) on the interval I, there exists a constant
c such that G(x) = F(x)+ c.

The last theorem means that any anti-derivative G(x), which is different from the function F(x) can be expressed as F(x)+ c where c
is an arbitrary constant. The following examples clarify this point.

Example 1.1.2 Let f (x) = 2x. The functions

F(x) = x2 +2,

G(x) = x2− 1
2 ,

H(x) = x2− 3
√

2,

and many other functions are anti-derivatives of a function f (x). Generally, for the function f (x) = 2x, the function F(x) = x2 + c is
the anti-derivative where c is an arbitrary constant.

Example 1.1.3 Find the general form of the anti-derivative of f (x) = 6x5.

Solution:

Let F(x) = x6, then F ′(x) = 6x5. Thus, F(x) = x6 + c is the general anti-derivative of f (x).
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1.1.2 Indefinite Integrals

Definition 1.1.2 Let f be a continuous function on an interval I. The indefinite integral of f (x) is the general anti-derivative

of f (x) on I and symbolized by
∫

f (x) dx.

Remark 1.1.1 If F(x) is an anti-derivative of f , then∫
f (x) dx = F(x)+ c .

The function f (x) is called the integrand, the symbol
∫

is the integral sign, x is called the variable of the integration and c is

the constant of the integration.

Now, by using the previous remark, the general anti-derivatives in Example 1.1.1 are

1.
∫

2x+3 dx = x2 +3x+ c.

2.
∫

cos(x)+1 dx = sin(x)+ x+ c.

The list of the basic indefinite integrals:

Derivative Indefinite Integrals
d
dx (x) = 1

∫
1 dx = x+ c

d
dx (

xn+1

n+1 ) = 1, n 6=−1
∫

xn dx = xn+1

n+1 + c

d
dx (sin x) = cos x

∫
cos dx = sin x+ c

d
dx (−cos x) = sin x

∫
sin x dx =−cos x+ c

d
dx (tan x) = sec2 x

∫
sec2 x dx = tan x+ c

d
dx (−cot x) = csc2 x

∫
csc2 x dx =−cot x+ c

d
dx (sec x) = sec x tan x

∫
sec x tan x dx = sec x+ c

d
dx (−csc x) = csc x cot x

∫
csc x cot x dx =−csc x+ c

Table 1.1: The list of the basic integration rule.

Example 1.1.4 Evaluate the following integrals:

1.
∫

x−3 dx 2.
∫ 1

cos2 x
dx

Solution:

1.
∫

x−3 dx = x−2

−2 + c =− 1
2x2 + c .

2.
∫ 1

cos2 x
dx =

∫
sec2 x dx = tanx+ c . Remember: sec x = 1

cosx
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Exercise 1:

1 - 8 Evaluate the following integrals:

1.
∫ 1√

x
dx

2.
∫ 1

x
5
4

dx

3.
∫ 1

sin2 x
dx

4.
∫
− csc2x tan2 x dx

5.
∫ 1

5
√

x
dx

6.
∫ tanx

cosx
dx

7.
∫ √x

x3 dx

8.
∫ √

sin4 x cscx dx

1.2 Properties of Indefinite Integrals

Theorem 1.2.1 Let f and g be integrable functions, then

1.
d
dx

∫
f (x) dx = f (x) .

2.
∫ d

dx
(F(x)) dx = F(x)+ c .

3.
∫ (

f (x)±g(x)
)

dx =
∫

f (x) dx±
∫

g(x) dx .

4.
∫

k f (x) dx = k
∫

f (x) dx, where k is a constant

In the following example, we use the previous properties and the table of the basic integrals to evaluate some indefinite integrals.

Example 1.2.1 Evaluate the following integrals:

1.
∫
(4x+3) dx

2.
∫
(2sin x+3cos x) dx

3.
∫
(
√

x+ sec2 x) dx

4.
∫ d

dx
(sin x) dx

5.
d
dx

∫ √
x+1 dx

Solution:

1.
∫
(4x+3) dx = 4x2

2 +3x+ c = 2x2 +3x+ c .

2.
∫
(2sin x+3cos x) dx =−2cos x+3sin x+ c .

3.
∫
(
√

x+ sec2 x) dx = x
3
2

3/2 + tan x+ c = 2x
3
2

3 + tan x+ c .

4.
∫ d

dx
(sin x) dx = sin x+ c .

5.
d
dx

∫ √
x+1 dx =

√
x+1 .

Example 1.2.2 If
∫

f (x) dx = x2 + c and
∫

g(x) dx = tanx+ c, then find
∫ (

3 f (x)−2g(x)
)

dx.

Solution:

From the third and fourth property,
∫ (

3 f (x)−2g(x)
)

dx = 3
∫

f (x) dx−2
∫

g(x) dx = 3x2−2tanx+ c.

Example 1.2.3 Solve the differential equation f ′(x) = x3 subject to the initial condition f (0) = 1.



7

Solution: ∫
f ′(x) dx =

∫
x3 dx

f (x) =
1
4

x4 + c .

If x = 0, f (0) = 1
4 (0)

4 + c = 1 and this implies c = 1. Thus, the solution of the differential equation is f (x) = 1
4 x4 +1.

Example 1.2.4 Solve the differential equation f ′(x) = 6x2 + x−5 subject to the initial condition f (0) = 2.

Solution: ∫
f ′(x) dx =

∫
(6x2 + x−5) dx

f (x) = 2x3 +
1
2

x2−5x+ c .

Use the condition f (0) = 2 i.e., substitute x = 0 into the function f (x). We have f (0) = 0+0−0+c = 2⇒ c = 2 . Hence, the solution
of the differential equation is f (x) = 2x3 + 1

2 x2−5x+2 .

Example 1.2.5 Solve the differential equation f ′′(x) = 5cos x+2sin x subject to the initial condition f (0) = 3 and f ′(0) = 4.

Solution: ∫
f ′′(x) dx =

∫
(5cos x+2sin x) dx

f ′(x) = 5sin x−2cos x+ c

The condition f ′(0) = 4 yields f ′(0) = 0−2+ c = 4⇒ c = 6 . Thus, f ′(x) = 5sin x−2cos x+6 . Now, again∫
f ′(x) dx =

∫
(5sin x−2cos x+6) dx

f (x) =−5cos x−2sin x+6x+ c .

Use the condition f (0) = 3 by substituting x = 0 into f (x). This yields f (0) =−5−0+0+ c = 3⇒ c = 8 . Thus, the solution of the
differential equation is f (x) =−5cos x−2sin x+6x+8.

Note that, in the previous examples, we use x as the variable of the integration. However, for this role, we can use any variable y, z, t,
... . That is, instead of f (x) dx, we can integrate f (y) dy, f (t) dt.

Exercise 2:

1 - 10 Evaluate the following integrals:

1.
∫ √

x5 dx

2.
∫
(x

3
4 + x2 +1) dx

3.
∫

x(x3 +2x+1) dx

4.
∫

x2 + sec2 x dx

5.
∫ 3sin2 x+4

sin2 x
dx

6.
∫ x2−1

x4 dx

7.
∫

4x
2
5 −2x

2
3 + x dx

8.
∫ 3

x3 +
2
x4 +1 dx

9.
∫

csc2 x−
√

x dx

10.
∫ x2+x+1

3√x
dx

11 - 12 Evaluate the following:

11. d
dx (

∫ √
cos3 x+1 dx) 12.

∫ d
dx (
√

cos3 x+1) dx

13 - 17 Solve the differential equation

13. f ′(x) = 4x3 +2x+1 subject to the initial condition f (0) = 1.

14. f ′′(x) = sinx+2cosx subject to the initial conditions f (0) = 1 and f ′(0) = 3.

15. f ′(x) =
√

x subject to the initial condition f (0) = 0.

16. f ′(x) = cosx subject to the initial condition f (π) = 1.

17. f ′(x) = sec2 x subject to the initial condition f ( π

4 ) = 0.
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1.3 Integration By Substitution

The integration by substitution (known as u-substitution) is one technique for solving some complex integrals. The goal of changing
the variable of the integration is to obtain a simple indefinite integral. In a sense that the substitution method turns the integral into
a simpler integral involving the variable u that can be solved by using either the table of the basic integrals or other techniques of
integration. The following definition shows how the substitution technique works.

Theorem 1.3.1 Let g be a differentiable function on the interval I where the derivative is continuous. Let f be a continuous
on an interval I involves the range of the function g. If F is an anti-derivative of the function f on I, then∫

f (g(x))g
′
(x) dx = F(g(x))+ c, x ∈ I .

Steps of integration by substitution:

Step 1: Choose a new variable u.

Step 2: Determine the value of du.

Step 3: Make the substitution i.e., eliminate all occurrences of x in the integral by making the entire integral is in terms of u.

Step 4: Evaluate the new integral.

Step 5: Return the evaluation to the initial variable x.

Example 1.3.1 Evaluate the integral
∫

2x(x2 +1)3 dx.

Solution:

One can use the previous theorem as follows:

let f (x) = x3 and g(x) = x2 +1. Since g
′
(x) = 2x, then from Theorem 1.3.1, we have

∫
2x(x2 +1)3 dx =

(x2 +1)4

4
+ c .

We can end with the same solution by using the five steps of the substitution method.

Let u = x2 + 1, then du = 2x dx. By substituting that into the original integral, we have
∫

u3 du = u4

4 + c. Now, by returning the

evaluation to the initial variable x, we have
∫

2x(x2 +1)3 dx = (x2+1)4

4 + c.

Example 1.3.2 Evaluate the integral
∫ sec2(

√
x)√

x
dx.

Solution:

Let u =
√

x, then du = 1
2
√

x dx. By substitution, we have 2
∫

sec2(u) du = 2tan(u)+ c = 2tan(
√

x)+ c .

Example 1.3.3 Evaluate the integral
∫ x2−1

(x3−3x+1)6 dx.

Solution:

let u = x3−3x+1, then du = 3(x2−1) dx. By substitution, we have

1
3

∫
u−6 du =

1
3

1
−5u5 + c =

−1
15(x3−3x+1)5 + c .
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Corollary 1.3.1 If
∫

f (x) dx = F(x)+ c, then for any a 6= 0,

∫
f (ax±b) dx =

1
a

F(ax±b)+ c .

Example 1.3.4 Evaluate the following integrals:

1.
∫ √

2x−5 dx 2.
∫

cos(3x+4) dx

Solution:

From Corollary 1.3.1, we have

1.
∫ √

2x−5 dx = 1
2
(2x−5)3/2

3/2 + c = (2x−5)3/2

3 + c .

2.
∫

cos(3x+4) dx = 1
3 sin(3x+4)+ c .

Exercise 3:

1 - 16 Evaluate the following integrals:

1.
∫

x
√

1+ x2 dx

2.
∫

x
√

x−1 dx

3.
∫

x2√x−1 dx

4.
∫ tanx

cos2 x
dx

5.
∫

sin5 x cosx dx

6.
∫ x√

2x2 +1
dx

7.
∫

cos t
√

1− sin t dt

8.
∫ cos3 x

cscx
dx

9.
∫

cos(3x+4) dx

10.
∫ 1√

x(
√

x+1)2 dx

11.
∫

sec4x tan4x dx

12.
∫ √cotx

sin2 x
dx

13.
∫
(1+

1
t
)t−2 dt

14.
∫ x√

2x−1
dx

15.
∫

x2(4x3−6)7 dx

16.
∫

sin2(3x)cos(3x) dx
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Chapter 2

The Definite Integrals

2.1 Summation Notation

Summation is the addition of a sequence of numbers and the result is their sum or total.

Definition 2.1.1 Let {a1,a2, ...,an} be a set of numbers. The symbol ∑
n
k=1 ak represents their sum:

n

∑
k=1

ak = a1 +a2 + ...+an .

Example 2.1.1 Evaluate the following sums:

1. ∑
3
i=0(i

3) . 2. ∑
4
j=1( j2 +1) . 3. ∑

3
k=1(k+1)k2 .

Solution:

1. ∑
3
i=0(i

3) = 03 +13 +23 +33 = 0+1+8+27 = 36 .

2. ∑
4
j=1( j2 +1) = (12 +1)+(22 +1)+(32 +1)+(42 +1) = 2+5+10+17 = 50 .

3. ∑
3
k=1(k+1)k2 = (2)(1)2 +(3)(2)2 +(4)(3)2 = 2+12+36 = 50 .

Properties of Sum Notation:

1. ∑
n
k=1 c = c+ c+ ...+ c︸ ︷︷ ︸

n-times

= nc for any c ∈ R.

2. ∑
n
k=1(ak±bk) = ∑

n
k=1 ak±∑

n
k=1 bk.

3. ∑
n
k=1 c ak = c ∑

n
k=1 ak for any c ∈ R.

Example 2.1.2 Evaluate the following sums:

1. ∑
10
k=1 15 . 2. ∑

4
k=1 k2 +2k . 3. ∑

3
k=1 3(k+1) .

Solution:

1. ∑
10
k=1 15 = (10)(15) = 150 .
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2. ∑
4
k=1 k2 + k = ∑

4
k=1 k2 +∑

4
k=1 k = (12 +22 +32 +42)+(1+2+3+4) = 30+10 = 40 .

3. ∑
3
k=1 3(k+1) = 3∑

3
k=1(k+1) = 3(2+3+4) = 27 .

Theorem 2.1.1
1. ∑

n
k=1 k = n(n+1)

2 . 2. ∑
n
k=1 k2 =

n(n+1)(2n+1)
6 . 3. ∑

n
k=1 k3 =

[ n(n+1)
2
]2 .

Example 2.1.3 Evaluate the following sums:
1. ∑

100
k=1 k . 2. ∑

10
k=1 k2 . 3. ∑

10
k=1 k3 .

Solution:

1. ∑
100
k=1 k = 100(100+1)

2 = 5050 .

2. ∑
10
k=1 k2 =

10(11)(21)
6 = 385 .

3. ∑
10
k=1 k3 =

[ 10(11)
2
]2

= 3025 .

Example 2.1.4 Express the following sums in terms of n:
1. ∑

n
k=1(k+1) . 2. ∑

n
k=1(k

2− k+1) .

Solution:

1. ∑
n
k=1(k+1) = ∑

n
k=1 k+∑

n
k=1 1 =

n(n+1)
2 +n =

n(n+3)
2 .

2. ∑
n
k=1(k

2− k−1) = n(n+1)(2n+1)
6 − n(n+1)

2 −n =
n(n2−1)−3

3 .

Exercise 1:

1 - 6 Evaluate the following sums:
1. ∑

3
i=1(i+1)

2. ∑
5
j=0 j2

3. ∑
4
k=1

k
k+1

4. ∑
10
i=1 5i

5. ∑
30
k=1 4

6. ∑
3
j=1(3−2 j)2

7 - 9 Express the following sums in terms of n:
7. ∑

n
k=1(k−1) 8. ∑

n
k=1(k

2 +1) 9. ∑
n
k=1(k

3 +2k2− k+1)

2.2 Riemann Sum and Area

A Riemann sum is a mathematical form and one of its applications is approximating the area underneath a curve of a function. Before
start-up in this issue, we would like to provide some basic definitions that we need in the Riemann sum.

Definition 2.2.1 A set P = {x0,x1,x2, ...,xn} is called a partition of a closed interval [a,b] if for any positive integer n,

a = x0 < x1 < x2 < .... < xn−1 < xn = b .

Note that,

1. the division of the interval [a,b] by the partition P generates n sub-intervals: [x0,x1], [x1,x2], [x2,x3], ..., [xn−1,xn].

2. The length of each sub-interval [xk−1,xk] is ∆xk = xk− xk−1.

3. The union of sub-intervals gives the main interval [a,b].

Definition 2.2.2 The norm of the partition of P is the largest length among ∆x0,∆x1,∆x2, ...,∆xn i.e.,

|| P ||= max{∆x0,∆x1,∆x2, ...,∆xn} .
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Example 2.2.1 If P = {0,1.2,2.3,3.6,4} is a partition of the interval [0,4], find the norm of the partition P.

Solution:

We need to find the sub-intervals and their lengths.

Sub-interval [xk−1,xk] Length ∆xk
[0,1.2] 1.2−0 = 1.2
[1.2,2.3] 2.3−1.2 = 1.1
[2.3,3.6] 3.6−2.3 = 1.3
[3.6,4] 4−3.6 = 0.4

From the table, the norm is ‖ P ‖= 1.3 .

Remark 2.2.1

1. The partition P of the interval [a,b] is regular if ∆x0 = ∆x1 = ∆x2 = ...= ∆xn = ∆x.

2. For any positive integer n, if the partition P is regular then

∆x =
b−a

n
and xk = x0 + k ∆x .

To explain the previous result, let P be a regular partition for the interval [a,b]. We know that x0 = a and xn = b. Then,

x1 = x0 +∆x,

x2 = x1 +∆x = (x0 +∆x)+∆x = x0 +2∆x,

x3 = x2 +∆x = (x0 +2∆x)+∆x = x0 +3∆x .

By continuing doing so, we have xk = x0 + k ∆x .

Example 2.2.2 Define a regular partition P that divides the interval [1,4] into 4 sub-intervals.

Solution:

Since P is a regular partition of [1,4] where n = 4, then ∆x = 4−1
4 = 3

4 and xk = 1+ k 3
4 .

Thus,

x0 = 1
x1 = 1+ 3

4 = 7
4

x2 = 1+2( 3
4 ) =

5
2

x3 = 1+3( 3
4 ) =

13
4

x4 = 1+4( 3
4 ) = 4

The regular partition is P = {1, 7
4 ,

5
2 ,

13
4 ,4}.

Now, we are ready to define the Riemann sum that will be used to evaluate the definite integrals.

Definition 2.2.3 Let f be a defined and bounded function on the closed bounded interval [a,b] and let P = {x0,x1, ...,xn} be
a partition of [a,b]. Let ωk ∈ [xk−1,xk], k = 1,2,3, ...,n where ω = (ω1,ω2, ...,ωn) is a mark on the partition P. Then, the
Riemann sum of f for P is

Rp =
n

∑
k=1

f (ωk)∆xk .

Consider Figure 2.1, we want to explain the definition of the Riemann sum of a function f for the partition P. As shown in the figure,
the amount f (ω1)∆x1 is the area of the rectangle A1, f (ω2)∆x2 is the area of the rectangle A2 and so on. The sum of these areas
approximates the whole area under the graph of the function f . This indicates that, the area under f bounded by x = a and x = b can be
estimated by the Riemann sum where as the number of the sub-intervals increases (i.e., n→ ∞), the estimation becomes better. Note
that, when n→ ∞, the norm ‖ P ‖→ 0. From this,
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A = lim
n→∞

Rp = lim
n→∞

n

∑
k=1

f (ωk)∆xk .

Figure 2.1: The Riemann sum of the function f (x) for the partition P.

Example 2.2.3 Find the Riemann sum Rp of the function f (x) = 2x− 1 for the partition P = {−2,0,1,4,6} of the interval [a,b] by
choosing the mark as follows:

1. the left-hand end point, 2. the right-hand end point, 3. the midpoint.

Solution:

1. The left-hand end point.

Sub-intervals Length ∆xk ωk f (ωk) f (ωk) ∆xk
[−2,0] 0− (−2) = 2 −2 −5 −10
[0,1] 1−0 = 1 0 −1 −1
[1,4] 4−1 = 3 1 1 3
[4,6] 6−4 = 2 4 7 14

Rp = ∑
4
k=1 f (ωk)∆xk 6

2. The right-hand end point.

Sub-intervals Length ∆xk ωk f (ωk) f (ωk) ∆xk
[−2,0] 0− (−2) = 2 0 −1 −2
[0,1] 1−0 = 1 1 1 1
[1,4] 4−1 = 3 4 7 21
[4,6] 6−4 = 2 6 11 22

Rp = ∑
4
k=1 f (ωk)∆xk 42

3. The midpoint.

Sub-intervals Length ∆xk ωk f (ωk) f (ωk) ∆xk
[−2,0] 0− (−2) = 2 −1 −3 −6
[0,1] 1−0 = 1 0.5 0 0
[1,4] 4−1 = 3 2.5 4 12
[4,6] 6−4 = 2 5 9 18

Rp = ∑
4
k=1 f (ωk)∆xk 24
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Example 2.2.4 Let A be the area under the graph of f (x) = x+ 1 from x = 1 to x = 3. Find the area A by taking the limit of the
Riemann sum such that the partition P is regular and the mark ω is the right end point of each sub-interval.

Solution:

For a regular partition P, we have

1. ∆x = b−a
n = 3−1

n = 2
n , and

2. xk = x0 + k ∆x where x0 = 1.

Since the mark ω is the right end point of the sub-interval [xk−1,xk], then ωk = xk = 1+ 2k
n . Hence,

f (ωk) = (1+
2k
n
)+1 =

2k
n

+2 =
2
n
(n+ k) .

Now,

Rp =
n

∑
k=1

f (wk)∆xk =
4
n2

n

∑
k=1

(n+ k)

=
4
n2

[
n2 +

n(n+1)
2

]
= 4+

2(n+1)
n

.

Remember:
(1) ∑

n
k=1(n+ k) = ∑

n
k=1 n+∑

n
k=1 k

(2) ∑
n
k=1 k = n(n+1)

2

Therefore, limn→∞ Rp = 4+2 = 6 .

Exercise 2:

1 - 8 If P is a partition of the interval [a,b], find the norm of the partition P:
1. P = {−1,0,1.3,4,4.1,5}, [−1,5]
2. P = {0,0.5,1,2.5,3.1,4}, [0,4]
3. P = {−3,0,2.3,4.6,4.8,5.5,6}, [−3,6]
4. P = {−2,0,2.3,3,3.5,4}, [−2,4]

5. P = {3,3.5,3.6,4,4.9,7}, [3,7]
6. P = {−2,0,1.3,2,2.5,3.4,5.5}, [−2,5.5]
7. P = {−1,− 1

2 ,0,
1
2 ,1,

3
2 ,2}, [−1,2]

8. P = {0, π

4 ,
π

2 ,
3π

4 ,π}, [0,π]

9 - 12 Define a regular partition P that divides the interval [a,b] into n sub-intervals:
9. [a,b] = [0,3] n = 5

10. [a,b] = [−1,4] n = 6
11. [a,b] = [−4,4] n = 8
12. [a,b] = [0,1] n = 4

13 - 15 Find the Riemann sum Rp of the function f (x) = x2 + 1 for the partition P = {0,1,3,4} of the interval [a,b] by choosing the mark as
follows:

13. the left-hand end point,

14. the right-hand end point,

15. the midpoint.

16 - 19 Let A be the area under the graph of f (x) from a to b. Find the area A by taking the limit of the Riemann sum such that the partition P is
regular and the mark ω is the right end point of each sub-intervals:

16. f (x) = x/3 a = 1, b = 2
17. f (x) = x−1 a = 0, b = 3

18. f (x) = 5− x2 a =−1, b = 1
19. f (x) = x3−1 a = 0, b = 4

2.3 Definite Integrals

Definition 2.3.1 Let f be a defined and bounded function on a closed bounded interval [a,b] and let P be a partition of [a,b].
If f is integrable on that interval, the definite integral of f is∫ b

a
f (x) dx = lim

‖P‖→0
∑
k

f (ωk)∆xk = A .

if the limit exists. The numbers a and b are called the limits of the integration.
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Example 2.3.1 Evaluate the following integral
∫ 4

2
x+2 dx.

Solution:

We try to solve the example by using the previous definition.

The function f (x) = x + 2 is integrable since it is continuous. Let P = {x0,x1, ...,xn} be a regular partition of [2,4] and ωk ∈
[xk−1,xk].

Since P is regular, ∆ = 4−2
n = 2

n . Let ωk = xk, then ωk =
2
n (n+ k). Hence,

Rp = ∑
k

f (ωk)∆xk = ∑
k
(

2(2n+ k)
n

)
2
n
=

4
n2 ∑

k
(2n+ k) =

4
n2 (2n2 +

n(n+1)
2

) = 8+
2(n+1)

n
.

This implies limn→∞ Rp = 8+ limn→∞
2n(n+1)

n2 = 8+2 = 10 .

The following remark simplifies the process of calculating the definite integrals. This remark will be stated later in Theorem 2.5.1.

Remark 2.3.1 To find the value of a definite integral
∫ b

a
f (x) dx, we first find the value of the indefinite integral

∫
f (x) dx =

F(x)+ c as shown in Chapter 1. Then, we substitute a and b into F(x) as follows:∫ b

a
f (x) dx =

[
F(x)

]b

a
= F(b)−F(a) .

Example 2.3.2 Evaluate the following integrals:

1.
∫ 2

−1
2x+1 dx

2.
∫ 3

0
x2 +1 dx

3.
∫ 2

1

1√
x3

dx

4.
∫ π

2

0
sin(x)+1 dx

5.
∫

π

π

4

sec2(x)−4 dx

6.
∫ π

3

0
sec(x) tan(x)+ x dx

Solution:

1.
∫ 2

−1
2x+1 dx =

[
x2 + x

]2

−1
= (4+2)− ((−1)2 +(−1)) = 6−0 = 6 .

2.
∫ 3

0
x2 +1 dx =

[
x3

3 + x
]3

0
= ( 27

3 +3)−0 = 12 .

3.
∫ 2

1

1√
x3

dx =
[
−2√

x

]2

1
= −2√

2
− (−2) = −2+

√
2√

2
.

4.
∫ π

2

0
sin(x)+1 dx =

[
− cos(x)+ x

] π

2

0
= (−cos( π

2 )+
π

2 )− (−cos(0)+0) = π

2 +1 .

5.
∫

π

π

4

sec2(x)−4 dx =
[

tan(x)−4x
]π

π

4

= (tan(π)−4π)− (tan( π

4 )−4. π

4 ) =−4π− (1−π) =−3π−1 .

6.
∫ π

3

0
sec(x) tan(x)+ x dx =

[
sec(x)+ x2

2

] π

3

0
= (sec( π

3 )+
( π

3 )
2

2 )− (sec(0)+ 0
2 ) = 2+ π2

18 −1 = 1+ π2

18 .

One application of the definite integrals is to find the area under the graph of a non-negative function f on the interval [a,b]. This is
clear from Definition 2.3.1,

A =
∫ b

a
f (x) dx .

The application of the definite integrals will be discussed in detail in Chapter 7.

Exercise 3:
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1 - 8 Evaluate the following integrals:

1.
∫ 3

0
(2− x+ x2) dx

2.
∫ 1

−1
(x2 +3x+1) dx

3.
∫ 10

0
(x

3
2 +1) dx

4.
∫ 2

1

2√
x

dx

5.
∫

π

0
cosx dx

6.
∫ π

4

0
sinx+ cosx dx

7.
∫ π

3

π
4

secx(tanx+ secx) dx

8.
∫ π

2

π
3

1
sin2 x

dx

2.4 Properties of Definite Integrals

Theorem 2.4.1 If f is integrable on [a,b], then

1.
∫ b

a
c dx = c(b−a),

2.
∫ a

a
f (x) dx = 0,

3.
∫ b

a f (x) dx =−
∫ a

b f (x) dx .

4. If f and g are integrable on [a,b], then f +g and f −g are integrable on [a,b] and∫ b

a
( f (x)±g(x)) dx =

∫ b

a
f (x)±

∫ b

a
g(x) dx .

5. If f is integrable on [a,b] and k ∈ R, then k f is integrable on [a,b] and∫ b

a
k f (x) dx = k

∫ b

a
f (x) dx .

6. If f and g are integrable on [a,b] and f (x)≥ g(x) for all x ∈ [a,b], then∫ b

a
f (x) dx≥

∫ b

a
g(x) dx .

7. If f is integrable on [a,b] and f (x)≥ 0 for all x ∈ [a,b], then∫ b

a
f (x) dx≥ 0 .

8. If f is integrable on the intervals [a,c] and [c,b], then f is integrable on [a,b] and∫ b

a
f (x) dx =

∫ c

a
f (x) dx+

∫ b

c
f (x) dx .

Example 2.4.1 Evaluate the following integrals:

1.
∫ 2

0
3 dx . 2.

∫ 2

2
x2 +4 dx .

Solution:

1.
∫ 2

0
3 dx = 3(2−0) = 6 . 2.

∫ 2

2
x2 +4 dx = 0 .

Example 2.4.2 If
∫ b

a
f (x) dx = 4 and

∫ b

a
g(x) dx = 2, then find

∫ b

a
3 f (x)− g(x)

2
dx.

Solution: ∫ b

a
3 f (x)− g(x)

2
dx = 3

∫ b

a
f (x) dx− 1

2

∫ b

a
g(x) dx = 3(4)− 1

2
(2) = 11 .
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Example 2.4.3 Prove that
∫ 2

0
(x3 + x2 +2) dx≥

∫ 2

0
(x2 +1) dx without evaluating the integrals.

Solution:

Put f (x) = x3 + x2 +2 and g(x) = x2 +1. We find that f (x)− g(x) = x3 +1 > 0 for all x ∈ [0,2]. This implies f (x) > g(x) and from
Theorem ??, we have ∫ 2

0
(x3 + x2 +2) dx≥

∫ 2

0
(x2 +1) dx .

Example 2.4.4 If f (x) =
{

x2 : x < 0
x3 : x≥ 0

, find
∫ 2

−1
f (x) dx . .

Solution:

Since [−1,2] = [−1,0]∪ [0,2], then from Theorem ??,∫ 2

−1
f (x) dx =

∫ 0

−1
f (x) dx+

∫ 2

0
f (x) dx

=
∫ 0

−1
x2 dx+

∫ 2

0
x3 dx

=
[x3

3

]0

−1
+
[x4

4

]2

0

=
−1
3

+
16
4

=
44
12

=
11
3

.

Example 2.4.5 Evaluate the integral
∫ 2

0
| x−1 | dx .

Solution:

| x−1 |=
{
−(x−1) : x < 1
x−1 : x≥ 1

Since [0,2] = [0,1]∪ [1,2], then from Theorem ??,∫ 2

0
| x−1 | dx =

∫ 1

0
−x+1 dx+

∫ 2

1
x−1 dx

=
[−x2

2
+ x
]1

0
+
[x2

2
− x
]2

1

= (
−1
2
−0)+(2− 1

2
) = 1 .

Mean Value Theorem for Integrals

Theorem 2.4.2 If f is continuous on the interval [a,b], then there is at least one number z ∈ (a,b) such that∫ b

a
f (x) dx = f (z)(b−a) .

Example 2.4.6 Find the number z that satisfies the conclusion of the mean value theorem for the function f on the given
interval [a,b]:

1. f (x) = 1+ x2, [0,2] . 2. f (x) = 3
√

x, [0,1] .
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Solution:

1. From Theorem 2.4.2, ∫ 2

0
1+ x2 dx = (2−0) f (z)[
x+

x3

3

]2

0
= 2(1+ z2)

3 = 2(1+ z2)

3
2
= 1+ z2

This implies z2 = 1
2 ⇒ z =± 1√

2
. However, − 1√

2
/∈ (0,2), so z = 1√

2
∈ (0,2).

2. From Theorem 2.4.2, ∫ 1

0

3
√

x dx = (1−0) f (z)

3
4

[
x

4
3

]1

0
= 3
√

z

This implies z = 27
64 ∈ (0,1).

From the previous theorem, we define the average value of the function f on the interval [a,b].

Definition 2.4.1 If f is continuous on the interval [a,b], then the average value fav of the function f on that
interval is

fav =
1

b−a

∫ b

a
f (x) dx .

Example 2.4.7 Find the average value of the function f on the given interval [a,b]:

1. f (x) = x3 + x−1, [0,2] . 2. f (x) =
√

x, [1,3] .

Solution:

1. fav =
1

2−0

∫ 2

0
x3 + x−1 dx = 1

2

[
x4

4 + x2

2 − x
]2

0
= 1

2

[
(4+2−2)− (0)

]
= 2 .

2. fav =
1

3−1

∫ 2

0

√
x dx = 1

2 .
2
3

[
x

3
2

]3

1
= 3

√
3−1
3 .

Exercise 4:
1 - 4 Evaluate the following integrals:

1.
∫ 5

0
7 dx

2.
∫ 1

1
(x3−5x+1) dx

3.
∫ 2

0
| x−1 | dx

4.
∫ 1

−1
| 3x+1 | dx

5 - 8 If
∫ b

a
f (x) dx = 2 and

∫ b

a
g(x) dx = 3, then find

5.
∫ b

a
6 f (x)− g(x)

3
dx.

6.
∫ a

b
f (x)+g(x) dx.

7.
∫ a

a

√
f (x).g(x) dx.

8.
∫ a

c
f (x) dx+

∫ c

b
f (x) dx where c ∈ (a,b).

9 - 14 Verify that the function f satisfies the hypotheses of the Mean Value Theorem on the interval [a,b]. Then, find all numbers z that satisfy the
conclusion of the Mean value Theorem.
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9. f (x) = (x+1)3, [a,b] = [−1,1]
10. f (x) = 1− x3, [a,b] = [−2,0]

11. f (x) =
√

x, [a,b] = [1,4]
12. f (x) = 2√

x , [a,b] = [1,4]
13. f (x) = sinx, [a,b] = [0,π]
14. f (x) = cosx, [a,b] = [0, π

2 ]

15 - 18 Find the average value of the function f (x) on the given interval [a,b]:

15. f (x) = x3 + x2−1, [a,b] = [0,2]
16. f (x) = 3

√
x, [a,b] = [−1,3]

17. f (x) = 1
x3 , [a,b] = [1,5]

18. f (x) = sinx, [a,b] = [0, π

6 ]

2.5 The Fundamental Theorem of Calculus

Theorem 2.5.1 Suppose f is continuous on the closed interval [a,b].

1. If F(x) =
∫ x

a
f (t) dt for every x ∈ [a,b], then F(x) is an anti-derivative of f on [a,b].

2. If F(x) is any anti-derivative of f on [a,b], then
∫ b

a
f (x) dx = F(b)−F(a).

From the previous theorem, if f is continuous on [a,b] and F(x) =
∫ x

c
f (t) dt where c ∈ [a,b], then

F ′(x) =
d
dx

[∫ x

a
f (t) dt

]
= f (x) ∀x ∈ [a,b] .

This result can be generalized as follows:

Theorem 2.5.2 Let f be continuous on [a,b]. If g(x) and h(x) are differentiable, then

d
dx

[∫ h(x)

g(x)
f (t) dt

]
= f (h(x))h′(x)− f (g(x))g′(x) ∀x ∈ [a,b] .

The following corollary is stated without proof since the proof is straightforward from the previous theorem.

Corollary 2.5.1 Let f be continuous on [a,b]. If g(x) and h(x) are differentiable, then

1. d
dx

[∫ h(x)

a
f (t) dt

]
= f (h(x))h′(x) ∀x ∈ [a,b] ,

2. d
dx

[∫ a

g(x)
f (t) dt

]
=− f (g(x))g′(x) ∀x ∈ [a,b] .

Example 2.5.1 Find the following derivatives:

1. d
dx

∫ x

1

√
cos t dt

2. d
dx

∫ x2

1

1
t3 +1

dt

3. d
dx

∫ x2

x
x(t3−1) dt

4. d
dx

∫ sinx

1

1
t2−1

dt

5. d
dx

∫ x

−x
cos(t2 +1) dt

6. d
dx

∫ x2

−x

1
t3 +1

dt

7. d
dx

∫ 3

x+1

√
t +1 dt

8. d
dx

∫ sinx

cosx

√
1+ t4 dt

Solution:

1. d
dx

∫ x

1

√
cos t dt =

√
cosx (1) =

√
cosx .

2. d
dx

∫ x2

1

1
t3 +1

dt = 1
(x2)3+1 (2x) = 2x

x6+1 .
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3. d
dx

∫ x2

x
x(t3−1) dt = d

dx

(
x
∫ x2

x
(t3−1) dt

)
=

∫ x2

x
(t3−1) dt + x

(
2x(x6−1)− (x3−1)

)
.

Let f (x) = x and g(x) =∫ x2

x (t3 − 1) dt. Then,
find d

dx ( f .g)

4. d
dx

∫ 3

x+1

√
t +1 dt = 0−

√
(x+1)+1 =−

√
x+2 .

5. d
dx

∫ sinx

1

1
1− t2 dt = 1

1−sin2 x
cosx = cosx

cos2 x = secx .

6. d
dx

∫ x

−x
cos(t2 +1) dt = cos(x2 +1)+ cos(x2 +1) = 2cos(x2 +1) .

7. d
dx

∫ x2

−x

1
t2 +1

dt = 2x
x4+1 +

1
x2+1 .

8. d
dx

∫ sinx

cosx

√
1+ t4 dt =

√
1+ sin4 x cosx+

√
1+ cos4 x sinx .

Example 2.5.2 If F(x) = (x2−2)
∫ x

2

(
t +3F ′(t)

)
dt, find F ′(2).

Solution:

F ′(x) = 2x
∫ x

2

(
t +3F ′(t)

)
dt +(x2−2)(x+3F ′(x))

Then,

F ′(2) = 4
∫ 2

2

(
t +3F ′(t)

)
dt +(4−2)(2+3F ′(2))

This implies −5F ′(2) = 4⇒ F ′(2) =− 4
5 .

Exercise 5:

1 - 8 Find the following derivatives:

1. d
dx

∫ sinx

cosx

√
t +1 dt

2. d
dx

∫ √x

x

1
t2 +1

dt

3. d
dx

∫ x

1
(t−1) dt

4. d
dx

∫ x

1
(sinx)

√
t dt

5. d
dx

∫ x

−2x
sin(t +1) dt

6. d
dx

∫
π

x3

1
t4 +1

dt

7. d
dx

∫ 3(x−1)

x+1

1
t−1

dt

8. d
dx

∫ secx

tanx

√
1+ t4 dt

9 - 12 Find the derivative for the given values:

9. F(x) =
∫ x

2

√
3t2 +1 dt, F(2), F ′(2) and F ′′(2).

10. G(x) =
∫ 0

x

sin t
t +1

dt, G(0), G′(0) and G′′(0).

11. H(x) =
∫ x2

x

5√t +1 dt, H ′(2).

12. F(x) = sinx
∫ x

0

(
1+F ′(t)

)
dt, F(0) and F ′(0).

2.6 Numerical Integration

Sometimes we face definite integrals that cannot be solved even if the integrands are integrable functions such as
√

1+ x3

and ex2
. In our discussion in this book so far, we are not able to evaluate such integrals. We exploit this to show the reader

a new technique depends on numerical methods. In this section, we will discuss two techniques of numerical integration
to approximate definite integrals : Trapezoidal rule and Simpson’s rule.
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2.6.1 Trapezoidal Rule

As discussed in Section 2.2, a Riemann sum approximates the area underneath a curve of a function f from x= a to x= b as
follows. First, we divide the interval [a,b] by a regular partition P to generate n sub-intervals : [x0,x1], [x1,x2], [x2,x3], ..., [xn−1,xn].
Then, we find the length of the sub-intervals: ∆xk =

b−a
n . From the Riemann sum, we have

∫ b

a
f (x) dx≈

n

∑
k=1

f (ωk)∆xk =
b−a

n

n

∑
k=1

f (ωk) ,

where ωk ∈ ω and ω is a mark on the partition P.

As shown in Figure 2.2, we take the mark as follows:

1. the left-hand end point. We choose ωk = xk−1 in each sub-interval. Then,

∫ b

a
f (x) dx≈ b−a

n

n

∑
k=1

f (ωk−1) .

2. the right-hand end point. We choose ωk = xk in each sub-interval. Then,

∫ b

a
f (x) dx≈ b−a

n

n

∑
k=1

f (ωk) .

The average of the previous two cases is called the trapezoidal rule - see Figure 2.2 (C). Thus, by the trapezoidal rule, we
have

∫ b

a
f (x) dx≈ b−a

2n

[ n

∑
k=1

f (ωk−1)+
n

∑
k=1

f (ωk)
]
=

b−a
2n

[
f (x0)+2 f (x1)+2 f (x2)+ ...+2 f (xn−1)+ f (xn)

]
.

Figure 2.2: Approximation of the integral by the trapezoidal rule.

Error Estimation

Although the numerical methods give an approximated value of a definite integral, there is a possibility that an error
occurs. The numerical method and number of the sub-intervals play a role in determining that possibility.
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Theorem 2.6.1 Suppose f ′′ is continuous on [a,b] and M is the maximum value for f ′′ over [a,b]. If ET is the

error in calculating
∫ b

a
f (x) dx under the trapezoidal rule, then

| ET |≤
M(b−a)3

12 n2 .

Example 2.6.1 By using the trapezoidal rule with n = 4, approximate the integral
∫ 2

1

1
x

dx. Then, estimate the error.

Solution:

1. We approximate the integral
∫ 2

1

1
x

dx by the trapezoidal rule.

(a) Divide the interval [1,2] into sub-intervals. The length of each sub-intervals is ∆x = 2−1
4 = 1

4 .

(b) Find the partition P = {x0,x1,x2, ...,xn} where xk = x0 + k∆x = x0 + k (b−a)
n .

The partition:

x0 = 1,
x1 = 1+ 1

4 = 1 1
4 ,

x2 = 1+2( 1
4 ) = 1 1

2 ,

x3 = 1+3( 1
4 ) = 1 3

4 , and
x4 = 1+4( 1

4 ) = 2 .

Thus P = {1,1.25,1.5,1.75,2}.

(c) Approximate the integral by using the following table:

k xk f (xk) mk mk f (xk)
0 1 1 1 1
1 1.25 0.8 2 1.6
2 1.5 0.6667 2 1.3334
3 1.75 0.5714 2 1.1428
4 2 0.5 1 0.5

Sum = ∑
4
k=1 mk f (xn) 5.5762

Thus,
∫ 2

1

1
x

dx≈ 1
8

[
5.5762

]
= 0.697 .

2. We estimate the error by using Theorem 2.6.1.

f (x) =
1
x
⇒ f ′(x) =

−1
x2 ⇒ f ′′(x) =

2
x3 .

Since f ′′(x) is a decreasing function on the interval [1,2], then f ′′(x) is maximized at x = 1. Hence, M =| f ′′(1) |= 2
and

| ET |<
2(2−1)3

12(4)2 =
1

96
= 0.0104 .

Remark 2.6.1 By knowing the error amount, we can determine the number of the sub-intervals n before starting
approximating.

Example 2.6.2 Find number of the sub-intervals to approximate the integral
∫ 2

1

1
x

dx such that the error is less than

10−3.
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Solution:

From the previous example, we know that M = 2. Thus, | ET |< 2(2−1)3

12n2 < 10−3. This implies that

n2 >
2(2−1)3

12
103 =

103

6
⇒ n >

√
500
3

= 12.91

This means we consider n = 13 .

2.6.2 Simpson’s Rule

Simpson’s rule is another numerical method to approximate the definite integrals. The question that can be raised here
is that how the trapezoidal method differs from the Simpson’s method? The trapezoidal method depends on building
trapezoids from the sub-intervals, then taking the average of the left and right hands end point. Whereas, the Simpson’s
rule is built on approximating area of the graph in each sub-interval with parabola (Figure 4.2).

Figure 2.3: Approximation of the integral by Simpson’s rule.

First, let P be a regular partition of the interval [a,b] to generate n sub-intervals such that | P |= (b−a)
2n and n is an even

number. Consider the first sub-interval as shown in Figure 4.2.

Now, take three points lie on the parabola as
shown in the next figure. Assume for simplicity
that x0 = −h, x1 = 0 and x2 = h. Since the
parabola equation passes through three points is
ax2 +bx+c, then from the figure, the area under
the graph bounded by [−h,h] is∫ h

−h
ax2 +bx+ c dx =

h
3
(2ah2 +6c) .

Thus, since the points P0, P1 and P2 pass through the parabola, then

y0 = ah2−bh+ c

y1 = c

y2 = ah2 +bh+ c .



24 CHAPTER 2. THE DEFINITE INTEGRALS

We can find that 2ah2 +6c = y0 +4y1 + y2. Thus,∫ h

−h
ax2 +bx+ c dx =

h
3
(y0 +4y1 + y2) =

h
3
(

f (x0)+4 f (x1)+ f (x2)
)
.

Generally, for any three points Pk−1, Pk and Pk+1, we have

h
3
(yk−1 +4yk + yk+1) =

h
3
(

f (xk−1)+4 f (xk)+ f (xk+1)
)
.

By summing the areas under the graphs, we have∫ b

a
f (x) dx =

h
3
(

f (x0)+4 f (x1)+ f (x2)
)
+

h
3
(

f (x2)+4 f (x3)+ f (x4)
)

...

+
h
3
(

f (xn−2)+4 f (xn−1)+ f (xn)
)

=
b−a

3

[
f (x0)+4 f (x1)+2 f (x2)+4 f (x3)+ ...

+2 f (xn−2)+4 f (xn−1)+ f (xn)
]

Hence, under the Simpson’s rule, the integral
∫ b

a
f (x) dx is approximated as follows:

∫ b

a
f (x) dx≈ (b−a)

3n

[
f (x0)+4 f (x1)+2 f (x2)+4 f (x3)+ ...+2 f (xn−2)+4 f (xn−1)+ f (xn)

]
.

Error Estimation

The estimation of the error under the Simpson’s method is calculated by the following theorem.

Theorem 2.6.2 Suppose f (4) is continuous on [a,b] and M is the maximum value for f (4) on [a,b]. If ES is the

error in calculating
∫ b

a
f (x) dx under Simpson’s rule, then

| ES |≤
M(b−a)5

180 n4 .

Example 2.6.3 By using the Simpson’s rule with n = 4, approximate the integral
∫ 3

1

√
x2 +1 dx. Then, estimate the

error.

Solution:

1. We approximate the integral
∫ 3

1
x2 +1 dx by the Simpson’s rule.

(a) Divide the interval [1,3] into sub-intervals. The length of each sub-intervals is ∆x = 3−1
4 = 1

2 .

(b) Find the partition P = {x0,x1,x2, ...,xn} where xk = x0 + k∆x = x0 + k (b−a)
n .

The partition:

x0 = 1,
x1 = 1+ 1

2 = 1 1
2 ,

x2 = 1+2( 1
2 ) = 2,

x3 = 1+3( 1
2 ) = 2 1

2 , and
x4 = 1+4( 1

2 ) = 3 .
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Thus P = {1,1.5,2,2.5,3}.

(c) Approximate the integral by using the following table:

k xk f (xk) mk mk f (xk)
0 1 1.4142 1 2
1 1.5 1.8028 4 7.2112
2 2 2.2361 2 4.4722
3 2.5 2.6926 4 10.7704
4 3 3.1623 1 10

Sum = ∑
4
k=1 mk f (xk) 27.0302

Thus,
∫ 3

1

√
x2 +1 dx≈ 2

12

[
27.0302

]
= 4.5050 .

2. We estimate the error by using Theorem 2.6.2.

Since f (5)(x) = −(15x(4x2− 3))/
√

(x2 +1)9, then f (4)(x) is a decreasing function on the interval [1,3]. Hence,
f (4)(x) is maximized at x = 1. Then, M =| f (4)(1) |= 0.7955 and

| Es |<
0.7955(3−1)5

180(4)4 = 5.5243×10−4 .

Example 2.6.4 Find number of the sub-intervals to approximate the integral
∫ 3

1

√
x2 +1 dx such that the error is less

than 10−2.

Solution:

From the previous example, we know that M = 0.7955. Thus, | ES |< 0.7955(3−1)5

180n4 < 10−2. This implies that

n4 >
0.7955(32)

180
102⇒ n > 14.14

This means we consider take n = 14.

Exercise 6:
1 - 4 By using trapezoidal rule, approximate the definite integral for the given n, then estimate the error:

1.
∫ 1

−1

√
x2 +1 dx, n = 4

2.
∫ 4

2

√
x dx, n = 5

∫ 4

0

x
x+1

dx, n = 4

3.4.
∫

π

0
sinx dx, n = 4

5 - 8 By using Simpson’s rule, approximate the definite integral for the given n, then estimate the error:

5. ln(2) =
∫ 2

1

1
x

dx, n = 4

6.
∫ 1

0

x√
x4 +1

dx, n = 6

7.
∫ 2

0

√
x3 +1 dx, n = 10

8.
∫ 3

1

√
lnx dx, n = 4

9 - 10 Consider function f (x), and the integral I( f ). What is the minimum number of points to be used to ensure an error ≤ 5× 10−2 in the
following:

9. f (x) = ex and I( f ) =
∫ 2

0
ex dx in the trapezoid rule.

10. f (x) = cosx2 and I( f ) =
∫ 2

0
cosx dx in the Simpson’s rule.
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Chapter 3

Logarithmic and Exponential Functions

3.1 Natural Logarithmic Function

As mentioned in Chapter 1, the integral
∫

xr dx = xr+1

r+1 + c if r 6= −1. This means, the previous formula cannot be used

when r =−1 because the denominator will become zero. The task in this section is to find general anti-derivative of the
function 1

x i. e., we are looking for a function F(x) such that F
′
(x) = 1

x .

Consider the function f (t) = 1
t . It is continuous

on the interval (0,+∞) and this implies that the
function is integrable on the interval [1,x]. The
area under the graph of the function f (t) = 1

t
bounded from t = 1 to t = x as shown in the
Figure ?? is

f (x) =
∫ x

1

1
t

dx

Definition 3.1.1 The natural logarithmic
function is defined as follows:

ln : (0,∞)→ R ,

ln(x) =
∫ x

1

1
t

dt

1 2 3 4

−2

−1

1 y = lnx

x

y

Figure 3.2: The graph of the function y = lnx.

3.1.1 Properties of the Natural Logarithmic Function

1. The domain of the function ln(x) is (0,∞).
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2. The range of the function ln(x) is R as follows:

ln(x) =

 y > 0 : x > 1
y = 0 : x = 1
y < 0 : 0 < x < 1

3. The function ln(x) is differentiable and continuous on the domain. From the fundamental theorem of calculus, we
have

d
dx

(ln(x)) =
d
dx

∫ x

1

1
t

dt =
1
x
,∀x > 0 .

From this, the function ln(x) is increasing on the interval (0,∞).

4. The second derivative d2

dx2 (ln(x)) =
−1
x2 < 0 for all x ∈ (0,∞). Hence, the function ln(x) is concave downward on

the interval (0,∞).

5. limx→0+ ln(x) =−∞ and limx→∞ ln(x) = +∞.

Theorem 3.1.1 For every a,b > 0 and r ∈Q, then
1. ln(a b) = ln(a)+ ln(b) .

2. ln( a
b ) = ln(a)− ln(b) .

3. ln(ar) = r ln(a) .

3.1.2 Differentiating and Integrating Natural Logarithm Function

From our discussion above, we know that

d
dx

ln(x) =
1
x

Hence,
d
dx

ln(−x) =
1
−x

(−1) =
1
x
.

From this, we have
d
dx

ln(| x |) = 1
x
∀x 6= 0 .

Generally, if u = g(x) is differentiable and u 6= 0 for every x in an interval I , then

d
dx

ln(| u |) =
1
u

du
dx

,∀x ∈ I

Example 3.1.1 Find the derivative of the following functions:

1. f (x) = ln(x+1)
2. g(x) = ln(x3 +2x−1)
3. h(x) = ln(

√
x2 +1)

4. y =
√

ln(x)
5. f (x) = ln(cosx)
6. g(x) =

√
x ln(x)

7. h(x) = sin(ln(x))
8. y(x) = ln(x+ lnx)
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Solution:

1. f ′(x) = 1
x+1 .

2. g′(x) = 3x2+2
x3+2x−1 .

3. h′(x) = 1√
x2+1

2x
2
√

x2+1
= x

x2+1 .

4. y′(x) = 1
2
√

lnx
. 1

x = 1
2x
√

lnx
.

5. f ′(x) = −sinx
cosx =− tanx .

6. g′(x) = 1
2
√

x lnx+
√

x 1
x = lnx

2
√

x +
√

x
x = lnx+2

2
√

x .

7. h′(x) = cos(lnx)( 1
x ) =

cos(lnx)
x .

8. y′(x) = 1
x+lnx (1+

1
x ) =

x+1
x(x+lnx) .

In the following, we present one of the simple applications of the natural logarithm function. We know that the derivative
of composite functions takes efforts and time. This problem can be solved by using the derivative of the natural logarithm
function. In a sense, Theorem 3.1.1 and the derivative of ln are used to simplify the differentiation of the composite
functions.

Example 3.1.2 Find the derivative of the function y = 5
√

x−1
x+1 .

Solution:

We can solve this example using the derivative rules, but this will take time. Instead, we use the natural logarithm function
as follows:

Take logarithm function (ln) for both sides. This implies lny = ln | 5
√

x−1
x+1 |=

1
5

(
ln |x−1|− ln |x+1|

)
. Differentiate both

sides

y′

y
=

1
5

( 1
x−1

− 1
x+1

)
Remember:

d
dx

lny =
y′

y

This implies

y′ =
1
5

( 1
x−1

− 1
x+1

)
y =

1
5

( 1
x−1

− 1
x+1

)
5

√
x−1
x+1

.

Example 3.1.3 Find the derivative of the function: y =
√

xcosx
(x+1)sinx

.

Solution:

For simplicity, we use the natural logarithm function (ln). Take ln for both sides, this implies

ln |y|= ln |
√

xcosx
(x+1)sinx

|= ln
√

x+ ln |cosx|− ln |x+1|− ln |sinx| .

By differentiating both sides, we have

y′

y
=

1
2
√

x
− sinx

cosx
− 1

x+1
− cosx

sinx
.

This implies

y′ =
( 1

2
√

x
− tanx− 1

x+1
− cotx

) √xcosx
(x+1)sinx

.

Recall, d
dx ln | u |= u′

u where u = g(x) is a differentiable function. By integrating both sides, we have

∫ u′

u
dx =

∫ d
dx

ln | u | dx

= ln | u |+c .

This can be stated as follows:
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∫ u′

u
dx = ln | u |+c ⇒

∫ 1
x

dx = ln | x |+c

Example 3.1.4 Evaluate the following integrals

1.
∫ 2x

x2 +1
dx

2.
∫ 6x2 +1

4x3 +2x+1
dx

3.
∫ e

2

dx
x lnx

4.
∫ 4

1

dx√
x(1+

√
x)

5.
∫

tanx dx

6.
∫

cotx dx

7.
∫

secx dx

8.
∫

cscx dx

Solution:

1.
∫ 2x

x2 +1
dx = ln | x2 +1 |+c.

2.
∫ 6x2 +1

4x3 +2x+1
dx = 1

2

∫ 12x2 +2
4x3 +2x+1

dx = 1
2 ln | 4x3 +2x+1 |+c.

3.
∫ e

2

dx
x lnx

Put u = lnx⇒ du = 1
x dx. By substitution, we have

∫ 1
u

du = ln | u |=
[

ln(lnx)
]e

2 = ln(lne)− ln(ln2) = ln(1)−
ln(ln2) =− ln(ln2) .

4.
∫ 4

1

dx√
x(1+

√
x)

Put u = 1+
√

x⇒ du = 1
2
√

x dx. By substitution, we have

2
∫ 1

u
du = 2ln | u |= 2

[
ln | 1+

√
x |
]4

1 = 2(ln3− ln2) .

5.
∫

tanx dx

∫
tanx dx =

∫ sinx
cosx

dx =−
∫ −sinx

cosx
dx

=− ln | cosx |+c

= ln | secx |+c .

Remember: secx = 1
cosx

6.
∫

cotx dx =
∫ cosx

sinx
dx = ln | sinx |+c.

7.
∫

secx dx =
∫ secx (secx+ tanx)

(secx+ tanx)
dx =

∫ sec2 x+ secx tanx
secx+ tanx

dx = ln | secx+ tanx |+c.

8.
∫

cscx dx =
∫ cscx (cscx− cotx)

(cscx− cotx)
dx =

∫ csc2 x− cscx cotx
cscx− cotx

dx = ln | cscx− cotx |+c.

Exercise 1:

1 - 18 Find the derivative of the following functions:
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1. y = ln(x+1)
2. y = ln(x3 +2x−4)
3. y = ln(

√
x)

4. y = ln( 3√x2)

5. y = ln( 1
x )

6. y = ln(sinx+ x+1)

7. y = ln(secx+ x2)

8. y = ln(cosx)
9. y = ln(sin2 x)

10. y = ln(secx tanx)
11. y = cscx ln(x)
12. y = 3√x2 ln(x3 +1)

13. y = ln
(√ x2−1

x+2

)
14. y = ln

(
(x2 +1)(x−1)

)
15. y = ln(

√
x−
√

x+1)
16. y = x

ln(x2)

17. y = ln(x3 +1)
18. y = ln(ln(sinx))

19 - 24 Find the derivative of the following functions:

19. y = 5
√

2x+1
3x−1

20. y = (x−1)(
√

x3+2x+1)
x3+2x2+x−1

21. y = x2√7x+3
(1+x2)3

22. y = 3
√

tan2 x sinx cosx√
x3

23. y = ( xsecx2
√

x(x+1) )
7
2

24. y =
3√x+1cos2 x

(x+1)2 cos(3x)

25 - 36 Evaluate the following integrals:

25.
∫ 3x

x2 +1
dx

26.
∫ π

3

π
4

sec2 x
tanx

dx

27.
∫ 1

x lnx2 dx

28.
∫

secx dx

29.
∫ csc2x

1+ cotx
dx

30.
∫ 4

−1

x
x2 +1

dx

31.
∫

cscx dx

32.
∫ cos

√
x+1√

x+1
dx

33.
∫ √lnx2

x
dx

34.
∫ 2

1

x+3
x2 dx

35.
∫ cos(lnx)

x
dx

36.
∫ 3

2

1
x(lnx)5 dx

3.2 Natural Exponential Function

Since the natural logarithm function ln : (0,∞) −→ R is a strictly increasing function (see Figure 3.3), it is one-to-one.
The function ln is also onto and this implies that the natural logarithm function has an inverse function. This function is
called the natural exponential function.

Definition 3.2.1 The natural exponential
function is defined as follows:

exp : R−→ (0,∞) ,

y = exp(x)⇔ lny = x
1

y = ex

x

y

Figure 3.3: The graph of the function y = ex.

3.2.1 Properties of the Natural Exponential Function

1. The domain of the function exp(x) is R.

2. The range of the function exp(x) is (0,∞) as follows:

exp(x) =

 y > 1 : x > 0
y = 1 : x = 0
y < 1 : x < 0
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3. Usually, the symbol exp(x) is written as ex. Thus, exp(1) = e and from Definition 3.2.1, we have ln(e) = 1. Also,
ln(er) = r lne = r ∀ r ∈Q.

4. The function ex is differentiable and continuous on the domain

d
dx

(ex) = ex,∀x ∈ R .

From this, the function ex is increasing on R.

5. The second derivative d2

dx2 (ex) = ex > 0 for all x ∈ R. Hence, the function ex is concave upward on the domain R.

6. limx→∞ ex = ∞ and limx→−∞ ex = 0.

7. Since ex and lnx are inverse functions, then

ln(ex) = x, ∀x ∈ R ,

elnx = x, ∀x ∈ (0,∞) .

Theorem 3.2.1 For every a,b > 0 and r ∈Q , then
1. eaeb = ea+b .

2.
ea

eb = ea−b .

3. (ea)r = ear .

Example 3.2.1 Find value of x:

1. lnx = 2
2. ln(lnx) = 0

3. (x−1)e− ln 1
x = 2

4. xe2lnx = 8

Solution:

1. lnx = 2⇒ elnx = e2⇒ x = e2. Take exp for both sides

2. ln(lnx) = 0⇒ eln(lnx) = e0⇒ lnx = 1⇒ elnx = e1⇒ x = e. Take exp twice

3. (x−1)e− ln 1
x = 2⇒ (x−1)eln(x−1)−1

= 2⇒ (x−1)elnx = 2. This implies

x(x−1) = 2⇒ x2− x−2 = 0⇒ (x+1)(x−2) = 0⇒ x =−1 or x = 2 .

4. xe2lnx = 8⇒ xelnx2
= 8⇒ x3 = 8⇒ x = 2.

Example 3.2.2 Simplify the following:

1. ln(e
√

x)

2. e
1
3 lnx

3. (x+1) ln(ex−1)

4. e(
√

x+2lnx)

Solution:

1. ln(e
√

x) =
√

x.

2. e
1
3 lnx = eln 3√x = 3

√
x.

3. (x+1) ln(ex−1) = (x+1)(x−1) = x2−1.

4. e(
√

x+2lnx) = e
√

xelnx2
= x2e

√
x.
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3.2.2 Differentiating and Integrating Natural Exponential Function

From the discussion above, if u = g(x) is differentiable on the interval I, then

y = exp(x)⇒ lny = x .

Also,
d
dx

lny =
y′

y
= 1⇒ y′ = y

This implies

d
dx

eu = euu′, ∀x ∈ I ⇒ d
dx

ex = ex

Example 3.2.3 Find the derivative of the following functions:

1. y = e
3√x+1

2. y = e−5x2

3. y = e3cosx−4x2

4. y = e
1
x − 1

ex

5. y = elnsinx

6. y = ln(e2x +
√

1− ex)

Solution:

1. y′ = e
3√x+1( 1

3 3
√

(x+1)2
) .

2. y′ = e−5x2
(−10x) .

3. y′ = e3cosx−4x2
(−3sinx−8x) .

4. y′ = e
1
x (−1

x2 )− (−e−x) = 1
ex − e

1
x

x2 .
5. y′ = elnsinx( cosx

sinx ) = cosx .
6. y′ = 1

e2x+
√

1−ex (2e2x− ex

2
√

1−ex ) .

Recall, d
dx eu = euu′ where u = g(x) is a differentiable function. By integrating both sides, we have

∫
euu′ dx =

∫ d
dx

eu dx

= eu + c .

This can be stated as follows

∫
euu′ dx = eu + c ⇒

∫
ex dx = ex + c

Example 3.2.4 Evaluate the following integrals:

1.
∫

xe−x2
dx

2.
∫ ln5

0
ex(3−4ex) dx

3.
∫ ex + e−x

ex− e−x dx

4.
∫ etanx

cos2 x
dx

Solution:

1.
∫

xe−x2
dx

Put u =−x2⇒ du =−2x dx .

By substitution, we have

−1
2

∫
eu du = −1

2 eu + c = −1
2 e−x2

+ c .



33

2.
∫ ln5

0
ex(3−4ex) dx

Put u = 3−4ex⇒ du =−4ex dx.

By substituting into the integral, we have

−1
4

∫
u du = u2

−8

Thus∫ ln5

0
ex(3−4ex) dx = −1

8

[
(3−4ex)2

]ln5

0
= −1

8

[
(−17)2− (−1)2

]
=−36 .

3.
∫ ex + e−x

ex− e−x dx .

Put u = ex− e−x⇒ du = ex + e−x dx .

By substitution, we have∫ 1
u

du = ln | u |+c = ln | ex− e−x |+c .

4.
∫ etanx

cos2 x
dx =

∫
etanx sec2 x dx

Put u = tanx⇒ du = sec2 x dx .

By substitution, we have∫
eu du = eu + c = etanx + c .

Exercise 2:

1 - 4 Simplify the following:

1. sin2 x+ e2lncosx

2. lne
5√x

3. (x+2)eln(x−2)

4. ln(e3+2lnx)

5 - 8 Find value of x:
5. lnx2 = 4
6. ln(lnx) = 1

7. xelnx = 27
8. lnex(x+2) = 3

9 - 18 Find the derivative of the following functions:

9. y = esinx−3x2

10. y = xex
√

x

11. y = ex cos(lnx)

12. y = e
1
x lnx

13. y = ln(e−x +
√

xe−x)

14. y = sin(x)e
3√x

15. y = ln(tanex)

16. y =
√

ex

17. y = (ex +1)(
√

e−x +1)
18. y = sec2(e3x)

19 - 28 Evaluate the following integrals:

19.
∫ 1

0
e2x+1 dx

20.
∫ e

√
x
√

x
dx

21.
∫ esinx

secx
dx

22.
∫

(1−2
√

xsinx)e
√

x+cosx
√

x
dx

23.
∫ e

1
x

x2 dx

24.
∫

π/4

0

esecx sinx
cos2 x

dx

25.
∫ 1
√

xe
√

x
dx

26.
∫ ex

(1+ ex)5 dx

27.
∫

elncosx dx

28.
∫ 2

1

ex

ex +1
dx
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3.3 General Exponential and Logarithmic Functions

3.3.1 General Exponential Function

Definition 3.3.1 The general exponential function is defined as follows:

ax : R→ (0,∞) ,

ax = ex lna .

Since lnax = x lna ∀x ∈ Q, then by taking exp for both sides, we can write ax = ex lna. The function ax is called the
general exponential function for the base a.

1

y = ax

x

y

Figure 3.4: The function y = ax for a > 1.

1

y = ax

x

y

Figure 3.5: The function y = ax for a < 1.

In the following, we provide the main properties of the general exponential function.

Properties of the General Exponential Function

Let f (x) = ax ∀x ∈ R.

1. The domain of f (x) is R and the range is (0,∞).

2. If a > 1, lna > 0 and this implies that x lna is an increasing function with x. This indicates that f (x) is an increasing
function (see Figure 3.4 for a > 1).

3. If a < 1, lna < 0 and this implies that x lna and f (x) are decreasing functions (see Figure 3.5 for a < 1).

Theorem 3.3.1 For every x,y > 0 and a,b ∈ R,
1. xaxb = xa+b .
2. xa

xb = xa−b .
3. (xa)b = xa b .
4. (xy)a = xaya .
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Differentiating and Integrating General Exponential Function

Since ax = ex lna, then

d
dx

ax =
d
dx

ex lna

= ex lna lna

= ax lna .

This can be stated as follows:

d
dx

ax = ax. lna ⇒
∫

ax dx =
1

lna
ax + c

Generally, if u = g(x) is a differentiable function, then

d
dx

au = au.u′. lna ⇒
∫

au.u′ dx =
1

lna
au + c

Example 3.3.1 Find the derivative of the following functions:

1. y = 2
√

x

2. y = 3x2 sinx
3. y = sin3x

4. y = x(7−3x)
5. y = ln(tan5x)
6. y = (10x +10−x)10

Solution:

1. y′ = 2
√

x ln2 1
2
√

x = 2
√

x ln2
2
√

x .

2. y′ = 3x2 sinx ln3 (2xsinx+ x2 cosx) .
3. y′ = (3x ln3)cos3x .

4. y′ = 7−3x +x (−3ln7 7−3x) = 7−3x(1−3ln7x) .

5. y′ = (5x ln5) sec2(5x)
tan(5x) .

6. y′ = 10 (10x+10−x)9 (10x ln10−10−x ln10) =
10 ln10 (10x +10−x)9 (10x−10−x) .

Example 3.3.2 Find the derivative of the following function y = (sinx)x.

Solution:

Take ln for both sides. This implies lny = x ln(sinx). Now, find the derivative of both sides

y′

y
= ln(sinx)+

xcosx
sinx

⇒ y′ =
(

ln(sinx)+ xcotx
)
(sinx)x .

Example 3.3.3 Evaluate the following integrals:

1.
∫

x3−x2
dx

2.
∫

5x
√

5x +1 dx

3.
∫

3x sin3x dx

4.
∫ 2x

2x +1
dx

Solution:

1.
∫

x3−x2
dx . Put u =−x2⇒ du =−2x dx. By substitution, we have

−1
2

∫
3u du =

−1
2ln3

3u + c =
−1

2ln3
3−x2

+ c .
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2.
∫

5x
√

5x +1 dx . Put u = 5x +1⇒ du = 5x ln5 dx. The substitution implies

1
ln5

∫
u

1
2 dx =

1
ln5

u
3
2

3/2
+ c =

2(5x +1)
3
2

3ln5
+ c .

3.
∫

3x sin3x dx . Put u = 3x⇒ du = 3x ln3 dx. By substitution, we have

1
ln3

∫
sinu du =− 1

ln3
cosu+ c =− 1

ln3
cos3x + c .

4.
∫ 2x

2x +1
dx . Put u = 2x +1⇒ du = 2x ln2 dx. By substituting that into the integral, we have

1
ln2

∫ 1
u

du =
1

ln2
ln | u |+c =

1
ln2

ln | 2x +1 |+c .

3.3.2 General Logarithmic Function

We know that if a 6= 1, the function ax is strictly increasing or decreasing, depending on the value of a. Thus, the function
ax is one-to-one. The function is also onto and this implies that the function ax has an inverse function. The inverse is the
general logarithmic function loga for the base a.

Definition 3.3.2 The general logarithmic function is defined as follows:

loga : (0,∞)→ R ,

x = ay⇔ y = loga(x) .

1

y = loga(x)
x

y

Figure 3.6: The function y = loga(x) for a > 1.

1 y = loga(x)

x

y

Figure 3.7: The function y = loga(x) for a < 1.

Properties of the General Logarithm Function

1. The general logarithm function loga x = lnx
lna .

To see this, let y = loga x⇒ x = ay. Take ln for both sides,

lnx = lnay = y lna⇒ y =
lnx
lna

.
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2. If a > 1, the function loga(x) is increasing function, but if 0 < a < 1, the function loga(x) is decreasing function
(see Figures 3.6 and 3.7).

3. The natural logarithm function lnx = loge x.

4. The general logarithm function log10 x = logx.

5. The general logarithm function loga(a) = 1.

Theorem 3.3.2 For every x,y > 0 and r ∈ R, then
1. loga(xy) = loga(x)+ loga(y) .
2. loga(

x
y ) = loga(x)− loga(y) .

3. loga(x
r) = r loga(x) .

Differentiating and Integrating General Logarithmic Function

From the previous properties, we know that loga(x) =
lnx
lna . Thus,

d
dx

(
loga x

)
=

d
dx

( lnx
lna

)
=

1
x lna

.

Hence, we have ∫ 1
x lna

dx = loga(x)+ c .

Generally, this can be stated as follows. If u = g(x) is differentiable, then

d
dx

(
loga u

)
=

1
u lna

.u′ ⇒
∫ 1

u lna
.u′ dx = loga(u)+c

Example 3.3.4 Find the derivative of the following functions:

1. y = log3 sinx . 2. y = log
√

x .

Solution:

1. y′ = 1
ln3

1
sinx cosx = cosx

ln3sinx = cotx
ln3 . 2. y′ = 1

2x ln10 .

Example 3.3.5 Evaluate the following integrals:

1.
∫ 1

x logx
dx . 2.

∫ 1√
x log2

√
x

dx .

Solution:

1.
∫ 1

x logx
dx .

Put u = logx⇒ du = dx
x ln10 . By substitution, we have

ln(10)
∫ 1

u
du = ln(10) ln | u |+c = ln(10) ln | logx |+c.

2.
∫ 1√

x log2
√

x
dx .

Put u = log2
√

x⇒ du = dx
2ln2

√
x . By substitution, we have
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2ln(2)
∫ 1

u
du = 2ln(2) ln | u |+c = 2ln(2) ln | log2

√
x |+c.

Exercise 3:
1 - 10 Find the derivative of the following functions:

1. y = 3x

2. y = 2sinx cosx

3. y = ln(2x)

4. y = log2 cosx

5. y = log 3√x+1

6. y = 5
√

x tanx

7. y = x 4−2x

8. y = log(x+1)

9. y = ln(sec5x+1)

10. y = log5 x
3
2

11 - 14 Find the derivative of the following functions:
11. y = (sinx)x

12. y = (ex)x
13. y = xex

14. y = (x2− x)lnx

15 - 20 Evaluate the following integrals:

15.
∫

x25x3
dx

16.
∫

2x cos(2x +1) dx

17.
∫ 1

x logx2 dx

18.
∫ 3x
√

3x +1
dx

19.
∫

73x
√

73x +1 dx

20.
∫ log2 sinx

tanx
dx
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Chapter 4

Inverse Trigonometric and Hyperbolic
Functions

4.1 Inverse Trigonometric Functions

The inverse trigonometric functions are the inverse functions of the trigonometric functions: the sine, cosine, tangent,
cotangent, secant, and cosecant functions. The trigonometric functions give trigonometric ratios; meaning that they are
used to obtain an angle from the angle trigonometric ratios. The most common notations to name the inverse trigonometric
functions are arcsin(x), arccos(x), arctan(x), etc. However, the notations sin−1(x),cos−1(x), tan−1(x), etc., are often used
as well. In this book, we use the latter notations.

To find the inverse of any function, we need to show bijection
of that function (i.e., is it one-to-one and onto?). From your
knowledge, none of the six trigonometric functions are bijective.
Therefore, in order to have inverse trigonometric functions, we
consider subsets of the domain . In the following, we plot the
inverse trigonometric functions and determine their domains and
ranges.

Common mistake

sin−1(x) = (sin(x))−1 =
1

sin(x)

which is not true.

(3) The inverse tangent
tany = x⇔ y = tan−1 x
Domain: R
Range: (−π

2 ,
π

2 )
-1 1

−π/2

π/2
y = tan−1 x

x

y
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(1) The inverse sine
siny = x⇔ y = sin−1 x

Domain: [−1,1] Range: [−π

2 ,
π

2 ]

(2) The inverse cosine
cosy = x⇔ y = cos−1 x

Domain: [−1,1] Range: [0,π]

-1 1

−π/2

π/2
y = sin−1 x

x

y

-1 1

π/2

y = cos−1 x
x

y

(4) The inverse cotangent
coty = x⇔ y = cot−1 x

Domain: R Range: (0,π)

(5) The inverse secant
secy = x⇔ y = sec−1 x

Domain: R\ (−1,1) Range: [0, π

2 )∪ (
π

2 ,π]

-8 8

π/2

π

y = cot−1 x
x

y

-5 5

π/2

π

y = sec−1 x

x

y

(6) The inverse cosecant
csc y = x⇔ y = csc−1 x
Domain: R\ (−1,1)
Range: [−π

2 ,0)∪ (0,
π

2 ]
-5 5

−π/2

π/2

y = csc−1 x

x

y
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Differentiating and Integrating Inverse Trigonometric Functions

In general, if u = g(x) is differentiable function, then

1. d
dx sin−1 u = 1√

1−u2
u′

2. d
dx cos−1 u = −1√

1−u2
u′

3. d
dx tan−1 u = 1

u2+1 u′

4. d
dx cot−1 u = −1

u2+1 u′

5. d
dx sec−1 u = 1

u
√

u2−1
u′

6. d
dx csc−1 u = −1

u
√

u2−1
u′

Example 4.1.1 Find the derivatives of the following functions:

1. y = sin−1(5x)
2. y = tan−1(ex)

3. y = sec−1(2x)
4. y = sin−1(x−1)

Solution:

1. y′ = 5√
1−25x2

.

2. y′ = ex

(ex)2+1 .

3. y′ = 1
x
√

4x2−1
.

4. y′ = 1√
1−(x−1)2

= 1√
2x−x2

.

From the list of the derivatives of the inverse trigonometric functions, we have the following integral rules:

For a > 0,

1.
∫ 1√

a2− x2
dx = sin−1( x

a )+ c .

2.
∫ 1

a2 + x2 dx = 1
a tan−1( x

a )+ c .

3.
∫ 1

x
√

x2−a2
dx = 1

a sec−1( x
a )+ c .

Example 4.1.2 Evaluate the following integrals:

1.
∫ 1√

4−25x2
dx .

2.
∫ 1

x
√

x6−4
dx .

3.
∫ 1

9x2 +5
dx .

4.
∫ 1√

e2x−1
dx .

Solution:

1.
∫ 1√

4−25x2
dx =

∫ 1√
4− (5x)2

dx .

Put u = 5x⇒ du = 5dx⇒ dx = du
5 . By substitution, we have

1
5

∫ 1√
4−u2

du =
1
5

sin−1(
u
2
)+ c =

1
5

sin−1(
5x
2
)+ c .

2.
∫ 1

x
√

x6−4
dx =

∫ 1
x
√

(x3)2−4
dx .

Put u = x3⇒ du = 3x2dx. Then , we have

1
3

∫ 1
u
√

u2−4
du =

1
3

1
2

sec−1(
u
2
)+ c =

1
6

sec−1(
x3

2
)+ c .

3.
∫ 1

9x2 +5
dx =

∫ 1
(3x)2 +5

dx .

Put u = 3x⇒ du = 3dx. By substitution, we have
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1
3

∫ 1
u2 +5

du =
1
3

1
5

tan−1(
u
5
)+ c =

1
15

tan−1(
3x
5
)+ c .

4.
∫ 1√

e2x−1
dx =

∫ 1√
(ex)2−1

dx .

Put u = ex⇒ du = exdx. After substitution , we have∫ 1
u
√

u2−1
du = sec−1(u)+ c = sec−1(ex)+ c .

Exercise 1:

1 - 8 Find the derivative of the following functions:

1. y = sin−1(lnx)
2. y = cos−1(4x2)

3. y = tan−1(
√

x)

4. y = csc−1( 5
3 x)

5. y = sin−1(x2 + x−1)
6. y = tan−1( 1

x )

7. y = cot−1(e
1
x )

8. y = sec−1(ln 3
√

x)

9 - 16 Evaluate the following integrals:

9.
∫ 1√

9− x2
dx

10.
∫ 1

x2 +81
dx

11.
∫ 1√

e2x−4
dx

12.
∫ 1

secx(sin2 x+1)
dx

13.
∫ 1

x
√

x8−9
dx

14.
∫ ex

e2x +1
dx

15.
∫ 1

x
√

1− (lnx)2
dx

16.
∫ cotx

cos2 x
√

tan2 x−3
dx

4.2 Hyperbolic Functions

Definition 4.2.1 The hyperbolic sine (sinh) and the hyperbolic cosine (cosh) are defined as follows:

sinhx =
ex− e−x

2
, ∀x ∈ R ,

coshx =
ex + e−x

2
, ∀x ∈ R .

The remaining hyperbolic functions can be defined from the hyperbolic sine and the hyperbolic cosine as follows:

tanh x =
sinhx
coshx

=
ex− e−x

ex + e−x , ∀x ∈ R

coth x =
coshx
sinhx

=
ex + e−x

ex− e−x , ∀x 6= 0

sech x =
1

coshx
=

2
ex + e−x , ∀x ∈ R

cschx =
1

sinhx
=

2
ex− e−x , ∀x 6= 0

4.2.1 Properties of Hyperbolic Functions

In this section, we provide the main characteristics of the hyperbolic functions.

1. The graph of the hyperbolic sine (sinh) and the hyperbolic cosine depends on the natural exponential functions ex

and e−x (as shown in Figure 4.1).

2. From Figure 4.1, the range of sinh is R and the range of cosh is [1,∞).
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1/2

y = ex

2

y = −e−x

2

y = sinhx

x

y

1/2

1

y = ex

2y = e−x

2

y = coshx

x

y

y = tanhx

−2 −1 1 2

−1

1

x

y

y = cothx

−2 −1 1 2

−1

1

x

y

y = sechx

−2 −1 1 2

−1

1

x

y

y = cschx

−2 −1 1 2

−1

1

x

y

Figure 4.1: The hyperbolic functions.

3. The hyperbolic sine is an odd function (i.e., sinh(−x) =−sinhx); whereas the hyperbolic cosine is an even function
(i.e., cosh(−x) = coshx). Hence, the functions tanh, coth and are odd functions and the function is even. This
means that the graphs of the functions sinh, tanh, coth and are symmetric around the original point; whereas the
graph of the functions cosh and are symmetric around the y-axis.

4. cosh2 x− sinh2 x = 1, ∀x ∈ R .
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To see this, from Definition 4.2.1,

coshx− sinhx = e−x and coshx+ sinhx = ex .

Therefore,
(coshx− sinhx)(coshx+ sinhx) = cosh2 x− sinh2 x = e−xex = e0 = 1 .

5. Since cos2 t + sin2 t = 1 for any t ∈ R, then the point P(cos t,sin t) located on the unit circle x2 + y2 = 1. However,
for any t ∈ R, the point P(cosh t,sinh t) located on the hyperbola x2− y2 = 1. Figure 4.2 illustrates this item.

Figure 4.2: sinx and cosx versus sinhx and coshx.

As we know many identities interrelate the trigonometric functions. Similarly, the hyperbolic functions satisfies some
identities given in Theorem 4.2.1.

Theorem 4.2.1
1. sinh(x± y) = sinhxcoshy± coshxsinhy
2. cosh(x± y) = coshxcoshy± sinhxsinhy
3. sinh(2x) = 2sinhxcoshx
4. cosh(2x) = 2cosh2 x − 1 = 2sinh2 x + 1 = cosh2 x +

sinh2 x

5. 1− tanh2 x = sech2 x
6. coth2 x−1 = csch2x

7. tanh(x± y) =
tanhx± tanhy

1± tanhx tanhy

8. tanh(2x) =
2tanhx

1+ tanh2 x

4.2.2 Differentiating and Integrating Hyperbolic Functions

The derivations of the hyperbolic functions are listed in Theorem 4.2.2 .

Theorem 4.2.2
1. d

dx sinhx = coshx
2. d

dx coshx = sinhx
3. d

dx tanhx = sech2 x

4. d
dx cothx =−csch2 x

5. d
dx sech x =−sech x tanhx

6. d
dx csch x =−csch x cothx

Example 4.2.1 Find the derivative of the following functions:

1. y = sinhx2

2. y =
√

xcoshx
3. y = esinhx

4. y = (x+1) tanh2 x3

Solution:
1. y′ = 2xcosh(x2) .
2. y′ = 1

2
√

x coshx+
√

x sinhx .
3. y′ = esinhx coshx .
4. y′ = tanh2(x3)+6x2(x+1) tanh(x3) sech2(x3) .

Example 4.2.2 Find dy
dx if y = xcoshx.
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Solution: Take the natural logarithm (ln) for both sides

lny = coshx lnx .

Differentiate both sides
y′

y
= sinhx lnx+

coshx
x

⇒ y′ =
[

sinhx lnx+
coshx

x

]
xcoshx .

From the list of the derivation given in Theorem 4.2.2, we have the following list of integrals:

•
∫

sinhx dx = coshx+ c

•
∫

coshx dx = sinhx+ c

•
∫

sech2 x dx = tanhx+ c

•
∫

csch2x dx =−cothx+ c

•
∫

sech x tanhx dx =−sech x+ c

•
∫

csch x cothx dx =−csch x+ c

Example 4.2.3 Evaluate the following integrals:

1.
∫

sinh2 x coshx dx

2.
∫

ecoshx sinhx dx

3.
∫

tanhx dx

4.
∫

ex sech x dx

Solution:

1.
∫

sinh2 x coshx dx .

Put u = sinhx⇒ du = coshx dx. By substitution, we have
∫

u2 du = u3/3+ c. This implies

∫
sinh2 xcoshx dx =

sinh3 x
3

+ c .

2.
∫

ecoshx sinhx dx

Put u = coshx⇒ du = sinhx dx. By substitution, we have
∫

eu du = eu + c. Hence,

∫
ecoshx sinhx dx = ecoshx + c .

3.
∫

tanhx dx =
∫ sinhx

coshx
dx

Let u = coshx⇒ du = sinhx dx. Then, we have
∫ 1

u
du = ln | u |+c. This implies

∫
tanhx dx = ln | coshx |+c .

4.
∫

ex sech x dx =
∫ 2ex

ex + e−x dx =
∫ 2e2x

e2x +1
dx

Put u = e2x⇒ du = 2e2x dx. By substitution, we have
∫ 1

u+1
du = ln | u+1 |+c = ln | e2x +1 |+c.
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Exercise 2:

1 - 10 Find the derivative of the following functions:

1. y = sinh(
√

x3)

2. y = tanh(5x)
3. y = e−x cosh(x)
4. y = esinh(2x)

5. y = ln(coth(x))
6. y =

√
csch(x)

7. y = sinh(tanx)

8. y = cosh(e
√

x)

9. y = tanh(lnx)
10. y =

√
x+1 (x)

11 - 20 Evaluate the following integrals:

11.
∫ sinh(

√
x)√

x
dx

12.
∫ cosh(lnx)

x
dx

13.
∫

ex tanh(ex) dx

14.
∫
(1+ tanhx)3sech2 x dx

15.
∫ esinhx

sech x
dx

16.
∫ sech x tanhx

1+ sech x
dx

17.
∫ √

3+ coshx sinhx dx

18.
∫ tanh(

√
x)
(
sech(

√
x)+1

)
√

x
dx

19.
∫ 1

cosh2 x tanhx
dx

20.
∫ ln(cothx)

sinh2 x
dx

4.3 Inverse Hyperbolic Functions

In the first section of this chapter, we defined the inverse trigonometric functions. In analogical way, we define the inverse
hyperbolic functions.

4.3.1 Definition and Properties

(1) The function sinh : R→ R is bijective (i.e., it is
one-to-one and onto), so it has an inverse function

sinh−1 : R→ R

sinhy = x⇔ y = sinh−1 x

(2) The function cosh is injective on [0,∞), so cosh :
[0,∞)→ [1,∞) is bijective on [0,∞). It has an inverse
function

cosh−1 : [1,∞)→ [0,∞)

coshy = x⇔ y = cosh−1 x

y = sinh−1 x

−3 −2 −1 1 2 3

−2

2

x

y

y = cosh−1 x

−3 −2 −1 1 2 3

−2

2

x

y
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(3) The function tanh : R→ (−1,1) is bijective, so it
has an inverse function

tanh−1 : (−1,1)→ R

tanhy = x⇔ y = tanh−1 x

(4) The function coth : R \ {0} → R \ [−1,1] is
bijective, so it has an inverse function

coth−1 : R\ [−1,1]→ R\{0}

cothy = x⇔ y = coth−1 x

y = tanh−1 x

−1 −0.5 0.5 1

−2

−1

1

2

x

y

-1 1

y = coth−1 x
x

y

(5) The function sech : (0,1]→ [0,∞) is bijective and
the inverse function is

sech−1 : [0,∞)→ (0,1]

sechy = x⇔ y = sech−1 x

(6) The function csch : R\{0}→ R\{0} is bijective
and the inverse function is

csch−1 : R\{0}→ R\{0}

csch y = x⇔ y = csch−1 x

y = sech−1x

−1 −0.5 0.5 1 1.5 2

−1

1

2

3

x

y

y = csch−1x x

y
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Theorem 4.3.1

1. sinh−1 x = ln(x+
√

x2 +1), ∀x ∈ R
2. cosh−1 x = ln(x+

√
x2−1), ∀x ∈ [1,∞)

3. tanh−1 x = 1
2 ln 1+x

1−x , ∀x ∈ (−1,1)

4. coth−1 x = 1
2 ln x+1

x−1 , ∀x ∈ R\ [−1,1]

5. sech−1 x = ln( 1+
√

1−x2

x ), ∀x ∈ R\ [−1,1]

6. csch−1x = ln( 1
x +
√

1+( 1
x )

2), ∀x ∈ R\{0}

4.3.2 Differentiation and Integration

Theorem 4.3.2
1. d

dx sinh−1 x = 1√
x2+1

2. d
dx cosh−1 x = 1√

x2−1
, ∀x ∈ (1,∞)

3. d
dx tanh−1 x = 1

1−x2 , ∀x ∈ (−1,1)

4. d
dx coth−1 x = 1

1−x2 , ∀x ∈ R\ [−1,1]
5. d

dx sech−1 x = −1
x
√

1−x2
, ∀x ∈ (0,1)

6. d
dx csch−1 x = −1

|x|
√

x2+1
, ∀x ∈ R\{0}

Example 4.3.1 Find the derivative of the following functions:

1. y = sinh−1(
√

x)
2. y = tanh−1(ex)
3. y = cosh−1(4x2)

4. y = ln(sinh−1 x)
5. y = csch−1(4x)
6. y = x tanh−1( 1

x )

7. y = (tanh−1 x)2

8. y = ex sech−1x

Solution:

1. y′ = 1√
(
√

x)2+1
1

2
√

x = 1√
x(x+1)

.

2. y′ = 1
1−(ex)2 = ex

1−e2x .

3. y′ = 8x√
16x4−1

.

4. y′ = 1
sinh−1 x

1√
x2+1

= 1√
x2+1 sinh−1 x

.

5. y′ = −1
|4x|
√

16x2+1
(4) = −1

|x|
√

16x2+1
.

6. y′ = tanh−1( 1
x )+x ( 1

1−( 1
x )

2 )(
−1
x2 ) = tanh−1( 1

x )−
x

x2−1 .

7. y′ = 2tanh−1 x 1
1−x2 = 2tanh−1 x

1−x2

8. y′ = ex sech−1x− ex

x
√

1−x2

From the list of the derivatives given in Theorem 4.3.2, we have the following list of integrals:

•
∫ 1√

x2 +a2
dx = sinh−1 x

a + c.

•
∫ 1√

x2−a2
dx = cosh−1 x

a + c, x > a.

•
∫ 1

a2− x2 dx = 1
a tanh−1 x

a + c, | x |< a.

•
∫ 1

a2− x2 dx = 1
a coth−1 x

a + c, | x |> a.

•
∫ 1

x
√

a2− x2
dx =− 1

a sech−1 |x|
a + c, | x |< a.

•
∫ 1

x
√

x2 +a2
dx =− 1

a csch−1 |x|
a + c, | x |> a.

Example 4.3.2 Evaluate the following integrals:

1.
∫ 1√

x2−4
dx

2.
∫ 1√

4x2 +9
dx

3.
∫ 1√

e2x +9
dx

4.
∫ 1

x
√

1− x6
dx

5.
∫ 1

0

1
16− x2 dx

6.
∫ 7

5

1
16− x2 dx

Solution:

1.
∫ 1√

x2−4
dx = cosh−1( x

2 )+ c .
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2.
∫ 1√

4x2 +9
dx =

∫ 1√
(2x)2+9

dx .

Put u = 2x⇒ du = 2dx⇒ dx = dx
2 . By substitution, we have

1
2

∫ 1√
u2 +9

du =
1
2

sinh−1(
u
3
)+ c =

1
2

sinh−1(
2x
3
)+ c .

3.
∫ 1√

e2x +9
dx =

∫ 1√
(ex)2 +9

dx .

Put u = ex⇒ du = exdx. By substituting the result into the integral, we have∫ 1
u
√

u2 +9
du =

−1
3

csch−1(
| u |
3

)+ c =
−1
3

csch−1(
ex

3
)+ c .

4.
∫ 1

x
√

1− x6
dx =

∫ 1

x
√

1− (x3)2
dx .

Put u = x3⇒ du = 3x2dx. By substitution, we have

1
3

∫ 1
u
√

1−u2
du =−1

3
sech−1(| u |)+ c =−1

3
sech−1(| x3 |)+ c .

5. Since the interval of the integral is sub-interval of (−4,4), the value of the integral is tanh−1 . Hence,∫ 1

0

1
16− x2 dx =

1
4

[
tanh−1 x

4

]1

0
=

1
4

[1
2

ln(
5
3
)− 1

2
ln(1)

]
=

1
8

ln(
5
3
) .

6. Since the interval of the integral is not sub-interval of (−4,4), the value of the integral is coth−1 . Hence,∫ 7

5

1
16− x2 dx =

1
4

[
coth−1 x

4

]7

5
=

1
8

[
ln(11)−2ln(3)

]
.

Exercise 3:
1 - 6 Find the derivative of the following functions:

1. y = sinh−1(tanx)

2. y = cosh−1(e
√

x)

3. y = tanh−1(lnx)
4. y =

√
x+1 csch−1(x)

5. y = tanx tanh−1(x)
6. y = (2x−1)3 sinh−1(

√
x)

7 - 14 Evaluate the following integrals:

7.
∫ 1√

2x2−2
dx

8.
∫ ex

1− e2x dx

9.
∫ 1

x
√

1− x4
dx

10.
∫ 1√

x2 +25
dx

11.
∫ 1√

x2−25
dx

12.
∫ 1

sec x(1− sin2 x)
dx

13.
∫ 1

x
√

x6 +2
dx

14.
∫ 1√

4− e2x
dx
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Chapter 5

Techniques of Integration

5.1 Integration by Parts

Integration by parts is a method to transfer the original integral to an easier integral that can be evaluated. Practically, the
integration by parts divides the original integral into two parts u and dv. Then, we try to find the du by deriving u and v
by integrating dv.

Theorem 5.1.1 If u = f (x) and v = g(x) such that f ′(x) and g′(x) are continuous, then∫
u dv = uv−

∫
v du .

Theorem 5.1.1 shows that the integration by parts transfers the integral
∫

u dv into the integral
∫

v du that should be

easier than the original integral. The question here is, what we choose as u(x) and what we choose as dv = v′(x) dx. It is
useful to choose u as a function can be easily differentiated, and to choose dv as a function that can be easily integrated.
This statement is clearly explained through the following examples.

Example 5.1.1 Evaluate the following integral
∫

x cosx dx.

Solution:

Let I =
∫

x cosx dx. Put u = x and dv = cosx dx. Hence,

u = x⇒ du = dx ,

dv = cosx dx⇒ v =
∫

cosx dx = sinx .

Try to choose
u = cosx and dv = x dx
Do you have the same result?

From Theorem 5.1.1

I = x sinx−
∫

sinx dx = x sinx+ cosx+ c .

Example 5.1.2 Evaluate the following integral
∫

x ex dx.

Solution:
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Let I =
∫

x ex dx. Put u = x and dv = ex dx. Hence,

u = x⇒ du = dx ,

dv = ex dx⇒ v =
∫

ex dx = ex .

From Theorem 5.1.1, I = x ex−
∫

ex dx = x ex− ex + c .

Try to choose u = ex and dv = x

Remark 5.1.1
1. Remember that when we consider the integration by parts, we want to have an easier integral. As we saw

in Example 5.1.2, if we choose u = ex and dv = x dx, we have
∫ x2

2 ex dx which is more difficult than the
original one.

2. When considering the integration by parts, we have to choose dv a function that can be integrated (see
Example 5.1.3).

3. Sometimes we need to use the integration by parts two times as in Examples 5.1.4 and 5.1.5.

Example 5.1.3 Evaluate the following integral
∫

lnx dx.

Solution: Let I =
∫

lnx dx. Let u = lnx and dv = dx. Hence,

u = lnx⇒ du =
1
x

dx ,

dv = dx⇒ v =
∫

dx = x .

From Theorem 5.1.1,

I = x lnx−
∫

x
1
x

dx = x lnx−
∫

dx = x lnx− x+ c .

Example 5.1.4 Evaluate the following integral
∫

ex cosx dx.

Solution: Let I =
∫

ex cosx dx. Put u = ex and dv = cosx dx.

u = ex⇒ du = ex dx ,

dv = cosx dx⇒ v =
∫

cosx dx = sinx .

Hence, I = ex sinx−
∫

ex sinx dx .

The integral
∫

ex sinx dx cannot be evaluated. Therefore, we use the integration by parts again where we assume J =∫
ex sinx dx. Put u = ex and dv = sinx dx. Hence,

u = ex⇒ du = ex dx ,

dv = sinx dx⇒ v =
∫

sinx dx =−cosx .

This implies J =−ex cosx+
∫

ex cosx dx.
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By substituting the result of J into I, we have

I = ex sinx−
∫

ex sinx dx

= ex sinx+ ex cosx−
∫

ex cosx dx

= ex sinx+ ex cosx− I .

This implies 2I = ex sinx+ ex cosx⇒
∫

ex cosx dx = ex

2 (sinx+ cosx)+ c .

Example 5.1.5 Evaluate the following integral
∫

x2ex dx.

Solution: Let I =
∫

x2ex dx. Put u = x2 and dv = ex dx. Hence,

u = x2⇒ du = 2x dx ,

dv = exdx⇒ v =
∫

ex dx = ex .

This implies, I = x2ex−2
∫

xex dx .

Now, we the integration by parts again for the integral
∫

xex dx. Let J =
∫

xex dx.

Put u = x and dv = ex dx. Hence,

u = x⇒ du = dx ,

dv = exdx⇒ v =
∫

ex dx = ex .

This implies J = xex−
∫

ex dx = xex− ex. By substituting the result into I, we have

I = x2ex−2(xex− ex)+ c = ex(x2−2x+2)+ c .

Example 5.1.6 Evaluate the following integral
∫ 1

0
tan−1 x dx.

Solution:

Let I =
∫

tan−1 x dx. Put u = tan−1 x and dv = dx. Hence,

u = tan−1 x⇒ du =
1

x2 +1
dx ,

dv = dx⇒ v =
∫

dx = x .

From Theorem 5.1.1,

I = x tan−1 x−
∫ x

x2 +1
dx = x tan−1 x− 1

2
ln(x2 +1)+ c .

From this,
∫ 1

0
tan−1 x dx =

[
x tan−1 x− 1

2 ln(x2 +1)
]1

0
= (tan−1(1)− 1

2 ln2)− (0− 1
2 ln1) = π

4 − ln
√

2 .

Exercise 1:

1 - 16 Evaluate the following integrals:
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1.
∫

x3 lnx dx

2.
∫

π/3

0
sinx ln(cosx) dx

3.
∫

sin−1 x dx

4.
∫

x3
√

4− x2 dx

5.
∫

xsinx dx

6.
∫

x2 cosx dx

7.
∫

ex sin2x dx

8.
∫ 1

0
tan−1 x dx

9.
∫

e2x cosx dx

10.
∫
(lnx)2 dx

11.
∫ lnx

x2 dx

12.
∫

xsinx cosx dx

13.
∫ 1

x(lnx)3 dx

14.
∫ 1

0
x2ex dx

15.
∫

x tan−1 x dx

16.
∫

xe−x dx

5.2 Trigonometric Functions

5.2.1 Integration of Power of Trigonometric Functions

Form 1:
∫

sinn x cosm x dx .

This form of integrals is treated as follows:

1. If n is odd, we write sinn x cosm x = sinn−1 x cosm x sinx. Then, we use the identity cos2 x+ sin2 x = 1 and the
substitution u = cosx.

2. If m is odd, we write cosm x sinn x = cosm−1 x sinn x cosx. Then, we use the identity cos2 x+ sin2 x = 1 and the
substitution u = sinx.

3. If m and n are even, we use the identities cos2 x = 1+cos2x
2 and sin2 x = 1−cos2x

2 .

Example 5.2.1 Evaluate the following integrals:

1.
∫

sin3 x dx

2.
∫

cos4 x dx

3.
∫

sin5 xcos4 x dx

4.
∫

sin2 xcos2 x dx

Solution:

1.
∫

sin3 x dx .

We write sin3 x = sin2 xsinx = (1− cos2 x)sinx. This implies
∫

sin3 x dx =
∫
(1− cos2 x)sinx dx .

Put u = cosx, this implies du =− sinx dx. By substitution, we have

∫
(1−u2) du =−u+

u3

3
+ c⇒

∫
sin3 x dx =−cosx+

cos3 x
3

+ c .

2.
∫

cos4 x dx .
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We write cos4 x = (cos2 x)2 = ( 1+cos2x
2 )2 . This implies∫

cos4 x dx =
∫
(

1+ cos2x
2

)2 dx

=
1
4

∫
1+2cos2x+ cos2 2x dx

=
1
4

∫
1 dx+

1
4

∫
2cos2x dx+

1
4

cos2 2x dx

=
1
4

x+
1
4

sin2x+
1
8

∫
1+ cos4x dx

=
1
4

x+
1
4

sin2x+
1
8
(x+

sin4x
4

)+ c .

3.
∫

sin5 x cos4 x dx

We write sin5 x cos4 x = sin4 x cos4 x sinx = (1− cos2 x)2 cos4 x sinx.

Let u = cosx⇒ du =−sinx dx. Thus, the integral becomes

−
∫
(1−u2)2u4 du =−

∫
u4−2u6 +u8 du =−

(u5

5
− 2

7
u7 +

u9

9
)
+ c .

This implies
∫

sin5 xcos4 x dx =− cos5 x
5 + 2

7 cos7 x− cos9 x
9 + c .

4.
∫

sin2 xcos2 x dx

The integrand sin2 x cos2 x = ( 1−cos2x
2 )( 1+cos2x

2 ) = 1−cos2 2x
4 = sin22x

4 = 1
4 (

1−cos4x
2 ). Thus, the integral becomes

1
8

∫
1− cos4x dx =

1
8
(x− sin4x

4
)+ c .

Form 2:
∫

tann x secm x dx .

This form is treated as follows:

1. If n = 0 and

(a) m = 1, we write secx = secx(secx+tanx)
secx+tanx , then we use the substitution u = secx tanx.

(b) m > 1 is odd, we write secm x = secm−2 x sec2 x, then we use the integration by parts.

(c) m is even, we write secm x = secm−2 x sec2 x, then we use the identity sec2 x = 1+ tan2 x and the substitution
u = tanx.

2. If m = 0 and

(a) n = 1, we write tanx = sinx
cosx , then we use the substitution u = cosx.

(b) n is odd or even , we write tann x = tann−2 x tan2 x, then we use the identity tan2 x = sec2 x− 1 and the
substitution u = tanx.

3. If n is even and m is odd, we use the identity tan2 x = sec2 x−1 to change the integral to
∫

secr x dx.

4. If m≥ 2 is even, we write tann x secm x = tann x secm−2 x sec2 x, then we use the identity sec2 x = 1+ tan2 x and the
substitution u = tanx.
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5. If n is odd and m ≥ 1, we write tann x secm x = tann−1 x secm−1 x tanx secx, then we use the identity tan2 x =
sec2 x−1 and the substitution u = secx.

Example 5.2.2 Evaluate the following integrals:

1.
∫

tan5 x dx

2.
∫

tan6 x dx

3.
∫

sec3 x dx

4.
∫

tan5 x sec4 x dx
5.

∫
tan4 x sec4 x dx

Solution:

1. Write tan5 x = tan3 x tan2 x = tan3 x (sec2 x−1). Thus,∫
tan5 x dx =

∫
tan3 x (sec2 x−1) dx

=
∫

tan3 x sec2 x dx−
∫

tan3 x dx

=
tan4 x

4
−

∫
tanx (sec2 x−1) dx

=
tan4 x

4
−

∫
tanx sec2 x dx+

∫
tanx dx

=
tan4 x

4
− tan2 x

2
+ ln | sec x |+c .

2. Write tan6 x = tan4 x tan2 x = tan4 x (sec2 x−1). From this, the integral becomes∫
tan6 x dx =

∫
tan4 x (sec2 x−1) dx

=
∫

tan4 x sec2 x dx−
∫

tan4 x dx

=
tan5 x

5
−

∫
tan2 x (sec2 x−1) dx

=
tan5 x

5
−

∫
tan2 x sec2 x dx+

∫
tan2 x dx

=
tan5 x

5
− tan3 x

3
+

∫
sec2 x−1 dx

=
tan5 x

5
− tan3 x

3
+ tanx− x+ c .

3. Write sec3 x = secx sec2 x and let I =
∫

secx sec2 x dx.

We use the integration by part to evaluate the integral as follows:

u = secx⇒ du = secx tanx dx ,

dv = sec2 x dx⇒ v =
∫

sec2 x dx = tanx .

Hence,

I = secx tanx−
∫

secx tan2 x dx

= secx tanx−
∫

sec3 x− secx dx

= secx tanx− I + ln | secx+ tanx |

=
1
2
(secx tanx+ ln | secx+ tanx |)+ c .
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4. Express the integrand tan5 x sec4 x as follows

tan5 x sec4 x = tan5 x sec2 x sec2 x = tan5 x (tan2 x+1) sec2 x .

This implies ∫
tan5 x sec4 x dx =

∫
tan5 x (tan2 x+1) sec2 x dx

=
∫
(tan7 x+ tan5 x) sec2 x dx

=
tan8 x

8
+

tan6 x
6

+ c .

5. Write tan4 x sec4 x = tan4 x (tan2 x+1) sec2 x. The integral becomes∫
tan4 x sec4 x dx =

∫
tan4 x (tan2 x+1) sec2 x dx

= (tan6 x+ tan4 x) sec2 x dx

=
tan7 x

7
+

tan5 x
5

+ c .

Form 3:
∫

cotn x cscmx dx .

This form of integrals is treated as the integral
∫

tann x secm x dx, except we use the identity csc2x = 1+ cot2 x.

Example 5.2.3 Evaluate the following integrals:

1.
∫

cot3 x dx 2.
∫

cot4 x dx 3.
∫

cot5 xcsc4x dx

Solution:

1. Write cot3 x = cotx (csc2 x−1). Then,∫
cot3 x dx =

∫
cotx (csc2 x−1) dx

=
∫
(cotx csc2 x− cotx) dx =

−1
2

cot2 x− ln | sinx |+c .

2. The integrand can be expressed as cot4 x = cot2 x(csc2 x−1). Thus,∫
cot4 x dx =

∫
cot2 x (csc2 x−1) dx

=
∫

cot2 x csc2x dx−
∫

cot2 x dx =
−cot3 x

3
+ cotx+ x+ c .

3. Express the integrand as cot5 x csc4 x = csc3 x cot4 x cscx cotx. This implies∫
cot5 x csc4 x dx =

∫
csc3 x cot4 xcscx cotx dx

=
∫

csc3 x (csc2 x−1)2 cscx cotx dx

=
∫
(csc7 x−2csc5 x+ csc3 x) cscx cotx dx

=
−csc8 x

8
+

csc6 x
3
− csc4 x

4
+ c .
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5.2.2 Integration of Forms sin u x cos v x, sin u x sin v x and cos u x cos v x

We deal with these integrals by using the following formulas:

sinux cosvx =
1
2
(

sin(u− v) x+ sin(u+ v) x
)
,

sinux sinvx =
1
2
(

cos(u− v) x− cos(u+ v) x
)
,

cosux cosvx =
1
2
(

cos(u− v) x+ cos(u+ v) x
)
.

Example 5.2.4 Evaluate the following integrals:

1.
∫

sin5x sin3x dx

2.
∫

sin7x cos2x dx

3.
∫

cos5x sin2x dx

4.
∫

cos4x sin6x dx

Solution:

1.
∫

sin5x sin3x dx .

From the formulas given above, we have sin5x sin3x = 1
2

(
cos(2)x− cos(8)x

)
. Thus,∫

sin5x sin3x dx =
1
2

∫
(cos2x− cos8x) dx =

1
4

sin2x− 1
16

sin8x+ c .

2.
∫

sin7x cos2x dx .

Since sin7x cos2x = 1
2

(
sin5x+ sin9x

)
, then∫

sin7x cos2x dx =
1
2

∫
(sin5x+ sin9x) dx =− 1

10
cos5x− 1

18
cos9x+ c .

3.
∫

cos6x cos4x dx .

Since cos6x cos4x = 1
2

(
cos2x+ cos10x

)
, then∫

sin6x cos4x dx =
1
2

∫
(cos2x+ cos10x) dx =

1
4

sin2x+
1

20
sin10x+ c.

Exercise 2:
1 - 18 Evaluate the following integrals:

1.
∫

sin2 xcos6 x dx

2.
∫

sin5 xcos2 x dx

3.
∫

sin3 xcos3 x dx

4.
∫

cos6(4x) dx

5.
∫

tan4 x dx

6.
∫

cot5 x dx

7.
∫ sin2√x√

x
dx

8.
∫

cot2 x csc3 x dx

9.
∫

cot4 x csc2 x dx

10.
∫

tan3 x sec3 x dx

11.
∫

tan2 x sec2 x dx

12.
∫

tan2 x sec3 x dx

13.
∫

sec5 x dx

14.
∫

tan6 x dx

15.
∫

sin7x cos3x dx

16.
∫

cos4x cos3x dx

17.
∫

sin5x sin3x dx

18.
∫

sin3x cos5x dx
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5.3 Trigonometric Substitutions

In this section, we are going to study integrals consist of the following expressions
√

a2− x2,
√

a2 + x2 and
√

x2−a2

where a > 0. To get rid of the square roots, we convert them using substitutions rely on trigonometric functions. The
result will be integrals involve power of trigonometric functions. The latter integrals will be evaluated by using the
methods given in section 5.2.1. The conversion of the previous square roots is explained as follows:

1.
√

a2− x2 = a cosθ if x = a sinθ.
If x = a sinθ where θ ∈ (−π/2,π/2), then√

a2− x2 =
√

a2−a2 sin2
θ

=

√
a2(1− sin2

θ)

=
√

a2 cos2 θ

= a cosθ .

√
a2− x2

x
a

θ

2.
√

a2 + x2 = a secθ if x = a tanθ.
If x = a tanθ where θ ∈ (−π/2,π/2), then√

a2 + x2 =
√

a2 +a2 tan2 θ

=
√

a2(1+ tan2 θ)

=
√

a2 sec2 θ

= a secθ .

a

x

√
a2− x2

θ

3.
√

x2−a2 = a tanθ if x = asecθ.
If x = a secθ where θ ∈ [0,π/2)∪ [π,3π/2), then√

x2−a2 =
√

a2 sec2 θ−a2

=
√

a2(sec2 θ−1)

=
√

a2 tan2 θ

= a tanθ .

a

√
x2−a2

x

θ

Example 5.3.1 Evaluate the following integrals:

1.
∫ x2
√

1− x2
dx 2.

∫ 6

5

√
x2−25

x4 dx 3.
∫ √

x2 +9 dx

Solution:

1. Let x = sinθ where θ ∈ (−π/2,π/2), thus dx = cosθ dθ. By substitution, we have
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∫ x2
√

1− x2
dx =

∫ sin2
θ√

1− sin2
θ

cosθ dθ

=
∫ sin2

θcosθ

cosθ
dθ

=
∫

sin2
θ dθ

=
1
2

∫
1− cos2θ dθ

=
1
2
(θ− 1

2
sin2θ)+ c

=
1
2
(θ− sinθ cosθ)+ c .

√
1− x2

x
1

θ

Now, we must return to the original variable x:
∫ x2
√

1− x2
dx = 1

2 (sin−1 x− x
√

1− x2)+ c .

2. Let x = 5 secθ where θ ∈ [0,π/2)∪ [π,3π/2), thus dx = 5 secθ tanθ dθ. After substitution, the integral becomes

∫ √25 sec2 θ−25
625 sec4 θ

5secθ tanθ dθ =
1

25

∫ tan2 θ

sec3 θ
dθ

=
1

25

∫
sin2

θ cosθ dθ

=
1

75
sin3

θ+ c . 5

√
x2 +25

x

θ

We must return to the original variable x:
∫ 6

5

√
x2−25

x4 dx = 1
75

[
(x2−25)3/2

x3

]6

5
= 1

600 .

3. Let x = 3tanθ where θ ∈ (−π/2,π/2). This implies dx = 3sec2 θ dθ. By substitution, we have

∫ √
x2 +9 dx =

∫ √
9tan2 θ+9 (3sec2

θ) dθ

= 9
∫

sec3
θ dθ

=
9
2
(secx tanx+ ln |secx+ tanx|) .

This implies∫ √
x2 +9 dx =

9
2
(x
√

x2 +9
9

+ ln |
√

x2 +9+ x
3

|
)
+ c .

3

x

√
x2 +9

θ

Exercise 3:

1 - 16 Evaluate the following integrals:
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1.
∫ 1

x2
√

x2−16
dx

2.
∫ √

9− x2 dx

3.
∫ 1

(9x2−1)
3
2

dx

4.
∫ 1√

9+ x2
dx

5.
∫ 1

x2
√

x2 +4
dx

6.
∫ x2

(16− x2)2 dx

7.
∫ x3
√

1− x8
dx

8.
∫ sec2 x√

9+ tan2 x
dx

9.
∫ 1

x4 +2x2 +1
dx

10.
∫ √

x2−16 dx

11.
∫ √

e2x−25 dx

12.
∫ cosx√

2− sin2 x
dx

13.
∫ 1√

1+ x2
dx

14.
∫ 1

(1− x2)
5
2

dx

15.
∫

ex
√

1− e2x dx

16.
∫ √9− x2

x2 dx

5.4 Integrals of Rational Functions

In this section, we study rational functions of the form q(x) = f (x)
g(x) where f (x) and g(x) are polynomials.

The practical steps to integrate the rational functions can be summarized as follows:

ä Step 1: If degree of g(x) is less than degree of f (x), we do polynomial long-division; otherwise we move to step 2.

From the long division shown on the right side,
we have

q(x) =
f (x)
g(x)

= h(x)+
r(x)
g(x)

,

where h(x) is called the quotient and r(x) is
called the remainder.

h(x)
g(x)

)
f(x)
...
...

r(x)

ä Step 2: Factor the denominator g(x) into irreducible polynomials where the result is either linear or irreducible
quadratic polynomials.

ä Step 3: Find the partial fraction decomposition. This step depends on step 2 where if degree of f (x) is less than the
degree of g(x), then the fraction f (x)

g(x) can be written as a sum of partial fractions:

q(x) = P1(x)+P2(x)+P3(x)+ ...+Pn(x) ,

where each Pi(x) = A
(ax+b)m ,m ∈N or Pi(x) = Ax+B

(ax2+bx+c)m if b2−4ac < 0. The constants A,B, ... are computed later.

ä Step 4: Integrate the result of step 3.

Example 5.4.1 Evaluate the following integral
∫ x+1

x2−2x−8
dx.

Solution:

Factor the denominator g(x) into irreducible polynomials : g(x) = x2−2x−8 = (x+2)(x−4) . We need to find constants
A and B such that

x+1
x2−2x−8

=
A

x+2
+

B
x−4

=
Ax−4A+Bx+2B
(x+2)(x−4)

.

Coefficients of the numerators:

A+B = 1→ 1

−4A+2B = 1→ 2

By doing some calculation, we have
A = 1

6 and B = 5
6 , thus

Multiply equation 1 by 4 and add the result to equation 2

4A+4B = 4

−4A+2B = 1

−−−−−−−−−
6B = 5
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∫ x+1
x2−2x−8

dx =
∫ 1/6

x+2
dx+

∫ 5/6
x−4

dx =
1
6

ln | x+2 |+5
6

ln | x−4 |+c .

Example 5.4.2 Evaluate the following integral
∫ 2x3−4x2−15x+5

x2 +3x+2
dx.

Solution:

Since the degree of the denominator g(x) is less than
the degree of the numerator f (x), we do polynomial
long-division.
From the long division given on the right side, we have

q(x) = (2x−10)+
11x+35

x2 +3x+2
.

2x −10
x2 +3x+2

)
2x3 −4x2 −15x +5
2x3 +6x2 +4x

−10x2 −19x +5
−10x2 −30x −20

11x +25

Now, factor the denominator g(x) into irreducible polynomials : g(x) = x2 +3x+2 = (x+1)(x+2) . Thus,

q(x) = (2x−10)+
11x+25

x2 +3x+2
= (2x−10)+

A
x+1

+
B

x+2
= (2x−10)+

Ax+2A+Bx+B
(x+1)(x+2)

,

and we need to find the constants A and B.

Coefficients of the numerators:

A+B = 11→ 1

2A+B = 25→ 2

By doing some calculation, we have
A = 24 and B =−13, thus

Multiply equation 1 by −2 and add the result to equation 2

−2A−2B =−22

2A+B = 25

−−−−−−−−−
−B = 3

∫
q(x) dx =

∫
(2x−10) dx+

∫ 14
x+1

dx+
∫ −13

x+2
dx

= x2−10x+14ln | x+1 | −3ln | x+2 |+c .

Remark 5.4.1
1. The number of constants A,B,C, ... is equal to the degree of the denominator g(x). Therefore, in the case of

repeated factors of the denominator, we have to check the number of the constants and the degree of g(x).
2. If the denominator g(x) contains irreducible quadratic factors, the numerators of partial fractions should

be polynomials of degree one.

Example 5.4.3 Evaluate the following integral
∫ 2x2−25x−33

(x+1)2(x−5)
dx.

Solution:

Since the denominator g(x) has repeated factors, then

2x2−25x−33
(x+1)2(x−5)

=
A

x+1
+

B
(x+1)2 +

C
x−5

=
A(x2−4x−5)+B(x−5)+C(x2 +2x+1)

(x+1)2(x−5)
.

Coefficients of the numerators:
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A+C = 2→ 1

−4A+B+2C =−25→ 2

−5A−5B+C =−33→ 3

Hint: Multiply equation 2 by 5 and add the result

to equation 3 to have a new equation contains A and
C.

By solving the system of equations, we have A = 5, B = 1 and C =−3. Hence,∫ 2x2−25x−33
(x+1)2(x−5)

dx =
∫ 5

x+1
dx+

∫ 1
(x+1)2 dx+

∫ −3
x−5

dx

= 5ln | x+1 |+
∫
(x+1)−2 dx−3ln | x−5 |

= 5ln | x+1 | − 1
(x+1)

−3ln | x−5 |+c .

Example 5.4.4 Evaluate the following integral
∫ x+1

x(x2 +1)
dx.

Solution:

The denominator g(x) is factoblack into irreducible polynomials, so

x+1
x(x2 +1)

=
A
x
+

Bx+C
x2 +1

=
Ax2 +A+Bx2 +Cx

x(x2 +1)
.

Coefficients of the numerators:
A+B = 0→ 1

C = 1→ 2

A = 1→ 3

We have A = 1, B =−1 and C = 1. Hence,∫ x+1
x(x2 +1)

dx =
∫ 1

x
dx+

∫ −x+1
x2 +1

dx

= ln | x | −
∫ x

x2 +1
dx+

∫ 1
x2 +1

dx

= ln | x | −1
2

ln(x2 +1)+ tan−1 x+ c .

Exercise 4:
1 - 20 Evaluate the following integrals:

1.
∫ 1

x(x−1)
dx

2.
∫ 2

0

1
x2 +4x+3

dx

3.
∫ 1

x2−4
dx

4.
∫ 1

x2− x−2
dx

5.
∫ x+1

x2 +8x+12
dx

6.
∫ x

x2 +7x+12
dx

7.
∫ 5

1

x2−1
x2 +3x−4

dx

8.
∫ x3

x2−25
dx

9.
∫ x

x2 +7x+6
dx

10.
∫ 1

x2 +3x+9
dx

11.
∫ 1

(x−1)(x2 +1)
dx

12.
∫ x+2

(x+1)(x2−4)
dx

13.
∫ x3 +2x+1

x2−3x−10
dx

14.
∫ 1

x2 +1
dx

15.
∫ 3x2 +3x−1

x3 + x2− x
dx

16.
∫

π/2

0

sinx
cos2 x− cosx−2

dx

17.
∫ 2− x

x3 + x2 dx

18.
∫ 1

0

1
1+ ex dx

19.
∫ ex

e2x−2ex−15
dx

20.
∫ 1

x4− x2 dx
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5.5 Integrals of Quadratic Forms

In this section, we provide a new technique for integrals that contain irreducible quadratic expressions ax2 +bx+c where
b 6= 0. This technique is completing square method: a2±2ab+b2 = (a±b)2. Before starting presenting this method, we
provide an example to remind the reader on how to complete the square.

Example 5.5.1 The quadratic expression x2−6x+13 is irreducible. To complete the square, we find ( b
2 )

2, then add and
substrate it as follows:

x2−6x+13 = x2−6x+9︸ ︷︷ ︸
=(x−3)2

−9+13︸ ︷︷ ︸
=4

Remember:
If a quadratic polynomial has roots, it is reducible;
otherwise it is irreducible.

Hence, x2−6x+13 = (x−3)2 +4.

In the following examples, we use the previous idea to evaluate the integrals.

Example 5.5.2 Evaluate the following integral
∫ 1

x2−6x+13
dx.

Solution:

The quadratic expression x2−6x+13 is irreducible. By using the complete the square, we have∫ 1
x2−6x+13

dx =
∫ 1

(x−3)2 +4
dx .

Let u = x−3⇒ du = dx. By substitution,∫ 1
u2 +4

du =
1
2

tan−1(
u
2
)+ c =

1
2

tan−1(
x−3

2
)+ c .

Example 5.5.3 Evaluate the following integral
∫ x

x2−4x+8
dx.

Solution:

Since the quadratic expression x2−4x+8 is irreducible, we use the complete the square as follows:∫ x
x2−4x+8

dx =
∫ x

(x−2)2 +4
dx

Let u = x−2⇒ du = dx. By substitution,∫ u+2
u2 +4

du =
∫ u

u2 +4
du+

∫ 2
u2 +4

du

=
1
2

ln | u2 +4 |+ tan−1(
u
2
)

=
1
2

ln
(
(x−2)2 +4

)
+ tan−1(

x−2
2

)+ c

Example 5.5.4 Evaluate the following integral
∫ 1√

2x− x2
dx.

Solution:

By completing the square, we have 2x− x2 =−(x2−2x) =−(x2−2x+1−1) = 1− (x−1)2.

Thus, ∫ 1√
2x− x2

dx =
∫ 1√

1− (x−1)2
dx .

Let u = x−1, then du = dx. By substitution, the integral becomes∫ 1√
1−u2

du = sin−1(u)+ c = sin−1(x−1)+ c .
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Example 5.5.5 Evaluate the following integral
∫ √

x2 +2x−1 dx.

Solution:

By completing the square, we have x2 +2x−1 = (x+1)2−2. Thus,∫ √
x2 +2x−1 dx =

∫ √
(x+1)2−2 dx .

Let u = x+1, then du = dx. The integral becomes
∫ √

u2−2 du.

Use the trigonometric substitutions, in particular assume u =√
2 secθ⇒ du =

√
2 secθ tanθ dθ where θ ∈ [0,π/2)∪

[π,3π/2). By substitution,

2
∫

tan2
θ secθ = 2

∫
sec3

θ− secθ dθ . √
2

√
u2−2

u

θ

From Example 5.2.2, we have 2
∫

sec3
θ− secθ dθ = secθ tanθ− ln | secθ+ tanθ |+c . By returning to the variable u

and then to x,∫ √
u2−2 dx =

u
√

u2−2
2

− ln |u+
√

u2−2√
2

|+ c =
(x+1)

√
(x+1)2−2
2

− ln |x+1+
√

(x+1)2−2√
2

|+ c.

Exercise 5:
1 - 12 Evaluate the following integrals:

1.
∫ 1

0

1
x2 +4x+5

dx

2.
∫ 1

x2−6x+1
dx

3.
∫ 2x+3

x2 +2x−3
dx

4.
∫ x2−2x+5

2x− x2 dx

5.
∫ 0

−1

1√
8+2x− x2

dx

6.
∫ 1

x2 +8x−9
dx

7.
∫ 5√

1−4x− x2
dx

8.
∫ ex

e2x +2ex−1
dx

9.
∫ 1√

6−6x−2x2
dx

10.
∫ √

x(2− x) dx

11.
∫ sec2 x

tan2 x−6tanx+12
dx

12.
∫ √

8−2x− x2 dx

5.6 Miscellaneous Substitutions

We study in this section other three important substitutions needed in some cases.

5.6.1 Fractional Functions in sin x and cos x

The integrals that consist of rational expressions in sinx and cosx are treated by using the substitution u = tan(x/2), −π <

x < π. This implies that du = sec2(x/2)
2 dx. Since sec2 x = tan2 x+1, then du = u2+1

2 dx. Also,

sin(x) = sin2(
x
2
) = 2 sin(

x
2
) cos(

x
2
) = 2

sin( x
2 )

cos( x
2 )

cos(
x
2
) cos(

x
2
)

= 2tan(
x
2
) cos2(

x
2
)

=
2tan( x

2 )

sec2( x
2 )

=
2u

u2 +1
.
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For cosx, we have

cos(x) = cos2(
x
2
) = cos2(

x
2
)− sin2(

x
2
)

We can find that

cos(
x
2
) =

1√
u2 +1

and sin(
x
2
) =

u√
u2 +1

.

Use the identities:
sec2( x

2 ) = tan2( x
2 )+1

cos2( x
2 )+ sin2( x

2 ) = 1

This implies

cos(x) =
1−u2

1+u2 .

The previous discussion can be summarized as follows:

For the integrals that contain rational expressions in sinx and cosx, we assume

u = tan(x/2), du =
u2 +1

2
dx, sin(x) =

2u
u2 +1

, cos(x) =
1−u2

1+u2 .

Example 5.6.1 Evaluate the following integrals:

1.
∫ 1

1+ sinx
dx 2.

∫ 1
2+ cosx

dx 3.
∫ 1

1+ sinx+ cosx
dx

Solution:

1.
∫ 1

1+ sinx
dx

Let u = tan x
2 , this implies du = 1+u2

2 and sinx = 2u
1+u2 . By substituting that into the integral, we have

∫ 1
1+ 2u

1+u2

2
1+u2 du = 2

∫ 1
u2 +2u+1

du

= 2
∫
(u+1)−2 du

=
−2

u+1
+ c =

−2
tan x

2 +1
+ c .

2.
∫ 1

2+ cosx
dx

Let u = tan x
2 , this implies du = 1+u2

2 and cosx = 1−u2

1+u2 . By substitution, we have

∫ 1

2+ 1−u2

1+u2

2
1+u2 du = 2

∫ 1
u2 +3

du

=
2√
3

tan−1(
u√
3
)+ c =

2√
3

tan−1(
tan x

2√
3
)+ c .

3.
∫ 1

1+ sin(x)+ cos(x)
dx
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Assume u = tan x
2 , this implies du = 1+u2

2 , sinx = 2u
1+u2 and cosx = 1−u2

1+u2 . By substitution, we have

∫ 1

1+ 2u
1+u2 +

1−u2

1+u2

2
1+u2 du =

∫ 2
2+2u

du

=
∫ 1

1+u
du

= ln | 1+u |+c = ln | 1+ tan
x
2
|+c .

5.6.2 Integrals of Fractional Powers

In the case of integrands that consist of fractional powers, it is better to use the substitution u = x
1
n where n is the least

common multiple of the denominators of the powers. To see this, we provide an example.

Example 5.6.2 Evaluate the following integral
∫ 1√

x+ 4
√

x
dx .

Solution:

Put u = x
1
4 , we find x = u4 and dx = 4u3du. By substitution, we have

∫ 1
u2 +u

4u3 du = 4
∫ u2

u+1
du

= 4
∫

u−1 du+4
∫ 1

1+u
du

= 2u2−4u+4ln | u+1 |+c

= 2
√

x−4 4
√

x+4ln | 4
√

x+1 |+c .

5.6.3 Integrals of n
√

f (x)

Here, we assume that the integrand is a function of form n
√

f (x). To solve such integrals, it is useful to assume u= n
√

f (x).
This case differs from that given in the substitution method in Chapter 1 i. e., n

√
f (x) f ′(x) where the difference lies on

existence of the derivative of f (x).

Example 5.6.3 Evaluate the following integral
∫ √

ex +1 dx

Solution:

Assume u =
√

ex +1, this implies du = ex

2
√

ex+1
dx and u2 = ex +1. By substitution,

∫ 2u2

u2−1
du =

∫
2 du+2

∫ 1
u2−1

du

= 2u+2
∫ 1

u−1
du+2

∫ 1
u+1

du

= 2u+2ln | u−1 |+2ln | u+1 |+c

= 2
√

ex +1+2ln(
√

ex +1−1)+2ln(
√

ex +1+1)+ c .

Exercise 6:

1 - 12 Evaluate the following integrals:
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1.
∫ 1√

x+ 4
√

x
dx

2.
∫ x1/2

1+ x3/5 dx

3.
∫ 1√

cosx+1
dx

4.
∫ √

x√
x+4

dx

5.
∫ 1

1+3sinx
dx

6.
∫ 1

3− cosx
dx

7.
∫ 1√

x+ 3
√

x
dx

8.
∫ x1/2

1+ x1/4 dx

9.
∫ 1√

e2x +1
dx

10.
∫ 1

x1/2− x3/5 dx

11.
∫ 1

1−2cosx
dx

12.
∫ 1

sinx+ cosx
dx
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Chapter 6

Indeterminate Forms and Improper
Integrals

6.1 Limit Rules

The limit is defined as the value of the function as the variable approaches to t value. A few examples are given
below:

Example 6.1.1

1. limx→2 3 = 3 .
2. limx→1 x = 1 .

3. limx→∞ tan−1 x = π

2 .
4. limx→8

√
x = 2

√
2 .

As you noted, the functions in the previous example are continuous. Meaning that, the limit is equal to the value of the
function if it is continuous. Before discussing this issue deeply, let’s see some general rules of the limits.

If limx−→c f (x) = L and limx−→c g(x) = M, then
1. Sum Rule: limx−→c

(
f (x)+g(x)

)
= limx−→c f (x)+ limx−→c g(x) = L+M .

2. Difference Rule: limx−→c
(

f (x)−g(x)
)
= limx−→c f (x)− limx−→c g(x) = L−M .

3. Product Rule: limx−→c
(

f (x).g(x)
)
= limx−→c f (x)× limx−→c g(x) = L×M .

4. Constant Multiple Rule: limx−→c
(
k f (x)

)
= k limx−→c f (x) = k L .

5. Quotient Rule: limx−→c
( f (x)

g(x)

)
= limx−→c f (x)

limx−→c g(x) =
L
M .

Example 6.1.2

1. limx→0(x2−2x+1) = limx→0 x2−2limx→0 x+ limx→0 1 = 0−0+1 = 1 .

2. limx→π sinx cosx = 0 .

3. limx→3+
1

(x−3) =
limx→3 1

limx→3(x−3) = ∞ .

4. limx→1
x

(x2+1) =
limx→1 x

limx→1(x2+1) =
1
2 .

6.2 Indeterminate Forms

In this section, we examine several situations, where a function is built up from other functions, but the limits of these
functions are not sufficient to determine the overall limit. These situations are called indeterminate forms.
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Case Indeterminate Form
Quotient 0

0 and ∞

∞

Product 0.∞ and 0.(−∞)
Sum & Difference (−∞)+∞ and ∞−∞

Exponential 00, 1∞, 1−∞ and ∞0

Table 6.2: List of the indeterminate forms.

Example 6.2.1

1. limx→0
sinx

x = 0
0

2. limx→∞
ex

x = ∞

∞

3. limx→0+ x2 lnx = 0.∞
4. limx→1+

( 1
x−1 −

1
lnx

)
= ∞−∞

Indeterminate Forms:

To treat such limits, students in previous courses were multiplying the function by a conjugate or using factoring method.
In this course, we present a new method called L’Hopital Rule. Usually, this method is used for a fractional function
where we calculate the derivative of the numerator and denominator.

L’Hopital Rule:

Theorem 6.2.1 Suppose f (x) and g(x) are differentiable on an interval I and c ∈ I where f and g may not be
differentiable at c. If f (x)

g(x) has the form 0
0 or ∞

∞
at x = c and g′(x) 6= 0 for x 6= c, then

lim
x→c

f (x)
g(x)

= lim
x→c

f
′
(x)

g′(x)

if limx→c
f
′
(x)

g′ (x)
exists or equals to ∞ or −∞.

Remark 6.2.1
1. L’Hopital rule works if c =±∞ or when x→ c+ or x→ c−.
2. Sometimes, we need to apply L’Hopital rule twice.

Example 6.2.2 Use L’Hopital rule to find the following limits:

1. limx→5

√
x−1−2

x2−25 .

2. limx→0
sinx

x .

3. limx→∞
lnx√

x .

4. limx→∞
ex

x .

Solution:

1. limx→5

√
x−1−2

x2−25 = 0
0 and this is an indeterminate form. By applying L’Hopital rule, we have

lim
x→5

√
x−1−2
x2−25

= lim
x→5

1
4x
√

x−1
=

1
40

.

2. limx→0
sinx

x = 0
0 . To treat this indeterminate form, we apply L’Hopital rule limx→0

sinx
x = limx→0

cosx
1 = 1 .

3. limx→∞
lnx√

x = ∞

∞
and this is an indeterminate form. Apply L’Hopital rule, limx→∞

lnx√
x = limx→∞

2√
x = 0 .

4. limx→∞
ex

x = ∞

∞
. By applying L’Hopital rule, we have limx→∞

ex

x = limx→∞
ex

1 = ∞ .
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Example 6.2.3 Use L’Hopital rule to find the following limits:

1. limx→0+ x2 lnx
2. limx→ π

4
(1− tanx) sec(2x)

3. limx→1
( 1

x−1 −
1

lnx

)
4. limx→0(1+ x)

1
x

Solution:

1. limx→0+ x2 lnx .

The limit is of the form 0.∞, so we cannot use the L’Hopital rule. However, if we rearrange the expression, we may
able to use the L’Hopital rule. Meaning that, we need to rewrite the expression in a way enables us to apply the
L’Hopital rule. Note that

x2 lnx =
lnx

1
x2

.

The limit of the new expression (limx→0+
lnx

1
x2

) is of form ∞

∞
. Therefore, we can apply the L’Hopital rule:

lim
x→0+

x2 lnx = lim
x→0+

lnx
1
x2

= lim
x→0+

x2

−2
= 0 . L’Hopital rule

2. limx→ π

4
(1− tanx) sec(2x) .

The limit is of the form 0.∞, so we try to rewrite the function to apply the L’Hopital rule. We know that secx =
1/cosx, thus

(1− tanx)sec(2x) =
(1− tanx)

cos(2x)
.

Now, the limit of the new expression is of form 0
0 . From the L’Hopital rule, we have

lim
x→ π

4

(1− tanx)sec(2x) = lim
x→ π

4

(1− tanx)
cos(2x)

= lim
x→ π

4

sec2 x
2sin2x

=− (
√

2)2

2
=−1 .

3. limx→1
( 1

x−1 −
1

lnx

)
.

By substituting 1 into the function, we have the indeterminate form ∞−∞. To treat this form, we write the function
as a single fraction

1
x−1

− 1
lnx

=
lnx− x+1
(x−1) lnx

.

The new expression takes the indeterminate form 0
0 . From the L’Hopital rule,

lim
x→1

( 1
x−1

− 1
lnx

)
= lim

x→1

1− x
x lnx+ x−1

which is of form 0
0 . Therefore, we apply the L’Hopital rule again. This implies

lim
x→1

( 1
x−1

− 1
lnx

)
= lim

x→1

−1
lnx+2

=
−1
2

.

4. limx→0(1+ x)
1
x .

This limit is of form 1∞. To treat this form, we assume that y = (1+ x)
1
x . By taking ln for both sides, we have

lny =
1
x

ln(1+ x)

⇒ lim
x→0

lny = lim
x→0

1
x

ln(1+ x) = lim
x→0

ln(1+ x)
x

=
0
0
.
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By applying the L’Hopital rule, we have limx→0
ln(1+x)

x = limx→0
1

1+x
1 = 1 .

Thus, limx→0 lny = 1⇒ elimx→0 lny = e1⇒ limx→0 e(lny) = e⇒ limx→0 y = e⇒ limx→0(1+ x)
1
x = e .

Exercise 1:

1 - 14 Find the following limits:

1. limx→2
x2−4x+4

x−2

2. limx→3
x2−9
x−3

3. limx→π+
cosx+sinx

tanx

4. limx→0
1−ex

x
5. limx→π/2+ tanx

6. limx→0−
ex−1

x2

7. limx→0 (ex + x)
1
x

8. limx→∞
x+2
x−2

9. limx→0+
ex−ln(ex)

lnx

10. limx→π/2
1−sinx

cosx

11. limx→1
lnx

tan(πx)

12. limx→0
tanx

x

13. limx→∞
ln(lnx)√

x

14. limx→0 (
1
x2 )

x

6.3 Improper Integrals

Definition 6.3.1 The integral
∫ b

a
f (x) dx is called a proper integral if

1. the interval [a,b] is finite and closed, and
2. f (x) is defined on [a,b].

If condition 1 or 2 is not satisfied, the integral is called improper. From this, we have two cases of the improper
integrals.

6.3.1 Infinite Intervals

In this section, we study integrals of forms

∫
∞

a
f (x) dx,

∫ b

−∞

f (x) dx,
∫ −∞

∞

f (x) dx .
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Definition 6.3.2
1. Let f be a continuous function on [a,∞). The improper integral

∫
∞

a
f (x) dx is defined as follows:

∫
∞

a
f (x) dx = lim

t→∞

∫ t

a
f (x) dx if the limit exists.

2. Let f be a continuous function on (−∞,b]. The improper integral
∫ b

−∞

f (x) dx is defined as follows:

∫ b

−∞

f (x) dx = lim
t→−∞

∫ b

t
f (x) dx if the limit exists.

The previous integrals are convergent (or to converge) if the limit exists as a finite number i. e., the value
of the integral is a finite number. However, if the limit does not exist or equals ±∞, the integral is called
divergent (or to diverge).

3. Let f be a continuous function on R and a ∈ R. The improper integral
∫

∞

−∞

f (x) dx is defined as follows:

∫
∞

−∞

f (x) dx =
∫ a

−∞

f (x) dx+
∫

∞

a
f (x) dx .

The previous integral is convergent if both integrals on the right side are convergent; otherwise the integral
is divergent.

Example 6.3.1 Determine whether the integral converges or diverges:

1.
∫

∞

0

1
(x+2)2 dx 2.

∫
∞

0

x
1+ x2 dx 3.

∫
∞

−∞

1
1+ x2 dx

Solution:

1.
∫

∞

0

1
(x+2)2 dx = lim

t→∞

∫ t

0

1
(x+2)2 dx. The integral

∫ t

0

1
(x+2)2 dx =

∫ t

0
(x+2)−2 dx =

[ −1
x+2

]t

0
=−

( 1
t +2

+
1
2
)
.

Thus,

lim
t→∞

∫ t

0

1
(x+2)2 dx =− lim

t→∞

( 1
t +2

+
1
2
)
=−(0+ 1

2
) =−1

2
.

Therefore, the integral converges.

2.
∫

∞

0

x
1+ x2 dx = lim

t→∞

∫ t

0

x
1+ x2 dx. The integral

∫ t

0

x
1+ x2 dx =

1
2

[
ln(1+ x2)

]t

0
=

1
2

ln(1+ t2)− 1
2

ln(1) =
1
2

ln(1+ t2) .

Thus,

lim
t→∞

∫ t

0

x
1+ x2 dx =

1
2

lim
t→∞

ln(1+ t2) = ∞ .

Therefore, the integral diverges.
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3.
∫

∞

−∞

1
1+ x2 dx = lim

t→−∞

∫ 0

t

1
1+ x2 dx+ lim

t→∞

∫ t

0

1
1+ x2 dx. We know that,

∫ 1
1+ x2 dx = tan−1 x+ c, so

lim
t→−∞

∫ 0

t

1
1+ x2 dx+ lim

t→∞

∫ t

0

1
1+ x2 = lim

t→−∞

[
0− tan−1(t)

]
+ lim

t→∞

[
tan−1(t)−0

]
=− lim

t→−∞
tan−1(t)+ lim

t→∞
tan−1(t)

=−(−π

2
)+

π

2
= π .

Therefore, the integral is convergent.

6.3.2 Discontinuous Integrands

Definition 6.3.3
1. If f is continuous on [a,b) and has an infinite discontinuity at b i.e., limx→b− f (x) =±∞, then∫ b

a
f (x) dx = lim

t→b−

∫ t

a
f (x) dx .

2. If f is continuous on (a,b] and has an infinite discontinuity at a i.e., limx→a+ f (x) =±∞, then∫ b

a
f (x) dx = lim

t→a+

∫ a

t
f (x) dx .

In items 1 and 2, the integral is convergent if the limit exists as a finite number; otherwise the integral is
divergent.

3. If f is continuous on [a,b] except at c ∈ (a,b) such that limx→c± f (x) = ±∞, the improper integral∫ b

a
f (x) dx is defined as follows:

∫ b

a
f (x) dx =

∫ c

a
f (x) dx+

∫ b

c
f (x) dx .

The integral is convergent if the limit of the integrals on the right side exists as a finite number.

Example 6.3.2 Determine whether the integral converges or diverges:

1.
∫ 4

0

1

(4− x)
3
2

dx 2.
∫ π

4

0

cosx√
sinx

dx 3.
∫ 1

−3

1
x2 dx

Solution:

1. Since limx→4−
1

(4−x)
3
2
= ∞ and the integrand is continuous on [0,4), from Definition 6.3.3,

∫ 4

0

1

(4− x)
3
2

dx = lim
t→4−

∫ t

0
(4− x)−

3
2 dx

= lim
t→4−

[ 2√
4− x

]t

0

= lim
t→4−

( 2√
4− t

−1
)

= ∞ .

Thus, the integral diverges.
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2. The limit limx→0+
cosx√
sinx

= ∞ and the integrand is continuous on (0, π

4 ], thus

∫ π

4

0

cosx√
sinx

dx = lim
t→0+

∫ π

4

t

cosx√
sinx

dx

= 2 lim
t→0+

[√
sinx

] π

4

t

= 2 lim
t→0+

( 1
4√2
−
√

sin t
)

=
2
4√2

.

The integral converges.

3. Since limx→0−
1
x2 = limx→0+

1
x2 = ∞ and the integrand is continuous on [−3,0)∪ (0,1], then

∫ 1

−3

1
x2 dx = lim

t→0−

∫ t

−3

1
x2 + lim

t→0+

∫ 1

t

1
x2

= lim
t→0−

[−1
x

]t

−3
− lim

t→0+

[−1
x

]1

t

=− lim
t→0−

[1
t
+

1
3

]
+ lim

t→0+

[
−1+

1
t

]
= ∞ .

The integral diverges.

Exercise 2:
1 - 16 Determine whether the integral converges or diverges:

1.
∫

∞

1

1
x

dx

2.
∫

∞

1

1
x2 dx

3.
∫

∞

4

1√
x

dx

4.
∫ 0

−∞

ex dx

5.
∫

∞

0
ex dx

6.
∫

∞

2

1
x−1

dx

7.
∫ 2

1

1
1− x

dx

8.
∫ 1

−1

1
x

dx

9.
∫ 3

0

dx√
9− x2

10.
∫

∞

0
(1− x)e−x dx

11.
∫

∞

0

dx
x2 +4

12.
∫

∞

−∞

1
ex + e−x dx

13.
∫

∞

0

1
x−1

dx

14.
∫

π

0
sec2 x dx

15.
∫ 2

0

1
x2 +1

dx

16.
∫

π/2

0
tanx dx
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Chapter 7

Application of Definite Integrals

7.1 Areas

The definite integral can be used to calculate areas under graphs. The simplest case of this application is when we find the
area by calculating a single definite integral.

In Chapter 2, we mentioned that if f > 0 x ∈ [a,b], the definite integral
∫ b

a
f (x) dx is exactly the area of the region under

the graph of f (x) from a to b. In more formally, we state this application of the definite integrals as follows:

1. If y = f (x) is a continuous function on [a,b] and
f (x)≥ 0 ∀x ∈ [a,b], the area of the region under
the graph of f (x) from x = a to x = b is given by
the integral:

A =
∫ b

a
f (x) dx xa b

R

y

y = f (x)

2. If f (x) and g(x) are continuous functions and
f (x) ≥ g(x) for every x ∈ [a,b], then the area A
of the region bounded by the graphs of f and g
is given by the integral:

A =
∫ b

a

(
f (x)−g(x)

)
dx

a b

f

g

R

x

y
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3. If x = f (y) is a continuous function on [c,d] and
f (y)≥ 0 ∀y ∈ [c,d], the area of the region under
the graph of f (y) from y = c to y = d is given by
the integral:

A =
∫ d

c
f (y) dy x

R

y

a

b
x = f (y)

4. If f (y) and g(y) are continuous functions and
f (y) ≥ g(y) for every x ∈ [c,d], then the area A
of the region bounded by the graphs of f and g
is given by the integral:

A =
∫ d

c

(
f (y)−g(y)

)
dy c

d
f

g
R

x

y

Example 7.1.1 Express the area of the shaded region as a definite integral then find the area.

(1)

x

R

1 3

y

f (x) = 2x+1

(2)

a c b

f

g

x

y

Solution:

(1) Area : A =
∫ 3

1 2x+1 dx =
[
x2 + x

]3

1
=
[
(32 +3)− (12 +1)

]
= 12−2 = 10 .

(2) We have two regions:

Region (1) : in the interval [a,c]
Upper graph: y = g(x)
Lower graph: y = f (x)

Area A1 =
∫ c

a

(
g(x)− f (x)

)
dx.

Region (2) : in the interval [c,b]
Upper graph: y = f (x)
Lower graph: y = g(x)

Area A2 =
∫ b

c

(
f (x)−g(x)

)
dx.

The total area is A = A1 +A2.
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Example 7.1.2 Sketch the region by the graphs of y = x3 and y = x, then find its area.

Solution:
The region bounded by the two curves is
divided into two regions:
Region (1): in the interval [−1,0]
Upper graph: y = x3

Lower graph: y = x

A1 =
∫ 0

−1
x3−x dx=

[x4

4
− x2

2

]0

−1
=
[
0−(1

4
− 1

2
)
]
=

1
4
.

Region (2): in the interval [0,1]
Upper graph: y = x
Lower graph: y = x3

A2 =
∫ 1

0
x−x3 dx=

[x2

2
− x4

4

]1

0
=
[
(

1
2
− 1

4
)−0

]
=

1
4
.

-1 1

y = x3

y = x

x

y

The total area is A = A1 +A2 =
1
4 +

1
4 = 1

2 .

Example 7.1.3 Sketch the region by the graphs of y = sinx, y = cosx, x = 0 and x = π

4 , then find its area.

Solution:

Note that, over the period [0, π

4 ], the two curves
intersect at π

4 .

Area: A =
∫ π

4

0

(
cosx− sinx

)
dx

=
[

sinx+ cosx
] π

4

0

=
[( 1√

2
+

1√
2

)
−
(
1
)]

= 1+
√

2 .

π/4

y = sinx

y = cosx

x

y

Example 7.1.4 Sketch the region by the graphs of x =
√

y from y = 0 and y = 1, then find its area.

Solution:

The area bounded by the function x =
√

y over
the interval [0,1] is

A =
∫ 1

0

√
y dy

=
3
2
[

y
]1

0

=
3
2
.

x

y

1

x =
√

y
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Example 7.1.5 Sketch the region by the graphs of x = 2y, x = y
2 +3, then find its area.

Solution:
First, we find the intersection points:

2y =
y
2
+3⇒ 4y = y+6⇒ y = 2 .

The two curves intersect at (4,2).

Area: A =
∫ 2

0
(

y
2
+3−2y) dy

=
∫ 2

0
(−3

2
y+3) dy

=
[
− 3

4
y2 +3y

]2

0

=−3+6
= 3 . 1 2 3 4

0.5

1

1.5

2

x = 2y

x = y/2+3

x

y

Exercise 1:
1 - 27 Sketch the region bounded by the graphs of the equations and find its area:

1. y = x2

2 , y = 0, x = 1, x = 3
2. y = x3, x = 0, x = 2
3. y = x+2, x = 1, x = 4
4. y = x2 +1, y = 0, x = 0, x = 2
5. y = x3 +1, y = 0, x = 0, x = 1
6. y = sinx, x = 0, x = π

7. y = tanx, x = π/4, x = π/3
8. y =−x, y = x+1, x = 0
9. y =

√
x, x+ y = 2, y = 0

10. y = x2, x = y−2, y = 0
11. x = y3, y = 0, y = 2, x = 0
12. x = y

3 , y = 1, y = 3, x = 0
13. x = (y+1)2, y = 2, y = 5, x = 0
14. y = x3−4x, y = 0, x =−2, x = 0
15. y = x3, y = 2
16. y = x, y = 2x, y =−x+2
17. y =

√
x+1, x = 1, y = 0

18. x = y, x = y−5, x = 0, x = 2

19. y =
√

x−1, y = x, x = 1, x = 2
20. y = ex, x =−2, x = 3
21. y = ex+1, x = 0, x = 1
22. y = lnx, x = 1, x = 5
23. x = siny, y = 0, y = π/4
24. x = siny, x = cosy, y = 0, y = π/4
25. y = sinx, y = cosx, x = −π/4, x =

π/4
26. y = (x+1)2 +2, x =−2, x = 0
27. x = lny, x = 0, y = 1, y = e

7.2 Solids of Revolution

Definition 7.2.1 The solid of revolution (S) is a solid generated from rotating a region R about a line in the same
plane where the line is called the axis of revolution.

Example 7.2.1 Let f (x) ≥ 0 be continuous for every x ∈ [a,b]. Let R be a region bounded by the graph of f and x-axis
form x = a to x = b. Rotating the region R about x-axis generates a solid given in Figure 7.1 (right).

Figure 7.1: The figure on the left shows the region under the continuous curve y = f (x) on the interval [a,b]. The figure on the right
shows the solid S generated by rotating the region about the x-axis.
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Example 7.2.2 Let f (x) be a constant function, as in Figure 7.2. The region R is a rectangle and rotating it about x-axis
generates a circular cylinder.

Figure 7.2: The figure on the left shows the region under the constant function y = f (x) = c on the interval [a,b]. The figure on the
right shows the circular cylinder generated by rotating the region about the x-axis.

Example 7.2.3 Consider the region R bounded by the graph of f (y) from y = c to y = d as in Figure 7.3 (left). Revolution
of R about y-axis generates the revolution solid (right).

Figure 7.3: The figure on the left displays the region under the function x = f (y) on the interval [c,d]. The figure on the right displays
the solid S generated by rotating the region about the y-axis.

Exercise 2:
1 - 10 Sketch the region R bounded by the graphs of the equations, then sketch the solid generated if R is revolved about about the specified
axis.

1. y = x2,x = 1,y = 4 about x-axis
2. y =

√
x,x = 0,x = 9 about x-axis

3. y = lnx,x = 0.5,x = e3 about x-axis
4. y = ex,x =−1,x = 5 about x-axis
5. y = sinx,x = 0,x = π about x-axis

6. y = cosy,y = 0,y = π/2 about y-axis
7. y = e2x,y = 0,y = 3 about y-axis
8. x = y+1,y =−1,y = 5 about y-axis
9. y = x2,y = x about x-axis

10. y =
√

x,y = x about y-axis

7.3 Volumes of Solid of Revolution

In this section, we study three methods to evaluate the volume of the revolution solid known as the disk method, the
washer method and the method of cylindrical shells.

7.3.1 Disk Method

Let f be continuous on [a,b] and let R be the region bounded by the graphs, x-axis and the points x = a, x = b. Let S be
the solid generated by revolving R about x-axis. Assume P is a partition of [a,b] and wk ∈ [xk−1,xk]. For each [xk−1,xk],
we form a rectangle, its high is f (wk) and its width is ∆xk.

The revolution of the rectangle about x-axis generates a circular disk as shown in Figure 7.4. Its radius and high are

r = f (wk) , h = ∆xk .
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Figure 7.4: The figure on the left shows a continuous function f on [a,b]. The figure on the right shows a solid S generated by revolving
R about x-axis.

From Figure 7.4, the volume of each circular disk is

Vk = π( f (wk))
2
∆xk .

The sum of volumes of the circular disks approximately gives the volume of the solid of revolution:

V =
n

∑
k=1

∆Vk = lim
n→∞

n

∑
k=1

π ( f (wk))
2

∆xk = π

∫ b

a

[
f (x)

]2 dx .

Similarly, we find the volume of the solid of revolution about y-axis. Let f be continuous on [c,d] and let R be the region
bounded by the graphs, y-axis and the points y = c, y = d. Let S be the solid generated by revolving R about y-axis.
Assume P is a partition of [c,d] and wk ∈ [yk−1,yk]. For each [yk−1,yk], we form a rectangle, its high is f (wk) and its width
is ∆yk.

The revolution of each rectangle about y-axis generates a circular disk as shown in 7.5. Its radius and high are

r = f (wk) , h = ∆yk .

Figure 7.5: The figure on the left shows a continuous function f on [c,d]. The figure on the right presents a solid S generated by
revolving R about y-axis.

The volume of the solid of revolution given in 7.5 (right) is approximately the sum of the volumes of circular disks:

V =
n

∑
k=1

∆Vk = lim
n→∞

n

∑
k=1

π( f (wk))
2
∆yk = π

∫ d

c

[
f (y)

]2 dy .

The volume of the solid of revolution by the disk method can be summarized in the following theorem:
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Theorem 7.3.1
1. If V is the volume of the solid of revolution determined by rotating the continuous function f (x) on the

interval [a,b] about the x-axis, then

V = π

∫ b

a
[ f (x)]2 dx .

2. If V is the volume of the solid of revolution determined by rotating the continuous function f (y) on the
interval [c,d] about the y-axis, then

V = π

∫ d

c
[ f (y)]2 dy .

Example 7.3.1 Sketch the region R bounded by the graphs of the equations y =
√

x, x = 4, y = 0. Then, find the volume
of the solid generated if R is revolved about x-axis.

Solution:

The previous figure shows the solid generated from revolving the region R about x-axis. Since the rotation is about x-axis,
we have a vertical disk with radius y =

√
x and thickness dx.

Thus, the volume of the solid S is

V = π

∫ 4

0
(
√

x)2 dx = π

∫ 4

0
x dx =

π

2

[
x2
]4

0
=

π

2

[
16−0

]
= 8π .

Example 7.3.2 Sketch the region R bounded by the graphs of the equations y = ex, y = e and x = 0. Then, find the volume
of the solid generated if R is revolved about y-axis.

Solution:

The previous figure shows the region R and the solid S generated by revolving the region about y-axis. Since the revolution
of R is about y-axis, then we need to rewrite the function to become x = f (y).

y = ex⇒ lny = lnex⇒ x = lny = f (y) .

Now, we have a horizontal disk with radius x = lny and thickness dy. Thus, the volume of the solid S is

V = π

∫ e

1
(lny)2 dy =

[
2y+ y (lny)2−2y lny

]e

1
= e−2 .
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Example 7.3.3 Let x = y2 on the interval [0,1]. Rotate the region around the y-axis and find the volume of the resulting
solid.

Solution:

Since the revolution of R is about y-axis, we have a horizontal disk with radius x = y2 and thickness dy. Thus, the volume
of the solid S is

V = π

∫ 1

0
(y2)2 dy =

π

5

[
y5
]1

0
=

π

5

[
1−0

]
=

π

5
.

Example 7.3.4 Sketch the region R bounded by the graphs of the equations y = cosx, x = 0, x = π

2 . Then, find the volume
of the solid generated if R is revolved about x-axis.

Solution:

The region R and the solid S generated by revolving the region about x-axis is provided in the figure. Thus, the disk to
evaluate the volume of the generated solid S is vertical where the radius is y = cosx and the thickness is dx:

V = π

∫ π

2

0
cos2 x dx =

π

2

∫ π

2

0
1+ cos2x dx =

π

2

[
x+

sin2x
2

] π

2

0
=

π

2

[
π

2
−0
]
=

π2

4
.

7.3.2 Washer Method

The washer method is a generalization of the disk method for a region between two functions f (x) and g(x). Let R be a
region bounded by the graphs of f (x) and g(x) from x = a to x = b such that f (x) > g(x) (see Figure 7.6). The volume
of the solid S generated by rotating the area bounded by the graphs of the two functions around x-axis can be found by
calculating the difference between the two solids generated by rotating the regions under f and g:

V =
∫ b

a
[ f (x)]2 dx−

∫ b

a
[g(x)]2 dx,

=
∫ b

a

(
[ f (x)]2− [g(x)]2

)
dx .

Similarly, let R be a region bounded by the graphs of f (y) and g(y) such that f (y)> g(y) from y = c to, y = d (see Figure
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7.7). The volume of the solid S generated from rotating the area bounded by the graphs of f and g around y-axis is

V =
∫ d

c
[ f (y)]2 dy−

∫ d

c
[g(y)]2 dy,

=
∫ d

c

(
[ f (y)]2− [g(y)]2

)
dy .

Theorem 7.3.2 summarizes the washer method.

Theorem 7.3.2 1. If V is the volume of the solid of revolution determined by rotating the continuous functions
f (x) and g(x) such that f > g on the interval [a,b] about the x-axis, then

V = π

∫ b

a

(
[ f (x)]2− [g(x)]2

)
dx .

2. If V is the volume of the solid of revolution determined by rotating the continuous functions f (y) and g(y)
such that f > g on the interval [c,d] about the y-axis, then

V = π

∫ d

c

(
[ f (y)]2− [g(y)]2

)
dy .

Figure 7.6: The volume by the washer method for the solid S generated from rotating the area around x-axis.

Figure 7.7: The volume by the washer method for the solid S generated from rotating the area around y-axis.

Example 7.3.5 Let R be a region bounded by the graphs of the functions y = x2 and y = 2x. Evaluate the volume of the
solid generated by revolving of the bounded region about x-axis.

Solution:

Let f (x) = x2 and g(x) = 2x. First, we find the intersection points:

f (x) = g(x)⇒ x2 = 2x⇒ x2−2x = 0⇒ x(x−2) = 0⇒ x = 0 or x = 2 .
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Substitute x = 0 into f (x) or g(x) gives the same value y = 0. Similarly, substitute x = 2, we have y = 2. Thus, the two
curves f and g intersect in two points (0,0) and (2,4).

The figure shows the region R and the solid generated from revolving that region about x-axis. A vertical rectangle
generates a washer where

the outer radius: y1 = 2x,

the inner radius: y2 = x2 and

the thickness: dx .

The volume of the washer is
dV = π

[
2x− x2] dx .

Thus, the volume of the solid over the interval [0,2] is

V = π

∫ 2

0

[
(2x)2− (x2)2] dx = π

∫ 2

0
4x2− x4 dx = π

[4x3

3
− x5

5

]2

0
= π

[32
3
− 32

5

]
=

64
15

π .

Example 7.3.6 Consider a region R bounded by the graphs y =
√

x, y = 6−x and x-axis. Rotate this region about y-axis
and find the volume of the generated solid.

Solution:

The two curves y =
√

x and y = 6− x intersect in one point (4,2). The region R
is shown in the figure. The revolution of that region generates a solid S. Since the
rotation is about y-axis, first, we need to rewrite the functions as x = f (y) and x =
g(y). Thus, x = y2 and x = 6− y. Second, a horizontal rectangle generates a washer
where

y =
√

x ⇒ x = y2 = f (y)
and y = 6− x
⇒ x = 6− y = g(y)

the outer radius: x1 = 6− y,

the inner radius: x2 = y2 and

the thickness: dy .

The volume of the washer is
dV = π

[
(6− y)2− (y2)2] dy .
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The volume of the solid over the interval [0,2] is

V = π

∫ 2

0

[
(6− y)2− (y2)2] dy = π

[
− (6− y)3

3
− y5

5

]2

0
= π

[(
− 64

3
− 32

5
)
−
(
− 216

3
−0
)]

=
664
15

π .

Example 7.3.7 Reconsider the same region as in Example 7.3.6 enclosed by the curves y =
√

x, y = 6− x and x-axis.
Now rotate this region about the x-axis instead and find the resulting volume.

Solution:

From the figure, we find that the solid is made up of two separate functions and each requires its own integral. Meaning
that, we use the disk method to evaluate the volume of the solid generated by each function:

V = π

∫ 4

0
(
√

x)2 dx+π

∫ 6

4
(6− x)2 dx

= π

∫ 4

0
x dx+π

∫ 6

4
(6− x)2 dx

=
π

2

[
x2
]4

0
− π

3

[
(6− x)3

]6

4

= (8π−0)− (0− 8π

3
) =

32
3

π .

Note: we used the substitution method to do the
second integral (with u = 6− x and du = dx)

The revolution of a region is not always around x-axis or y-axis. It could be around a line parallels x-axis or y-axis.

Remark 7.3.1

1. If the axis of revolution is a line y = y0, the volume is as the case when the region revolves around x-axis.
2. If the axis of revolution is a line x = x0, the volume is as the case when the region revolves around y-axis.
The difference between the revolution of the region about axis and the line y = y0 or x = x0 is in calculating the
inner and the outer radius.

The following examples illustrate the previous remark.

Example 7.3.8 Evaluate the volume of the solid generated by revolution of the bounded region by graphs of the functions
y = x2 and y = 4 if the revolution is about the given line:

(a) y = 4 (b) x = 2

Solution:

(a)
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Here, we have a vertical circular disk:

the radius of the disk: 4− y = 4− x2, and

the thickness: dx .

The volume of the disk is
dV = π(4− x2)2 dx .

The volume of the solid over the interval [−2,2] is

V = π

∫ 2

−2
(4− x2)2 dx = π

∫ 2

−2
16−8x2 + x4 dx = π

[
16x− 8

3
x3 +

x5

5

]2

−2
=

512
15

π .

(b)

In this case, a horizontal rectangle will generate a washer where

the outer radius: 2+
√

y,

the inner radius: 2−√y and

the thickness: dy .

The volume of the washer is
dV = π

[
(2+
√

y)2− (2−√y)2] dy = 8π
√

y dy .

The volume of the solid over the interval [0,4] is

V = π

∫ 4

0
8
√

y dx =
16π

3

[
y

3
2

]4

0
=

128
3

π .

Example 7.3.9 Sketch the region R bounded by the graphs of the equations x = (y− 1)2 and x = y+ 1. Then, find the
volume of the solid generated if R is revolved about x = 4.

Solution:
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First, we find the intersection points:

(y−1)2 = y+1⇒ y2−2y+1 = y+1⇒ y2−3y = 0⇒ y = 0 or y = 3 .

Thus, the two curves intersect in two points (1,0) and (4,3). The figure shows the region R and the solid S. A horizontal
rectangle generates a washer where

the outer radius: 4− (y−1)2,

the inner radius: 4− (y+1) = 3− y and

the thickness: dy .

The volume of the washer is

dV = π
[
(4− (y−1)2)2− (3− y)2] dy .

Thus, the volume of the solid over the interval [0,3] is

V = π

∫ 3

0
(4− (y−1)2)2− (3− y)2 dy = π

(∫ 3

0
16 dy−8

∫ 3

0
(y−1)2 dy+

∫ 3

0
(y−1)4 dy−

∫ 3

0
(3− y)2 dy

)
= π

[
16y− 8(y−1)3

3
+

(y−1)5

5
+

(3− y)3

3

]3

0
=

108
15

π .

7.3.3 Method of Cylindrical Shells

The method of cylindrical shells sometimes easier than the washer method. This is because solving equations for one
variable in terms of another is not sometimes simple (i. e., solving x in terms of y and versa visa). For example, the
volume of the solid obtained by rotating the region bounded by y = 2x2− x3 and y = 0 about the y-axis. By the washer
method, we would have to solve the cubic equation for x in terms of y and this is not simple.

In the washer method, we assume that the rectangle from each sub-interval is vertical to the axis of the revolution, but in
the method of cylindrical shells, the rectangle is parallel to the axis of the revolution.

As shown in the next figure, let
r1 be the inner radius of the shell,
r2 be the outer radius of the shell,
h be high of the shell,
∆r = r2− r1 be the thickness of the shell,
r = r1+r2

2 be the average radius of the shell.
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The volume of the cylindrical shell is

V = πr2
2h−πr2

1h

= π(r2
2− r2

1)h

= π(r2 + r1)(r2− r1)h

= 2π(
r2 + r1

2
)h(r2− r1)

= 2πrh∆r .

Now, consider the graph given in Figure 7.8. The revolution of the region R about y-axis generates a solid given in the
same figure. Let P be a partition of the interval [a,b] and let wk be the midpoint of [xk−1,xk].

The revolution of the rectangle about y-axis generates a cylindrical shell where

the high = f (wk),

the average radius = wk and

the thickness = ∆xk .

A B

Figure 7.8: The volume by the method of cylindrical shells for the solid S generated by rotating the region around y-axis.

Hence, the volume of the cylindrical shell
Vk = 2πwk f (wk)∆xk .

To evaluate the volume of the whole solid, we sum the volume of all cylindrical shells. This means

V =
n

∑
k=1

Vk = 2π

n

∑
k=1

wk f (wk)∆xk .

From Riemann sum

lim
n→∞

n

∑
k=1

wk f (wk)∆xk =
∫ b

a
x f (x) dx

and this implies

V = 2π

∫ b

a
x f (x) dx .

Similarly, if the revolution of the region is about x-axis, the volume of the solid of revolution is

V = 2π

∫ d

c
y f (y) dy .

The volume by the method of cylindrical shells can be summarized as follows:
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Theorem 7.3.3
1. If V is the volume of the solid of revolution determined by rotating the continuous function f (x) on the

interval [a,b] about the y-axis, then

V = 2π

∫ b

a
x f (x) dx .

2. If V is the volume of the solid of revolution determined by rotating the continuous function f (y) on the
interval [c,d] about the x-axis, then

V = 2π

∫ d

c
y f (y) dy .

Example 7.3.10 Sketch the region R bounded by the graphs of the equations y = 2x− x2 and x = 0. Then, by the method
of cylindrical shells, find the volume of the solid generated if R is revolved about y-axis.

Solution:

Since the revolution is about y-axis, the rectangle is vertical where

the high: y = 2x− x2,

the average radius: x,

the thickness: dx .

The volume of a cylindrical shell
dV = 2πx(2x− x2) dx .

Thus, the volume of the solid is

V = 2π

∫ 2

0
x(2x− x2) dx = 2π

∫ 2

0
2x2− x3 dx = 2π

[2x3

3
− x4

4

]2

0
= 2π

(16
3
− 16

4
)
=

8π

3
.

Example 7.3.11 Sketch the region R bounded by the graphs of the equations x =
√

y, x = 2 and y-axis. Then, find the
volume of the solid generated if R is revolved about x-axis.

Solution:
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Since the revolution is about x-axis, the rectangle is horizontal where

the high: x =
√

y,

the average radius: y and

the thickness: dy .

The volume of the cylindrical shell

dV = 2π y
√

y dy .

Thus, the volume of the solid is

V = 2π

∫ 4

0
y
√

y dy = 2π

∫ 4

0
y

3
2 dy =

4π

5

[
y

5
2

]4

0
=

4π

5

[
32−0

]
=

128π

5
.

Exercise 3:

1 - 8 Sketch the region R bounded by the graphs of the equations and find the volume of the solid generated if R is revolved about the x-axis:

1. y = x+1,x = 0,x = 1
2. y = x2 +1, x = 0, x = 2
3. y = x3, x = 0, x = 2

4. y =
√

x, x = 0, x = 4
5. y =

√
x, x = y

6. y = sinx, x = 0, x = π/2

7. y = 1− x2, y = x2

8. y = x3 +1, y = x+1

9 - 16 Sketch the region R bounded by the graphs of the equations and find the volume of the solid generated if R is revolved about the y-axis:

9. y = x2, y = 1, y = 4
10. y =

√
x, y = 0, y = 3

11. x = cosy, y = 0, y = π/2

12. x = lny, y = 1, y = e
13. y = x, y = (x−1)2 +1
14. y = ex, x = 1, x = 2, y = 0

15. xy = 4, x+ y = 5
16. y = x2, y2 = 8x

17 - 26 Set up evaluate an integral for the volume of the solid obtained by rotating the region bounded by the given curves about the specified
axis:

17. y = x2, y = 1, about x = 1
18. y = x2, y = 1, about x-axis
19. y = x2, x = y2 about y =−1
20. y =

√
x−1, y = 0, x = 5 about x = 5

21. y = x2, x = 0, y = 1, y = 4 about y = 1

22. y = x− x2, y = 0 about x = 2
23. y = x2, y = 0, x = 1, x = 2 about x = 1
24. y = x2, y = 0, x = 1, x = 2 about x = 4
25. y =

√
x−1, y = 0, x = 5 about y = 3

26. y = x4, y = sin( πx
2 ) about x =−1

27 - 35 Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the specified
axis. Sketch the region and a typical shell.

27. x = 1+ y2, x = 0, y = 1, y = 2 about x-axis
28. x =

√
y, x = 0, y = 1 about x-axis

29. y = x3, y = 8, x = 0 about x-axis
30. y = 1

x , x = 1, x = 2 about y-axis

31. y = x2, y = 0, x = 1 about y-axis

32. y = x2, y = x about x-axis
33. y = sinx, y = cosx, x = 0, x = π

4 about y-axis

34. y = x2 + x, y = 0 about y-axis
35. y = x+ 4

x , y = 5 about x =−1

7.4 Arc Length and Surfaces of Revolution

7.4.1 Arc Length

Let y = f (x) be a smooth function on [a,b]. Assume P = {x0,x1, ...,xn} is a regular partition of the interval [a,b] and let
y0,y1, ...,yn be the points on the curve as shown in the following figure.

The distance between any two points (xk−1,yk−1) and (xk,yk) in the curve is
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d(yk−1,yk) =
√
(4xk)2 +(4yk)2

=
√
(4xk)2 +( f (xk)− f (xk−1))2

= (4xk)

√
1+

( f (xk)− f (xk−1))2

(4xk)2

=
b−a

n

√
1+
[ f (xk)− f (xk−1)

4xk

]2

Figure 7.9: The length of the arc of f (x) from x = a to x = b.

From the conditions of the mean value theorem of differential calculus for the function f on [xk−1,xk], we have

f ′(ci) =
f (xk)− f (xk−1)

xk− xk−1

for some ci ∈ (xk−1,xk). Thus, the distance between (xk−1,yk−1) and (xk,yk) is

d(yk−1,yk) =
b−a

n

√
1+
[

f ′(ci)
]2

.

The sum of the distances is

b−a
n

[√
1+
[

f ′(c1)
]2
+

√
1+
[

f ′(c2)
]2
+ ...+

√
1+
[

f ′(cn)
]2]

.

The previous sum is a Riemann sum for the function
√

1+
[

f ′(xi)
]2 from a to b where for a better approximation, we let

n be large enough. From this, the arc length is

L( f ) =
∫ b

a

√
1+
[

f ′(x)
]2 dx

Similarly, let x = g(y) be a smooth function on
[c,d]. The length of the arc of g from y = c to
y = d is

L(g) =
∫ d

c

√
1+
[
g′(y)

]2 dy .

Figure 7.10: The length of the arc of g(y) from y = c to y = d.

Theorem 7.4.1
1. Let y = f (x) be a smooth function on [a,b]. The length of the arc of f is

L( f ) =
∫ b

a

√
1+
[

f ′(x)
]2 dx .

2. Let x = g(y) be a smooth function on [c,d]. The length of the arc of g is

L(g) =
∫ d

c

√
1+
[
g′(y)

]2 dy .
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Example 7.4.1 Find the arc length of the graph of the given equation from A to B:

1. y = 5−
√

x3; A(0,5), B(4,−3)

2. x = 4y; A(0,0), B(1,4)

Solution:

(1) If y = 5−
√

x3⇒ f ′(x) =− 3
2 x

1
2 ⇒ ( f ′(x))2 = 9

4 x⇒ 1+( f ′(x))2 = 4+9x
4 ⇒

√
1+( f ′(x))2 =

√
4+9x
2 .

The length of the curve is

L =
1
2

∫ 4

0

√
4+9x dx = 3

[
(4+9x)

3
2

]4

0
= 3
[
40

3
2 −4

3
2

]
=

8
[
10
√

10−1
]

3
.

(2) If x = 4y⇒ g′(y) = 4⇒ (g′(y))2 = 16⇒ 1+(g′(y))2 = 17⇒
√

1+(g′(y))2 =
√

17 .

The length of the curve is

L =
√

17
∫ 4

0
dy =

√
17
[

y
]4

0
=
√

17
[
4−0

]
= 4
√

17 .

Example 7.4.2 Find the arc length of the graph of the given equation over the indicated interval:

1. y = coshx; 0≤ x≤ 2

2. x = 1
8 y4 + 1

4 y−2; −2≤ y≤−1

Solution:

(1) If y = coshx⇒ f ′(x) = sinhx⇒ ( f ′(x))2 = sinh2 x⇒ 1+( f ′(x))2 = 1+ sinh2 x⇒
√

1+( f ′(x))2 = coshx .

The length of the curve is

L =
∫ 2

0
coshx dx =

[
sinhx

]2

0
= sinh2− sinh0 = sinh2 .

(2) If x = 1
8 y4 + 1

4 y−2⇒ g′(y) = 1
2 (y

3− 1
y3 )⇒ (g′(y))2 = (y6−1)2

4y6 ⇒ 1+(g′(y))2 = 4y6+y12−2y6+1
y6 .

This implies

1+(g′(y))2 =
y12 +2y6 +1

y6 ⇒
√

1+(g′(y))2 =

√
(y6 +1)2

y6 =
y6 +1

y3 .

Since y < 0 over [−2,−1], the length of the curve is

L =−
∫ −1

−2
y3 + y−3 dy =−

[y4

4
− 1

2y2

]−1

−2
=

35
8

.

7.4.2 Surfaces of Revolution

Definition 7.4.1 The surface of revolution is generated by rotating the curve of a continuous function about an
axis.

Let y = f (x) ≥ 0 be a smooth function on the interval [a,b]. Let P = {x0,x1, ...,xn} be a partition of the interval [a,b]
and y0,y1, ...,yn be the points on the curve as shown in Figure 7.11. If Dk is a frustum cone generated from rotating
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the subinterval [xk−1,xk] about x-axis. The area of a frustum cone with radii r1 and r2 and slant length ` is S.A =
π(r1 + r2)`.

From this, the surface of Dk is
S.A(Dk) = π[ f (xk)+ f (xk−1)]4 `k

where4`k is the length of the subinterval [yk−1,yk] i.e.,4`k =
√

(4xk)2 +( f (xk)− f (xk−1))2.

From the intermediate value theorem, there exists ωk ∈ (xk−1,xk) such that

f (xk)− f (xk−1) = f ′(ωk)4 xk .

This implies4`k =4xk
√

1+[ f ′(ωk)]2 .

For n large, f (xk)≈ f (xk−1)≈ f (ωk) and this means

S.A =
n

∑
k=1

2π f (ωk)
√

1+[ f ′(ωk)]24 xk .

From Riemann sum,

S.A = lim
n→∞

n

∑
k=1

2π f (ωk)
√

1+[ f ′(ωk)]24 xk = 2π

∫ b

a
| f (x) |

√
1+[ f ′(x)]2 dx = 2π

∫ b

a
| y |

√
1+
(dy

dx

)2 dx .

If the rotation is about y-axis, then

S.A = 2π

∫ b

a
| x |

√
1+[ f ′(x)]2 dx = 2π

∫ b

a
| x |

√
1+
(dy

dx

)2 dx .

A B

Figure 7.11: The surface of revolution generated by rotating the curve of a continuous function about x-axis.

Similarly, if x = g(y) is a smooth function on [c,d]. The surface area S.A generated by revolution the curve of g about
y-axis from y = c to y = d is

S.A = 2π

∫ d

c
| g(y) |

√
1+
[
g′(y)

]2 dy = 2π

∫ d

c
| x |

√
1+
(dx

dy

)2 dy .

If the rotating is about x-axis, then

S.A = 2π

∫ d

c
| y |

√
1+
[
g′(y)

]2 dy = 2π

∫ d

c
| y |

√
1+
(dx

dy

)2 dy .
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Theorem 7.4.2
1. Let y = f (x) be a smooth function on [a,b].

• If the rotating is about x-axis,

S.A = 2π

∫ b

a
| y |

√
1+
(

f ′(x)
)2 dx .

• If the rotating is about y-axis,

S.A = 2π

∫ b

a
| x |

√
1+
(

f ′(x)
)2 dx .

2. Let x = g(y) be a smooth function on [c,d]. The surface area of revolution about y-axis is
• If the rotating is about y-axis,

S.A = 2π

∫ d

c
| x |

√
1+
(
g′(y)

)2 dy .

• If the rotating is about x-axis,

S.A = 2π

∫ d

c
| y |

√
1+
(
g′(y)

)2 dy .

Example 7.4.3 Find the surface area generated by revolving the curve of the function
√

4− x2,−2≤ x≤ 2 around x-axis.

Solution:

We use the formula S.A = 2π

∫ b

a
| f (x) |

√
1+( f ′(x))2 dx.

If y =
√

4− x2⇒ f ′(x) =
−2x

2
√

4− x2
⇒ ( f ′(x))2 =

x2

4− x2 ⇒ 1+( f ′(x))2 =
4

4− x2 ⇒
√

1+( f ′(x))2 =
2√

4− x2
.

The area of the revolution surface is S.A = 2π

∫ 2

−2

√
4− x2 2√

4− x2
dx = 4π

[
2+2

]
= 16π .

Example 7.4.4 Find the surface area generated by revolving the curve of the function x = y3 on the interval [0,1] around
y-axis.

Solution:

We use the formula S.A = 2π

∫ d

c
| f (y) |

√
1+( f ′(y))2 dy.

If x = y3⇒ g′(y) = 3y2⇒ (g′(y))2 = 9y4⇒ 1+(g′(y))2 = 1+9y4⇒
√

1+(g′(y))2 =
√

1+9y4 .

The area of the revolution surface is S.A = 2π

∫ 1

0
y3
√

1+9y4 dy = π

27

[
(1+9y4)

3
2

]1

0
= π

27

[
10
√

10−1
]

.

Exercise 4:
1 - 13 Find the arc length of the graph:

1. y = lnx, 1≤ x≤ 3
2. y = ex, 0≤ x≤ 1
3. y = x2 +1, 1≤ x≤ 3
4. y =

√
x, 1≤ x≤ 4

5. y = 1
2 x2, 0≤ x≤ 1

6. y = ln(cosx), π/4≤ x≤ π/3

7. x = 2
3 (y−1)

3
2 , 1≤ y≤ 2

8. x =
√

4− y2, 0≤ y≤ 1
9. x = 4−2y, 0≤ y≤ 2

10. x = coshy, 1≤ y≤ 3

11. x = y2

3 , 1≤ y≤ 4
12. x = y2, 0≤ y≤ 1
13. x = ln(secy), 0≤ y≤ π

4



95

14 - 24 Find the area of the surface generated by revolving the curve about the specified axis:

14. y =
√

4− x2, −1≤ x≤ 1 about x-axis
15. y = x2, 1≤ x≤ 2 about y-axis
16. y = ex, 0≤ x≤ 1 about x-axis
17. y = lnx, 1≤ x≤ 3 about y-axis
18. y = sinx, 0≤ x≤ π/2 about x-axis
19. x = ey, 1≤ y≤ 2 about y-axis

20. 9x = y+18, 0≤ x≤ 2 about x-axis
21. y = x3, 0≤ x≤ 2 about x-axis
22. y = cos2x, 0≤ x≤ π/6 about x-axis
23. y = 3

√
x, 1≤ y≤ 2 about y-axis

24. y = 1− x2, 0≤ x≤ 1 about y-axis
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Chapter 8

Parametric Equations and Polar
Coordinates

8.1 Parametric Equations of Plane Curves

In this section, we rather than considering only functions y = f (x), it is sometimes convenient to view both x and y as
functions of a third variable t (called a parameter). The resulting equations x = f (t) and y = g(t) are called parametric
equations. Each value of t determines a point (x,y), which we can plot in a coordinate plane. As t varies, the point
(x,y) = ( f (t),g(t)) varies and traces out a curve C, which we call a parametric curve.

Example 8.1.1

Let y = f (x) = x2. The
function is continuous
and its graph given in
the following figure:

If we consider the interval −1 ≤ x ≤ 2,
then we have

Now, let x= t and y= t2 for−1≤ t ≤ 2. We have the same graph where the last equations are called parametric equations
for the curve C.

Remark 8.1.1
1. The parametric equations give the same graph of y = f (x).
2. The parametric equations give the orientation of C.
3. To find the parametric equations, we introduce a third variable t. Then, we rewrite x and y as functions of

t. The result is the parametric equations:
x = f (t) parametric equation for x,
y = g(t) parametric equation for y.

Example 8.1.2 Write the curve given by x(t) = 2t +1 and y(t) = 4t2−9 as y = f (x).

Solution:
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Since x = 2t +1, then t = (x−1)/2. This implies y(t) = 4t2−9 = 4
( x−1

2

)2−9⇒ y = x2−2x−8 .

Example 8.1.3 Sketch and identify the curve defined by the parametric equations x = 5cos t, y = 2sin t, 0≤ t ≤ 2π .

Solution:

Let’s first find the equation in x and y. Since x = 5cos t and y = 2sin t, then cos t = x/5 and sin t = y/2.

We know that

cos2 t + sin2 t = 1

⇒ x2

25
+

y2

4
= 1

Thus, the graph of the parametric equations is an ellipse.

Example 8.1.4 For the following curve x = sin t, y = cos t, 0≤ t ≤ 2π,

1. find an equation in x and y whose graph contains the points on the curve,

2. sketch the graph of C,

3. indicate the orientation.

Solution:

1. We know that cos2 t + sin2 t = 1. This implies

x2 + y2 = 1 .

Therefore, the graph of the parametric equations is a circle.

2.

3. The orientation can be indicated as follows:

t 0 π

2 π

x 0 1 0
y 1 0 −1
(x,y) (0,1) (1,0) (0,−1)

Now, if x = f (t) and y = g(t) are parametric equations for the curve C. We are going to study slope of the tangent line at
a point and second derivative.

8.1.1 Slope of the Tangent Line

Suppose f and g are differentiable functions. We want to find the tangent line at a point on the parametric curve x = f (t),
y = g(t) where y is also a differentiable function of x. From the chain rule, we have

dy
dt

=
dy
dx

dx
dt

.

If dx/dt 6= 0, we can solve for dy/dx:
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y
′
=

dy
dx

=
dy
dt
dx
dt

if
dx
dt
6= 0

Remark 8.1.2
• If dy/dt = 0 such that dx/dt 6= 0, the curve has a horizontal tangent.
• If dx/dt = 0 such that dy/dt 6= 0, the curve has a vertical tangent.

Example 8.1.5 Find the slope of the tangent line to the curve at the indicated value:

1. x = t +1, y = t2 +3t; at t =−1 .

2. x = t3−3t, y = t2−5t−1; at t = 2 .

3. x = sin t, y = cos t; at t = π

4 .

Solution:

1. y
′
= dy

dx =
dy
dt
dx
dt

= 2t+3
1 = 2t +3.

The slope of the tangent line at t =−1 is dy
dx = 1.

2. y
′
= dy

dx =
dy
dt
dx
dt

= 2t−5
3t2−3 .

The slope of the tangent line at t = 2 is dy
dx = −1

9 .

3. y
′
= dy

dx =
dy
dt
dx
dt

= −sin t
cos t =− tan t.

The slope of the tangent line at t = π

4 is dy
dx =−1.

Example 8.1.6 Find the equations of the tangent line and the vertical line at t = 2 to the curve x = 2t, y = t2−1.

Solution:

y
′
=

dy
dx

=
dy
dt
dx
dt

=
2t
2

= t .

The slope of the tangent line at t = 2 is m = 2. Thus, the slope of the vertical line is −1
m = −1

2 . At t = 2, we have
(x0,y0) = (4,3). Therefore, the tangent line is

y−3 = 2(x−4)

and the vertical line is

y−3 =−1
2
(x−4) .

Remember:
y− y0 = m(x− x0)

Example 8.1.7 Find the points on the curve C at which the tangent line is either horizontal or vertical.

1. x = 1− t, y = t2 .

2. x = t3−4t, y = t2−4 .

Solution:

1. Slope of the tangent line is m = dy
dx =

dy
dt
dx
dt

= 2t
−1 =−2t.
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For the horizontal tangent line, the slope m = 0. This implies −2t = 0 and then, t = 0. If t = 0, x = 1 and y = 0.
Thus, the graph of C has horizontal tangent line at the point (1,0).

For the vertical tangent line, the slope −1
m = 0. This implies 1

2t = 0, but this equation cannot be solved i.e., we
cannot find value for t to satisfy 1

2t = 0. Therefore, there is no vertical line.

2. Slope of the tangent line is m = dy
dx =

dy
dt
dx
dt

= 2t
3t2−4 .

For the horizontal tangent line, the slope m = 0. This implies 2t
3t2−4 = 0 and this is acquiblack if t = 0. If t = 0,

x = 0 and y =−4. Thus, the graph of C has a horizontal tangent line at the point (0,−4).

For the vertical tangent line, the slope −1
m = 0. This implies −3t2+4

2t = 0 and this is acquiblack if t =± 2√
3
. If t = 2√

3
,

x = −16
3
√

3
and y = −8

3 . Also, if t = −2√
3
, x = 16

3
√

3
and y = −8

3 . Thus, the graph of C has a vertical tangent line at the

points (−16
3
√

3
, −8

3 ) and ( 16
3
√

3
, −8

3 ).

8.1.2 Second Derivative in a Parametric Form

If we want to find the second derivative of a parametric curve x = f (t), y = g(t) where f and g are differentiable functions,
we use the following formula:

d2y
dx2 =

d(y
′
)

dx
=

dy
′

dt
dx
dt

Example 8.1.8 Find dy
dx and d2y

dx2 at the indicated value:

1. x = t, y = t2−1 at t = 1 .

2. x = cos t, y = sin t at t = π

3 .

Solution:

1. dy
dt = 2t and dx

dt = 1. Thus, dy
dx = dy/dt

dx/dt = 2t. At t = 1, dy
dx = 2(1) = 2.

d2y
dx2 = dy′/dt

dx/dt = 2 .

2. dy
dt = cos t and dx

dt =−sin t. Thus, dy
dx = dy/dt

dx/dt =− tanx. At t = π

3 , dy
dx =− 1√

3
.

d2y
dx2 = dy′/dt

dx/dt = −sin t
−sin t = 1 .

8.1.3 Arc Length and Surface Area of Revolution

In the previous chapter, we study how to calculate the arc length of a smooth function f on an interval [a,b]. We concluded
that the arc length of f is

L( f ) =
∫ b

a

√
1+
[

f ′(x)
]2 dx .

Let the curve C has the parametric equations x = f (t) and y = g(t) where a ≤ t ≤ b. Assume f ′ and g′ are continuous,
then

f ′(x) =
dy
dx

=
dy/dt
dx/dt

.
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From this, 1+
[

f
′
(x)
]2

= 1+
[

dy/dt
dx/dt

]2
= (dx/dt)2+(dy/dt)2

(dx/dt)2 . Thus,

√
1+
[

f ′(x)
]2 dx =

√
(dx/dt)2 +(dy/dt)2

(dx/dt)2 dx =

√
(dx/dt)2 +(dy/dt)2

dx/dt
dx =

√
(dx/dt)2 +(dy/dt)2 dt .

We conclude that the length of the curve x = f (t), y = g(t) where a≤ t ≤ b is given by

L =
∫ b

a

√
(

dx
dt

)2 +(
dy
dt

)2 dt

In the following, we find the formula to evaluate the surface area of revolution of parametric curves. Let the curve C has
the parametric equations x = f (t), y = g(t) and a ≤ t ≤ b such that f ′ and g′ are continuous. From the previous chapter,
we know that if the rotation is about y-axis, then

S.A = 2π

∫ b

a
| x |

√
1+[ f ′(x)]2 dx = 2π

∫ b

a
| x︸︷︷︸
= f (t)

|
√

1+
[

f ′(x)
]2 dx︸ ︷︷ ︸

=
√

( dx
dt )

2+( dy
dt )

2 dt

.

Thus, the surface area of revolution about y-axis is

S.A = 2π

∫ b

a
| f (t) |

√(dx
dt

)2
+
(dy

dt

)2 dt .

Similarly, we can find that if the rotating is about x-axis, then

S.A = 2π

∫ b

a
| g(t) |

√(dx
dt

)2
+
(dy

dt

)2 dt .

Theorem 8.1.1 Let the curve C has the parametric equations x = f (t), y = g(t) and a≤ t ≤ b such that f ′ and g′

are continuous.
1. Arc length:

L =
∫ b

a

√
(

dx
dt

)2 +(
dy
dt

)2 dt .

2. Surface area of revolution:
• if the revolution is about x-axis,

S.A = 2π

∫ b

a
| y |

√(dx
dt

)2
+
(dy

dt

)2 dt .

• if the revolution is about y-axis,

S.A = 2π

∫ b

a
| x |

√(dx
dt

)2
+
(dy

dt

)2 dt .

Example 8.1.9 Find the arc length of the curve x = et cos t, y = et sin t, 0≤ t ≤ π

2 .

Solution:

First, we find dx
dt and dy

dt .
dx
dt

= et cos t− et sin t⇒ (
dx
dt

)2 = (et cos t− et sin t)2 ,

dy
dt

= et sin t + et cos t⇒ (
dy
dt

)2 = (et sin t + et cos t)2 .
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Thus,

(
dx
dt

)2 +(
dy
dt

)2 = e2t cos2 t−2e2t cos t sin t + e2t sin2 t + e2t sin2 t +2e2t sin t cos t + e2t sin2 t = e2t + e2t = 2e2t .

Therefore, the arc length of the curve is

L =
√

2
∫ π

2

0
et dt =

√
2
[
et
] π

2

0
=
√

2
(
e

π

2 −1
)
.

Example 8.1.10 Find the surface area of revolution of the curve x = 3cos t, y = 3sin t, 0≤ t ≤ π

3 around x-axis.

Solution:

We use the formula S.A=
∫ b

a
g(t)

√
(

dx
dt

)2 +(
dy
dt

)2 dt since the rotation is about x-axis. We find dx
dt and dy

dt as follows:

dx
dt

=−3sin t⇒ (
dx
dt

)2 = 9sin2 t ,

dy
dt

= 3cos t⇒ (
dx
dt

)2 = 9cos2 t .

Thus,

(
dx
dt

)2 +(
dy
dt

)2 = 9(sin2 t + cos2 t) = 9 .

This implies

S.A = 18π

∫ π

3

0
sin t dt =−18π

[
cos t

] π

3

0
=−18π

[1
2
−1
]
= 9π

Exercise 1:
1 - 8 Curve C is given parametrically. Find an equation in x and y, then sketch the graph and indicate the orientation:

1. x = t,y = 2t +1,1≤ t ≤ 3
2. x = cos2t,y = sin t,0≤ t ≤ π/2
3. x = 2t,y = (2t)2,−1≤ t ≤ 1
4. x = 1+ cos t,y = 1+ sin t,0≤ t ≤ 2π

5. x = ln t,y = et ,1≤ t ≤ 4
6. x = 3cos t,y = 3sin t,0≤ t ≤ 2π

7. x = 3t +2,y = t−1,−1≤ t ≤ 5
8. x = t,y = t3,1≤ t ≤ 3

9 - 16 Find dy
dx and d2y

dx2 at the indicated values:

9. x = t2,y = t3 +1 at t = 1
10. x = t/3,y = t3/2 at t = 2
11. x =

√
t3,y = 2t +1 at t = 1

12. x = t2 +1,y = 1− t3 at t = 3

13. x = et ,y = e−t +1 at t = 0
14. x = t + cos t,y = sin t at t = π/4
15. x = t cos t,y = t sin t at t = 0
16. x = 3√t,y = t2 at t = 1

17 - 24 Find the slope of the tangent line to the curve at the indicated value:
17. x = 2t,y = (2t)2 at t = 1
18. x =

√
t3,y = 2t +1 at t = 2

19. x = t2 +1,y = 1− t3 at t = 3
20. x = cos2t,y = sin t at t = π/3

21. x = 3t +2,y = t−1 at t = 1
22. x = t + cos t,y = sin t at t = π/6
23. x = t,y = t3, at t = 1
24. x = 3√t,y = t2 at t = 5

25 - 30 Find the points on the curve C at which the tangent line is either horizontal or vertical.
25. x = t,y = t3, t ∈ R
26. x = 4t,y = t2, t ∈ R
27. x = ln t,y = et , t > 0

28. x = t2,y = t3−3t, t ∈ R
29. x = 3t2−6t,y =

√
t, t ≥ 0

30. x = 1− sin t,y = 2cos t, t ∈ R

31 - 38 Find the length of the curve:
31. x = 3t +2,y = t−1,−1≤ t ≤ 3
32. x = 3t2,y = 2t3,0≤ t ≤ 2
33. x = t,y = t2,1≤ t ≤ 4
34. x = sin t,y = cos t,π/6≤ t ≤ π/4

35. x = ln t,y = t,1≤ t ≤ 4
36. x = 1+ cos t,y = 1+ sin t,0≤ t ≤ π

37. x = 3cos t,y = 3sin t,0≤ t ≤ π/4
38. x = t2,y = t3,0≤ t ≤ 1/2

39 - 46 Find the area of the surface generated by revolving the curve about the specified axis:
39. x = t2,y = t,0≤ t ≤ 1 about x−axis
40. x = et cos t,y = et sin t,0≤ t ≤ π

2 about x−axis
41. x = t,y = t2,1≤ t ≤ 4 about y−axis
42. x = t,y =

√
t,0≤ t ≤ 2 about x−axis

43. x = t2,y = t,0≤ t ≤ 2 about x−axis
44. x = 1+ cos t,y = 1+ sin t,0≤ t ≤ π about y−axis
45. x = sin2 t,y = cos2 t,0≤ t ≤ π/2 about y−axis
46. x = 3t2,y = t,0≤ t ≤ 2 about x−axis



102

8.2 Polar Coordinates System

Previously, we used Cartesian coordinates to determine points (x,y) as shown in Figure 8.1 (left). In this section, we are
going to study a new coordinate system called a polar coordinate.

Definition 8.2.1 The polar coordinate system is a two-dimensional coordinate system in which each point P on a
plane is determined by a distance r from a fixed point O that is called the pole (or origin) and an angle θ from a
fixed direction.

Figure 8.1: The Cartesian coordinate on the left and the polar coordinate on the right.

Example 8.2.1 Plot the points whose polar coordinates are given:

1. (1,5π/4)
2. (2,3π)

3. (2,−2π/3)
4. (3,3π/4)

Solution:

(1) (3)

(2) (4)
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Remark 8.2.1
1. From the definition, the point P in the polar coordinate system is represented by the ordeblack pair (r,θ)

where r, θ are called polar coordinates.
2. In the polar coordinates (r,θ), if r > 0, the point (r,θ) lies in the same quadrant as θ; if r < 0, it lies in the

quadrant on the opposite side of the pole. Meaning that, the polar coordinates (r,θ) and (−r,θ) lie in the
same line through the pole O and at the same distance | r | from O, but on opposite sides of O.

3. In the Cartesian coordinate system, every point has only one representation, but in the polar coordinate
system each point has many representations. The following formula gives all representations of each point
P(r,θ) in the polar coordinate system

(r,θ+2nπ) = (r,θ) = (−r,θ+(2n+1)π) n ∈ Z .

Example 8.2.2 In Example 8.2.1, the point (1,5π/4) could be written as (1,−3π/4), (1,13π/4) or (−1,π/4):

8.2.1 Relationship between Rectangular and Polar Coordinates

Let (x,y) be a rectangular coordinate and (r,θ) be a polar coordinate. Let the pole at the origin point and polar axis on
x-axis, and the line θ = π

2 on y-axis as shown in Figure 8.2.

Figure 8.2: The relationship between the rectangular and polar coordinates.

From the triangle OAP

cosθ =
x
r
⇒ x = r cosθ ,
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sinθ =
y
r
⇒ y = r sinθ .

Thus,

x2 + y2 = (r cosθ)2 +(r sinθ)2,

= r2(cos2
θ+ sin2

θ) .

This implies, x2 + y2 = r2 and tanθ = y
x .

The previous relationships can be summarized as follows:

x = r cosθ, y = r sinθ, tanθ=
y
x
, x2+y2 = r2

Example 8.2.3 Convert the points from the polar coordinates to the rectangular coordinates:

1. (1,π/4)
2. (2,π)

3. (2,−2π/3)
4. (4,3π/4)

Solution:

1. r = 1 and θ = π

4 .

x = r cosθ = (1)cos(
π

4
) =

1√
2
,

y = r sinθ = (1)sin(
π

4
) =

1√
2
.

Hence, (x,y) = ( 1√
2
, 1√

2
).

2. r = 2 and θ = π.

x = r cosθ = 2cos(π) =−2 ,

y = r sinθ = 2sin(π) = 0 .

Thus, (x,y) = (−2,0).

3. r = 2 and θ = −2π

3 .

x = r cosθ = 2cos(
−2π

3
) =−1 ,

y = r sinθ = 2sin(
−2π

3
) =−

√
3 .

Thus, (x,y) = (−1,−
√

3).
4. r = 4 and θ = 3π

4 .

x = r cosθ = 4cos(
3π

4
) =−2

√
2 ,

y = r sinθ = 4sin(
3π

4
) = 2

√
2 .

This implies (x,y) = (−2
√

2,2
√

2).

Example 8.2.4 Convert the points from the rectangular coordinates to polar coordinates:

1. (5,0)
2. (2

√
3,−2)

3. (0,2)
4. (1,1)

Solution:

1. x = 5 and y = 0

⇒ r2 = x2 + y2 = 52 +02

⇒ r = 5 .

Also, tanθ = y
x = 0

5 = 0⇒ θ = 0 .

Thus, (r,θ) = (5,0). Remember, in the polar coordinate system each point has many representations (Remark
8.2.1).

2. x = 2
√

3 and y =−2

⇒ r2 = x2 + y2 = (2
√

3)2 +(−2)2

⇒ r = 4 .
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Also, tanθ = y
x = −2

2
√

3
= −1√

3
⇒ θ = 5π

6 .

Thus, (r,θ) = (4, 5π

6 ).

3. x = 0 and y = 2

⇒ r2 = x2 + y2 = 02 +22

⇒ r = 2 .

Also, tanθ = y
x = ∞⇒ θ = π

2 .

This implies (r,θ) = (2, π

2 ) .

4. x = 1 and y = 1

⇒ r2 = x2 + y2 = 12 +12

⇒ r =
√

2 .

Also, tanθ = y
x = 1⇒ θ = π

4 .

This implies, (r,θ) = (
√

2, π

4 ) .

Example 8.2.5 Convert the rectangular equation to the polar form:

1. x = 7
2. y =−3

3. x2 + y2 = 4
4. y2 = 9x

Solution:

1. x = 7⇒ r cosθ = 7.

2. y =−3⇒ r sinθ =−3.

3. x2 + y2 = 4

x2 + y2 = 4⇒ r2 cos2
θ+ r2 sin2

θ = 4

⇒ r2(cos2
θ+ sin2

θ) = 4

⇒ r2 = 4
⇒ r = 2 .

4. y2 = 9x

y2 = 9x⇒ r2 sin2
θ = 9r cosθ

⇒ r sin2
θ = 9cosθ

⇒ r = 9cotθcscθ .

Example 8.2.6 Convert the polar equation to the rectangular form:

1. r = 3
2. r = sinθ

3. r = 6cosθ

4. r = secθ

Solution:

1. r = 3⇒
√

x2 + y2 = 3⇒ x2 + y2 = 9.

2. r = sinθ⇒ r = y
r ⇒ r2 = y⇒ x2 + y2 = y⇒ x2 + y2− y = 0.

3. r = 6cosθ⇒ r = 6 x
r ⇒ r2 = 6x⇒ x2 + y2−6x = 0.

4. r = secθ⇒ r = 1
cosθ
⇒ r cosθ = 1⇒ x = 1.
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8.2.2 Tangent Line to a Polar Curve

Let r = f (θ) be a polar curve where f ′ is continuous at (r0,θ0). Then,

x = f (θ)cosθ , y = f (θ)sinθ .

From chain rule, we have
dx
dθ

=− f (θ)sinθ+ f ′(θ)cosθ =−r sinθ+
dr
dθ

cosθ ,

dy
dθ

= f (θ)cosθ+ f ′(θ)sinθ = r cosθ+
dr
dθ

sinθ .

If dx
dθ
6= 0 at θ = θ0, the slope of the tangent line to the graph of r = f (θ) at (r0,θ0) is

dy
dx

=
dy/dθ

dx/dθ
=

r0 cosθ0 + sinθ0(dr/dθ)

−r0 sinθ0 + cosθ0(dr/dθ)
.

Remark 8.2.2
1. If dy

dθ
= 0 such that dx

dθ
6= 0, the curve has a horizontal tangent line.

2. If dx
dθ

= 0 such that dy
dθ
6= 0, the curve has a vertical tangent line.

Example 8.2.7 Find the slope tangent of the curve r = sinθ at θ = π

4 .

Solution:
x = r cosθ⇒ x = sinθcosθ⇒ dx

dθ
= cos2

θ− sin2
θ ,

y = r sinθ⇒ x = sin2
θ⇒ dy

dθ
= 2sinθcosθ .

dy
dx

=
2sinθcosθ

cos2 θ− sin2
θ

At θ = π

4 , dy
dθ

= 1 and dx
dθ

= 0. Thus, the curve has a vertical tangent line.

Example 8.2.8 Find the points on the curve r = 2+2cosθ for 0≤ θ≤ 2π at which tangent lines are either horizontal or
vertical.

Solution:
x = r cosθ = 2cosθ+2cos2

θ⇒ dx
dθ

=−2sinθ−4cosθsinθ ,

y = r sinθ = 2sinθ+2cosθsinθ⇒ dy
dθ

= 2cosθ−2sin2
θ+2cos2

θ .

For the horizontal tangent line,

dy
dθ

= 0⇒ 2cosθ−2sin2
θ+2cos2

θ = 0⇒ 2cos2
θ+ cosθ−1 = 0⇒ (2cosθ−1)(cosθ+1) = 0 .

This implies θ = π, θ = π/3, or θ = 5π/3. Therefore, the tangent line is horizontal at (0,π), (3,π/3) or (3,5π/3).

For the vertical tangent line,
dx
dθ

= 0⇒ sinθ(2cosθ+1) = 0 .

This implies θ = 0, θ = π, θ = 2π/3, θ = 4π/3 or θ = 2π. However, we have to ignore θ = π and θ = 2π since at these
values dy/dθ = 0. Therefore, the tangent line is vertical at (4,0), (1,2π/3), or (1,4π/3).
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8.2.3 Graphs in Polar Coordinates

Before starting sketching polar curves, it is important to know when the polar curves are symmetric about the polar axis,
the vertical line θ = π

2 , or about the pole.

ä Symmetry in Polar Coordinates

Theorem 8.2.1
1. Symmetry about the polar axis.

The graph of r = f (θ) is symmetric with respect to the polar axis if replacing (r,θ) with (r,−θ) or
with (−r,π−θ) does not change the equation.

2. Symmetry about the vertical line θ = π

2 .
The graph of r = f (θ) is symmetric with respect to the vertical line if replacing (r,θ) with (r,π−θ)
or with (−r,−θ) does not change the equation.

3. Symmetry about the pole θ = 0.
The graph of r = f (θ) is symmetric with respect to the pole if replacing (r,θ) with (−r,θ) or with
(r,θ+π) does not change the equation.

A B C

Figure 8.3: Symmetry in Polar Coordinates: (A) symmetry about the polar axis, (B) symmetry about the vertical line θ = π

2 , and (C)
symmetry about the pole θ = 0.

Example 8.2.9 1. The graph of r = 4cosθ is symmetric about the polar axis since

cos(−θ) = cosθ .

2. The graph of r = 4sinθ is symmetric about the vertical line θ = π

2 since

sin(π−θ) = sinθ and − r sin(−θ) = r sinθ .

3. The graph of r2 = a2 sin2θ is symmetric about the pole since

(−r)2 = a2 sin2θ,

⇒ r2 = a2 sin2θ .

Also,

r2 = a2 sin[2(π+θ)],

= a2 sin(2π+2θ),

= a2 sin2θ .
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ä Sketch of Polar Curves

Here, we take two examples to explain how to plot polar curves.

Example 8.2.10 Sketch the graph of r = 4sinθ.

Solution:

Note that, r = 4sinθ is symmetric about the vertical line θ = π

2 since sin(π−θ) = sinθ. Therefore, we restrict our
attention to the interval [0,π/2]. The following table displays some solution of r = 4sinθ:

θ 0 π

6
π

4
π

3
π

2
r 0 2 4/

√
2 2

√
3 4

Example 8.2.11 Sketch the graph of r = a(1− cosθ) where a > 0.

Solution:

The equation is symmetric about the polar axis since cos(−θ) = cosθ. Therefore, we restrict our attention to the
interval [0,π]. The following table display some solution of the equation r = a(1− cosθ):

θ 0 π

3
π

2
2π

3 π

r 0 a/2 a 3a/2 2a

ä Some Special Polar Graphs

• Lines in polar coordinates

1. The polar equation of a straight line ax+bx = c is r = c
acosθ+bsinθ

.

2. The polar equation of a vertical line x = k is r = k secθ . Put r = k secθ⇒ r = k
cosθ

.
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3. The polar equation of a horizontal line y = k is r = k cscθ . Put r = k cscθ⇒ r = k
sinθ

.

4. The polar equation of a line that passes the origin point and makes an angle θ0 is θ = θ0 .

• Circles in polar coordinates

1. The circle equation its center at O and radius a is r = a .

2. The circle equation its center at (a,0) and radius |a| is r = 2acosθ .

3. The circle equation its center at (0,a) and radius |a| is r = 2asinθ .

• Cardioid

1. r = a(1± cosθ) 2. r = a(1± sinθ)

r = a(1+ cosθ) r = a(1− cosθ) r = a(1+ sinθ) r = a(1− sinθ)

• Limacons

r = a±bcosθ OR r = a±bsinθ

1. r = a±bcosθ

(a) r = a+bcosθ
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(b) r = a−bcosθ

2. r = a±bsinθ

(a) r = a+bsinθ

(b) r = a−bsinθ

• Roses

1. r = a cos(nθ) 2. r = a sin(nθ) where n ∈ N.

1. r = a cos(nθ)
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2. r = a sin(nθ)

Note: If n is odd, there are n petals. If n is even, there are 2n petals.

• Spiral of Archimedes

r = a θ

Exercise 2:
1 - 8 Find the corresponding rectangular coordinates for the following polar coordinates:

1. (1, π

2 )

2. (−1, π

2 )

3. (2, π

4 )

4. (3,π)
5. ( 1

2 ,
3π

2 )

6. (−3,2π)

7. (7, 3π

4 )

8. (3, π

6 )

9 - 16 Find the corresponding polar coordinates for the following rectangular coordinates:
9. (1,1)

10. (0,2)
11. (1,−1)

12. (
√

3,3)
13. (2,

√
2)

14. (3,0)

15. (4,2)
16. (−3,−3)

17 - 24 Convert the rectangular equations to the polar form and vice versa:
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17. x = 9
18. x2 + y2 = 1
19. r = cscθ

20. r = 2cosθ

21. x2 = 3y
22. x2− y2 = 16

23. r = 3
1−sinθ

24. r = 3−2sinθ

25 - 28 Sketch the graph of the polar equations:
25. r = secθ

26. r = 4cosθ

27. r = 2+2sinθ

28. r = 3+2cosθ

29 - 33 Find the slope tangent of the curves at θ and then find the points on the curve at which the tangent lines are either horizontal or
vertical:

29. r = 2sinθ at θ = π

3
30. r = 3+2cosθ at θ = π

4

31. r = cos7θ at θ = π

2
32. r = 1+ sinθ at θ = π

4
33. r = 1− cosθ at θ = π

6

8.3 Area in Polar Coordinates

Let r = f (θ) be a continuous function on the interval [α,β] such that 0≤ α≤ β≤ 2π. Let f (θ)> 0 over that interval and
R be a polar region bounded by the polar equations r = f (θ), θ = α and θ = β as shown in Figure 8.4.

Figure 8.4: Area in polar coordinates.

To find the area of R, we assume P = {θ1,θ2, ...,θn} is a regular partition of the interval [α,β]. Consider the interval
[θk−1,θk] where 4θk = θk − θk−1. By choosing ωk ∈ [θk−1,θk], we have a circular sector where its angle and radius
are 4θk and f (ωk), respectively. The area between θk−1 and θk can be approximated by the circular sector ( see Figure
8.4).

The area of the circular sector is [ f (ωk)]
24θk

2 , thus the area of R is A = ∑
n
k=1

1
2 [ f (ωk)]

24θk . For n→ ∞, we have from
Riemann sum

A =
1
2

∫
β

α

(
f (θ)

)2 dθ

Similarly, assume f and g are continuous on the interval [α,β] such that f (θ)> g(θ). The area bounded by the curves of
f and g on the interval [α,β] is

A =
1
2

∫
β

α

([
f (θ)

]2− [g(θ)]2) dθ

Example 8.3.1 Find the area of the region bounded by the graph of the polar equation

1. r = 3
2. r = 2cosθ

3. r = 4sinθ

4. r = 6−6sinθ



113

Solution:

1. From the figure, the area is

A =
1
2

∫ 2π

0
32 dθ =

9
2

∫ 2π

0
dθ =

9
2

[
θ

]2π

0
= 9π .

Note that, one can evaluate the area in the first quadrant and
multiply the result by 4 to find the area of the whole region
i.e.,

A = 4
(1

2

∫ π

2

0
32 dθ

)
= 18

∫ π

2

0
dθ = 18

[
θ

] π

2

0
= 9π .

2. We find the area of the half circle and multiply the result by
2 as follows:

A = 2
(1

2

∫ π

2

0
(2cosθ)2 dθ

)
=

∫ π

2

0
4cos2

θ dθ

= 2
∫ π

2

0
1+ cos2θ dθ

= 2
[
θ+

sin2θ

2

] π

2

0

= 2
[

π

2
−0
]

= π .

3. The area of the region is

A =
1
2

∫
π

0
(4sinθ)2 dθ =

16
4

∫
π

0
1− cos2θ dθ

= 4
[
θ− sin2θ

2

]π

0

= 4
[
π−0

]
= 4π .

4. The area of the region is

A =
1
2

∫ 2π

0
36(1− sinθ)2 dθ

= 18
∫ 2π

0
1−2sinθ+ sin2

θ dθ

= 18
[
θ+2cosθ+

θ

2
− sin2θ

4

]2π

0

= 18
[
(2π+2+π)−2

]
= 54π .

Example 8.3.2 Find the area of the region that is inside the graphs of the equations r = sinθ , r =
√

3cosθ.
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Solution:

First, we find the intersection point of the two curves.

sinθ =
√

3cosθ⇒ tanθ =
√

3⇒ θ =
π

3
.

From the figure, the region is divided into two small regions:
below and above the line π

3 .

(1) Area of the region below the line π

3 :

A1 =
1
2

∫ π

3

0
sin2

θ dθ

=
1
4

∫ π

3

0
1− cos2θ dθ

=
1
4

[
θ− sin2θ

2

] π

3

0

=
1
4

[
π

3
−

sin 2π

3
2

]
=

1
4

[
π

3
−
√

3
4

]
(2) Area of the region above the line π

3 :

A2 =
1
2

∫ π

2

π

3

(
√

3cosθ)2 dθ

=
3
4

∫ π

2

π

3

1+ cos2θ dθ

=
3
4

[
θ+

sin2θ

2

] π

2

π

3

=
3
4

[(π

2
−0
)
−
(π

3
+

√
3

4
)]

=
3
4

[
π

6
−
√

3
4

]
Total area = A1 +A2 =

5π

24 −
√

3
4 .

Example 8.3.3 Find the area of the region that is outside the graph r = 3 and inside the graph r = 2+2cosθ.

Solution:

As shown in the figure, we find the area in the first quadrant and then we double the result to find the area of the whole
region.
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The intersection point of the two curves in the first quadrant
is

2+2cosθ = 3⇒ cosθ =
1
2
⇒ θ =

π

3
.

Area: A = 2
(1

2

∫ π

3

0
4(1+ cosθ)2−9 dθ

)
=

∫ π

3

0
4(1+2cosθ+ cos2

θ)−9 dθ

=
∫ π

3

0
8cosθ+4cos2

θ−5 dθ

=
[
8sinθ+ sin2θ−3θ

] π

3

0

=
9
2

√
3−π .

Exercise 3:

1 - 8 Find the area of the region bounded by the graph of the polar equation:
1. r = 4sinθ

2. r = 1+ sinθ

3. r = 5

4. r = 2cosθ

5. r = 6(1+ sinθ)

6. r = 2(1− cosθ)

7. r = 3cos3θ

8. r = 3+2sinθ

9 - 18 Find the area of the region bounded by the graph of the polar equations:
9. inside r = 1+ cosθ and outside r = 3cosθ

10. inside r = 2+2cosθ and outside r = 3
11. outside r = 2−2cosθ and inside r = 4
12. inside both graphs r = 1+ cosθ and r = 1
13. inside r = 1+ sinθ and outside r = 1

14. inside both graphs r = 2cosθ and r = 2sinθ

15. outside r = 3 and inside r =−6cosθ

16. inside both graphs r = cosθ and r =−sinθ

17. between the graphs r = 1+ sinθ and inside r = 3sinθ

18. inside both graphs r = 2 and r = 2+2sinθ

19 - 20 Find the area bounded by the graph of the polar equation:

19. r = 1− cosθ in the first quadrant

20. r = 1+ sinθ and r = 3sinθ in the second quadrant

8.3.1 Arc Length and Surface of Revolution in Polar Coordinates

8.3.2 Arc Length in Polar Coordinates

Let the polar function r = f (θ), α≤ θ≤ β be smooth. We know that

x = f (θ)cosθ and y = f (θ)sinθ, α≤ θ≤ β .

Thus,

(
dx
dθ

)2 +(
dy
dθ

)2 =
(

f ′(θ)cosθ− f (θ)sinθ)2 +
(

f ′(θ)sinθ+ f (θ)cosθ)2

=
(

f ′(θ))2 cos2
θ−2 f (θ) f ′(θ)cosθsinθ+

(
f (θ))2 sin2

θ

+
(

f ′(θ))2 sin2
θ+2 f (θ) f ′(θ)cosθsinθ+

(
f (θ))2 cos2

θ

=
(

f ′(θ))2[cos2
θ+ sin2

θ
]
+
(

f (θ))2[sin2
θ+ cos2

θ
]

=
(

f ′(θ))2 +
(

f (θ))2 .

From Section 7.4 in the previous chapter, the arc length of the curve is
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L =
∫

β

α

√
r2 +(

dr
dθ

)2 dθ

Example 8.3.4 Find the length of the curve:

1. r = 2
2. r = 2sinθ

3. r = e−θ where 0≤ θ≤ 2π

4. r = 2−2cosθ

Solution:

1. r2 +( dr
dθ
)2 = 4. Thus,

L =
∫ 2π

0

√
4 dθ = 2

[
θ

]2π

0
= 4π .

2. r2 +( dr
dθ
)2 = 4sin2

θ+4cos2 θ = 4(sin2
θ+ cos2 θ) = 4. This implies

L =
∫

π

0

√
4 dθ = 2

[
θ

]π

0
= 2π .

3. r2 +( dr
dθ
)2 = e−2θ + e−2θ = 2e−2θ

L =
∫ 2π

0

√
2e−2θ dθ =

√
2
∫ 2π

0
e−θ dθ =

√
2
[
1− e−2π

]
.

4. r2 +( dr
dθ
)2 = 4−8cosθ+4cos2 θ+4sin2

θ = 8−8cosθ = 8(1− cosθ)

L =
∫ 2π

0

√
8(1− cosθ) dθ = 2

√
2
∫ 2π

0

√
1− cosθ dθ .

We know that cos2 v = 1+cos2v
2 . If v = θ

2 , then cos2 θ

2 = 1+cosθ

2 . Thus,

L = 4
∫ 2π

0

√
cos2 θ

2
dθ = 8

∫ 2π

0

1
2

cos
θ

2
dθ = 8

[
sin

θ

2
]π

0 = 8 .

8.3.3 Surface of Revolution in Polar Coordinates

Let the polar curve r = f (θ), α≤ θ≤ β be smooth. Then,

x = f (θ)cosθ and y = f (θ)sinθ, α≤ θ≤ β .

From Section 7.4 in the previous chapter, we have the following:

1. the surface area of revolution about the polar axis (x-axis) is

S.A = 2π

∫
β

α

f (θ)sinθ

√(
f (θ)

)2
+
(

f ′(θ)
)2 dθ .

This implies

S.A = 2π

∫
β

α

r sinθ

√
r2 +

( dr
dθ

)2 dθ
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2. the surface area of revolution about the line θ = π

2 (y-axis) is

S.A = 2π

∫
β

α

f (θ)cosθ

√(
f (θ)

)2
+
(

f ′(θ)
)2 dθ .

This implies

S.A = 2π

∫
β

α

r cosθ

√
r2 +

( dr
dθ

)2 dθ

Example 8.3.5 For the curve C: r = 2sinθ, find the area of the surface generated by revolving the curve C about

1. the polar axis.

2. the line θ = π

2 .

Solution:

1. We use the formula S = 2π

∫
β

α

r sinθ

√
r2 +(

dr
dθ

)2 dθ .

r2 +(
dr
dθ

)2 = 4sin2
θ+4cos2

θ = 4(sin2
θ+ cos2

θ) = 4 .

Thus,

S.A = 2π

∫
π

0
2sin2

θ
√

4 dθ = 4π

∫
π

0
(1− cos2θ) dθ = 4π

[
θ− sin2θ

2
]π

0 = 4π
[
π−0

]
= 4π

2 .

2. We use the formula S = 2π

∫
β

α

r cosθ

√
r2 +(

dr
dθ

)2 dθ. Thus

S.A = 2π

∫ π

2

0
2sinθcosθ

√
4 dθ =−8π

2
[

cos2θ
] π

2
0 =−4π

[
0−1

]
= 4π .

Exercise 4:
1 - 6 Find the length of the curve:

1. r = 3cosθ

2. r = sinθ

3. r = 2(1− cosθ)

4. r = 3
5. r = 3+2cosθ

6. r = cos4θ

7 - 12 Find the area of the surface generated by revolving the graph of the equation about the polar axis:
7. r = 1+ cosθ

8. r = cosθ

9. r = (2−3cosθ)

10. r = 4
11. r = 3cos3θ

12. r = 6(1+ cosθ)

13 - 18 Find the area of the surface generated by revolving the graph of the equation about the line θ = π

2 :
13. r = 1+ sinθ

14. r = 2
15. r = (1− sinθ)

16. r = 2(1+ sinθ)

17. r = 4cos4θ

18. r = sinθ
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