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Chapter 1

The Indefinite Integrals

1.1 Anti-derivatives and Definition of Indefinite Integrals

1.1.1 Anti-derivatives

Definition 1.1.1 A function F is called an anti-derivative of f on an interval I if

F (x) = f(x) foreveryx eI .

Example 1.1.1 1. Let F(x) = x*> 4+ 3x+ 1 and f(x) = 2x+3.
Since F'(x) = f(x), the function F(x) is an anti-derivative of f(x).
2. Let G(x) = sin(x) 4+x and g(x) = cos(x) + 1.

We know that G (x) = cos(x) + 1 and this means the function G(x) is an anti-derivative of g(x).

Generally, if F(x) is an anti-derivative of f(x), then every function F (x) + ¢ is also anti-derivative of f(x), where ¢ is a constant.

Theorem 1.1.1 If the functions F (x) and G(x) are anti-derivatives of a function f(x) on the interval I, there exists a constant
¢ such that G(x) = F(x) +c.

The last theorem means that any anti-derivative G(x), which is different from the function F(x) can be expressed as F(x) + ¢ where ¢
is an arbitrary constant. The following examples clarify this point.

Example 1.1.2 Ler f(x) = 2x. The functions

F(x)=x>42,
_,2_1

G(x)=x"—3,

H(x)=x>—V/2,

and many other functions are anti-derivatives of a function f(x). Generally, for the function f(x) = 2x, the function F(x) = x* +c is
the anti-derivative where c is an arbitrary constant.

Example 1.1.3 Find the general form of the anti-derivative of f(x) = 6x°.

Solution:

Let F(x) = x%, then F'(x) = 6x°. Thus, F(x) = x% 4 ¢ is the general anti-derivative of f(x).



1.1.2 Indefinite Integrals

Definition 1.1.2 Let f be a continuous function on an interval I. The indefinite integral of f(x) is the general anti-derivative
of f(x) on I and symbolized by /f(x) dx

Remark 1.1.1 If F(x) is an anti-derivative of f, then

The function f(x) is called the integrand, the symbol / is the integral sign, x is called the variable of the integration and c is

the constant of the integration.

Now, by using the previous remark, the general anti-derivatives in Example[T.T.1]are

1. /2x+3dx:x2+3x+c.

2. /cos(x) + 1 dx =sin(x) +x+c.

The list of the basic indefinite integrals:

sin x) = cos x

cos x) = sin x
2

& (
(
(=
(tan x) = sec” x
3 (=
(
(=

cot x) = csc? x

sec x) =sec x tan x

%\& S %\& S §\*‘~ S~ *‘\

CSC X) = CSC X cot X

Derivative Indefinite Integrals
%(x)zl ldx=x+c
n':i)—ln;é—l Xdx= Hi—i—c

cos dx = sin x+c¢

sin x dx = —cos x+c¢
sec? xdx=tan x+c
csc? xdx= —cot x+c
sec x tan x dx =sec x+c¢

csc x cot xdx= —csc x+c¢

\\\\\\\'

Table 1.1: The list of the basic integration rule.

Example 1.1.4 Evaluate the following integrals:

1. /x73 dx

Solution:

-3 -2
1. /x dx =

2. / > dx—/sec2xdx:tanx+c.
cos

1
_—ﬁ'FC.

1
2.
/ cosZx

e v
Remember: sec x =




Exercise 1:

-8 M Evaluate the following integrals:

1 1
1. —d. _
/\/} X 5. /C/fc dx
1
5 /T dx 6. /tanx dx
x7 J cosx
3./_12 dx 7. /ifdx
sin” x X
4. /— csc?x tan® x dx 8. /\/ sin® x escx dx

1.2 Properties of Indefinite Integrals

Theorem 1.2.1 Let f and g be integrable functions, then

d
1. E’/f(x) dx=f(x) .

N

[ F ) dr=F e,
/ (fx) £5(x) dxz/f(x) dxﬂ:/g(x) dx .

. /kf(x) dx= k/f(x) dx, where k is a constant

“w

N

In the following example, we use the previous properties and the table of the basic integrals to evaluate some indefinite integrals.

Example 1.2.1 Evaluate the following integrals:

L /(4x+3) dx 3. /(\/)?—Q—Sec2 x) dx d
d 5. — /\/x—i-ldx
2. /(ZSin x+3cos x) dx 4. /d—(sin x) dx dx.
X
Solution:

L. /(4x+3)dx:%+3x+c=2x2+3x+c.
2. /(2sinx+3cosx)dx:—Zcosx+3sinx—|—c.
3 3
3. ./(\/;H—secz x) dx:%—i—tan xte=2 +tanx+c.

d
4. /a(sin x)dx=sin x+c.

9]

. di/\/x—kldx:\/x—i-l.
X,

Example 1.2.2 If/ f(x) dx=x*+cand / g(x) dx=tanx+c, thenﬁnd/ (3f(x) —2g(x)) dx.
Solution:

From the third and fourth property, / (3f(x) —2g(x)) dx= 3/ fx) dx— 2/ g(x) dx =3x> —2tanx+c.

Example 1.2.3 Solve the differential equation f'(x) = x> subject to the initial condition f(0) = 1.



Solution:

/f/(x) dx:/x3 dx

flx)= ix4+c.

Ifx =0, f(0) = £(0)* + ¢ =1 and this implies ¢ = 1. Thus, the solution of the differential equation is f(x) = 1x*+1.

Example 1.2.4 Solve the differential equation f'(x) = 6x> +x—5 subject to the initial condition f(0) = 2.

Solution:

/f'(x) dx:/(6x2+x75) dx
f(x):2x3+%x2—5x+c.

Use the condition f(0) = 2 i.e., substitute x = 0 into the function f(x). We have f(0) =04+0—0+c =2 =-c¢=2. Hence, the solution
of the differential equation is f(x) = 2x> + Jx> — 5x+2.

Example 1.2.5 Solve the differential equation f”(x) = 5cos x+2sin x subject to the initial condition f(0) =3 and f'(0) = 4.
Solution:
/f”(x) dx = /(SCos x+2sin x) dx
f'(x) =5sin x—2cos x+c¢
The condition f’(0) = 4 yields f/(0) =0—2+c¢=4=c¢=6. Thus, f'(x) = 5sin x—2cos x+6 . Now, again
/f’(x) dx = /(SSin x—2cos x+6) dx
f(x)=—5cos x—2sin x+6x+c.

Use the condition f(0) = 3 by substituting x = 0 into f(x). This yields f(0) = —5—0+0+c¢ =3 = ¢ =8 . Thus, the solution of the
differential equation is f(x) = —5cos x —2sin x+6x+8.

Note that, in the previous examples, we use x as the variable of the integration. However, for this role, we can use any variable y, z, t,
... . That is, instead of f(x) dx, we can integrate f(y) dy, f(t) dt.

Exercise 2:

- M Evaluate the following integrals:

1 [V dx 5. [ S d
2. f(x% +x2+1) dx 6. [ XZXZI dx 9. [esctx—yxd
3. [x(x®+2x+1) dx 7. f4x%—2x% +xdx 10. f%dx
4. [x*+sec?xdx 3. fx%—&-%-l-ldx
- M Evaluate the following:
1. 4 (fVcos3x+1 dx) 12. [4(Veosdx+1)dx

- M Solve the differential equation

13. f'(x) = 4x> +2x+ 1 subject to the initial condition £(0) = 1.

14. f"(x) = sinx+ 2cosx subject to the initial conditions f(0) = 1 and f"(0) = 3.

15. f'(x) = y/x subject to the initial condition £(0) = 0.

16. f'(x) = cosx subject to the initial condition f(m) = 1.
)=

17. f(x

sec? x subject to the initial condition f(F)=o.



1.3 Integration By Substitution

The integration by substitution (known as u-substitution) is one technique for solving some complex integrals. The goal of changing
the variable of the integration is to obtain a simple indefinite integral. In a sense that the substitution method turns the integral into
a simpler integral involving the variable u that can be solved by using either the table of the basic integrals or other techniques of
integration. The following definition shows how the substitution technique works.

Theorem 1.3.1 Let g be a differentiable function on the interval I where the derivative is continuous. Let f be a continuous
on an interval I involves the range of the function g. If F is an anti-derivative of the function f on I, then

[ e)g (x) dx = F(g) +e. xel.

Steps of integration by substitution:

Step 1: Choose a new variable u.

Step 2: Determine the value of du.

Step 3: Make the substitution i.e., eliminate all occurrences of x in the integral by making the entire integral is in terms of u.
Step 4: Evaluate the new integral.

Step 5: Return the evaluation to the initial variable x.

Example 1.3.1 Evaluate the integral / 2x(x? +1)° dx.

Solution:
One can use the previous theorem as follows:

let f(x) = x° and g(x) = x2 + 1. Since g (x) = 2x, then from Theorem|1.3.1} we have

2 14
/Z)C()cz—i-l)3 dxz%—i—c.

We can end with the same solution by using the five steps of the substitution method.

Let u = x>+ 1, then du = 2x dx. By substituting that into the original integral, we have / wdu= % + ¢. Now, by returning the

2 4
evaluation to the initial variable x, we have / 2x(x24+1)3 dx = @ +e.

sec (V)

Example 1.3.2 Evaluate the integral / 5ee
\/;C

Solution:

Let u = +/x, then du = 2%/} dx. By substitution, we have 2 [ sec?(u) du = 2tan(u) + ¢ = 2tan(y/x) +c .

2

-1

Example 1.3.3 Evaluate the integral / . dx.
J (3 =3x+1)°

Solution:

let u=x> —3x+ 1, then du = 3(x*> — 1) dx. By substitution, we have

1/ N B -1 .
— u u—= — c= C.
3 3 —5u° 15(x3 —3x+1)3



Corollary 1.3.1 If/f(x) dx = F(x)+c, then for any a # 0,

/f(ax:l:b) dx= éF(wc:l:b)-i—c

Example 1.3.4 Evaluate the following integrals:

1. /\/2x75dx 2. /cos(3x+4) dx

Solution:

From Corollary[1.3.1] we have

3/ _5\3/2
1/\/2x7dx %ZJCS/S;ZJrc:(zx;) +c.

2. /cos(3x+4) dx = 1sin(3x+4)+c

Exercise 3:
- M Evaluate the following integrals:
1. /xmdx 7. /costmdt
2. /x\/ﬁdx 8. /C::C; 13. /(1+%)t’2 di
3. /xzmdx 9. /cos 3x+4)dx 14. / 2;‘_1 dx
4. / :(?Szxx dx 10. /.mdx 15. /'x2(4x376)7 dx
5. /sm x cosx dx 11. /sec4x tan4x dx 16. / (3x) cos(3x) d.
6. / Veorr '
2 +l 12. / bln X
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Chapter 2

The Definite Integrals

2.1 Summation Notation

Summation is the addition of a sequence of numbers and the result is their sum or total.

Definition 2.1.1 Let {ay,a,...,an} be a set of numbers. The symbol Y}_, ay represents their sum:

n
Zak:a1+a2+...+an .
k=1

Example 2.1.1 Evaluate the following sums:
LX) 2. T (). 30X (k1R

Solution:

LY (@)=03+13+23+3°=0+1+8+27=36.
2 T (P D=2+ D)+ @224+ )+ (1) + (@2 +1) =2+45+10+17=50.
3.5 (k+DE2=(2)(1)2+(3)(2)% + (4)(3)> =2+12+36=50.

Properties of Sum Notation:

L. ):ZzlC:C+c+...+c:ncf0ranyce]R.
N——

n-times
2. ZZ:I (ak :l:bk) = ZZ:I ay iZZ:l bk.

3. Y car=c Y] ,arforany c € R.

\

Example 2.1.2 Evaluate the following sums:
1. ¥l 15. 2. Y K +2k. 3 X 3(k+1).

Solution:

L Y)9, 15=(10)(15) =150
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2. YR K k=Yg KT k= (124224324 4%) + (1+243+4) =30+10=40.
3.5 3(k+1)=3%;_ [ (k+1)=3(2+3+4)=27.

Theorem 2.1.1
I ZZ:] k= n(n2+l) ) 2 ZZ:]kZ _ n(n+l)6(2n+l) ) 3 22:1 B= [n(112+l)]24

Example 2.1.3 Evaluate the following sums:
L Y%k, 2. 500, K2 32X

Solution:
1. )00 = 1000901 _ 5050 .
2. Y0 k2 = 100DED _ 385,
3. %00 k3 = 102 — 3005

Example 2.1.4 Express the following sums in terms of n:
1Yy (k+1). 20 Y0 (R —k+1).

Solution:

Lo 1) =X ke 1=, nnS)

2. 22:1(](2 Ck— 1) _ n(n+l)6(2n+l) _ n(n2+1) = n(nzgl)f'j ]
Exercise 1:

-E] M Evaluate the following sums:
Lol (i+1) 3. Zi:l% 5. 50,4
2. Y50 4. %19 si 6. Y1327

-E] M Express the following sums in terms of n:
7% (k1) 8. Xr (K+1) 9. Yr_ (KB +2K2 —k+1)

2.2 Riemann Sum and Area

A Riemann sum is a mathematical form and one of its applications is approximating the area underneath a curve of a function. Before
start-up in this issue, we would like to provide some basic definitions that we need in the Riemann sum.

Definition 2.2.1 A set P = {xq,x1,X2,...,xn } is called a partition of a closed interval [a, D] if for any positive integer n,

a=x0 <X <X < ... <Xp_1<xp=0>b.

Note that,

1. the division of the interval [, b] by the partition P generates n sub-intervals: [xo,x1], [x1,%2], [x2,%3], -+ [Xn—1,%n]-
2. The length of each sub-interval [x;_1,x;] is Axg = xp — 1.

3. The union of sub-intervals gives the main interval [a, b].

Definition 2.2.2 The norm of the partition of P is the largest length among Axg,Ax,Ax, ..., Ax, i.e.,

H P H= max{Axo,Axl ,AXQ, ...,Axn} .
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Example 2.2.1 If P ={0,1.2,2.3,3.6,4} is a partition of the interval |0,4], find the norm of the partition P.

Solution:

We need to find the sub-intervals and their lengths.

Sub-interval [x;_1,x] Length Axy
0,1.2] 12-0=12
[1.2,2.3] 23-12=1.1 From the table, the normis || P ||=1.3 .
2.3,3.6] 36-23=13
3.6,4] 4-36=04
Remark 2.2.1
1. The partition P of the interval [a,b] is regular if Axo = Ax; = Axy = ... = Ax, = Ax.

2. For any positive integer n, if the partition P is regular then

Ax — b—a

and xp =xo+k Ax .

To explain the previous result, let P be a regular partition for the interval [a,b]. We know that xo = a and x,, = b. Then,

x1 = x0 + Ax,
Xy =x1 +Ax = (xp + Ax) + Ax = xo + 2Ax,
X3 =x3 +Ax = (x0 +2Ax) + Ax = xp + 3Ax .

By continuing doing so, we have x; = xg +k Ax .

Example 2.2.2 Define a regular partition P that divides the interval [1,4] into 4 sub-intervals.

Solution:

Since P is a regular partition of [1,4] where n = 4, then Ax = % = % and x; = 1+k % .

Thus,

xo=1
x1:]+%:%
xn=14+2(3)=3

The regular partition is P = {1, %7 %7 173,4}.

Now, we are ready to define the Riemann sum that will be used to evaluate the definite integrals.

Definition 2.2.3 Let f be a defined and bounded function on the closed bounded interval [a,b] and let P = {xg,x|,...,Xn } be
a partition of a,b]. Let oy € [x¢_1,x¢), k=1,2,3,...,n where ® = (0,0, ...,0®,) is a mark on the partition P. Then, the
Riemann sum of f for P is

=

Ry =) flon)Ax .

k=1

Consider Figure [2.1] we want to explain the definition of the Riemann sum of a function f for the partition P. As shown in the figure,
the amount f(®;)Ax| is the area of the rectangle Ay, f(®;)Ax; is the area of the rectangle A, and so on. The sum of these areas
approximates the whole area under the graph of the function f. This indicates that, the area under f bounded by x = a and x = b can be
estimated by the Riemann sum where as the number of the sub-intervals increases (i.e., n — o0), the estimation becomes better. Note
that, when n — oo, the norm || P ||— 0. From this,
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Figure 2.1: The Riemann sum of the function f(x) for the partition P.

Example 2.2.3 Find the Riemann sum R, of the function f(x) = 2x—1 for the partition P = {=2,0,1,4,6} of the interval [a,b] by

choosing the mark as follows:
1. the left-hand end point,

Solution:

1. The left-hand end point.

2. The right-hand end point.

3. The midpoint.

2. the right-hand end point,

3. the midpoint.

Sub-intervals | Length Axy o | flog) | flog) Axg
[=2,0] 0—(—2)=2] =2 | - —10
[0,1] 1-0=1 0 | -1 ~1
[1,4] 4—-1=3 1 1 3
[4,6] 6—-4=2 4 7 14

Ry, = 22:1 S (o) Ax 6
Sub-intervals | Length Axy | o | flog) | f(op) Axg
[=2,0] 0—(—2)=2] 0 | —1 -2
0,1] 1-0=1 1 1 1
[1,4] 4-1=3 | 4| 7 21
[4,6] 6—4=2 6 11 22

Ry =Yy f(op)Ax; 42
Sub-intervals | Length Ax; | o [ f(og) | flog) Axg
[—2,0] 0-(—2)=2 | -I| -3 —6
[0,1] 1-0=1 [05]| o0 0
(1,4] 4-1=3 |25]| 4 12
[4,6] 6-4=2 | 5 9 18
Rp = 22:1 f(mk)Axk 24
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Example 2.2.4 Ler A be the area under the graph of f(x) =x+1 from x =1 to x = 3. Find the area A by taking the limit of the
Riemann sum such that the partition P is regular and the mark o is the right end point of each sub-interval.

Solution:

For a regular partition P, we have

1. Ax= b—a _ 3-1 :%,and

n n

2. xx = xo +k Ax where xo = 1.

Since the mark o is the right end point of the sub-interval [x;_1,x;], then @ = x; =1+ % Hence,

f(“’k):(1+%)+1=2}1—k+2:%(n+k).

Now,

R, = i.f(wk)Axk = :7 i(”Jrk)

k=1 k=1 Remember:
4 5 nn+1) (D X (k) ZIZZ:I'“LZZ:”‘
=l @ Xl k=)
2 1
20
n

Therefore, lim;, ycR, =4+2=6.

Exercise 2:

- B If P is a partition of the interval [a, b], find the norm of the partition P:
P={-1,0,1.3,4,4.1,5}, [-1,5]

P=1{0,0.5,1,2.5,3.1,4}, [0,4]

P={-3,0,2.3,4.6,48,5.5,6}, [-3,6]

P={-2,0,2.3,3,3.5,4}, [-2,4]

. P=1{3,35,3.6,4,49,7}, [3,7]
P={-2,0,13,2,2.5,34,5.5}, [-2,5.5]
P:{7157%701l717%ﬂ2}’ [7112]

P={0.5.3. %7}, [0.7]

e -
® N o w

E] - B Define a regular partition P that divides the interval [a,b] into 1 sub-intervals:
9. [a,b] =[0,3] n=5 11. [a,b]=[-4,4] n=38

10. [a,b]=[-1,4] n=6 12. [a,b]=[0,1] n=4
- M Find the Riemann sum R, of the function f(x) = x>+ 1 for the partition P = {0,1,3,4} of the interval [a,b] by choosing the mark as
follows:

13. the left-hand end point,

14. the right-hand end point,

15. the midpoint.

- B Let A be the area under the graph of f (x) from a to b. Find the area A by taking the limit of the Riemann sum such that the partition P is
regular and the mark  is the right end point of each sub-intervals:

16. f(x)=x/3 a=1, b=2 18. f(x)=5-x> a=—1, b=1
17. f(x)=x—1 a=0, b=3 19. fx)=x"—1 a=0, b=4

2.3 Definite Integrals

Definition 2.3.1 Let f be a defined and bounded function on a closed bounded interval [a,b] and let P be a partition of [a, b).
If f is integrable on that interval, the definite integral of f is

/abf(x) dx= lim Y f(ay)Ax =A .

P07

if the limit exists. The numbers a and b are called the limits of the integration.
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4
Example 2.3.1 Evaluate the following integral / x+2dx.
2

Solution:
We try to solve the example by using the previous definition.

The function f(x) = x+2 is integrable since it is continuous. Let P = {xq,x],...,Xx,} be a regular partition of [2,4] and @} €

P 1, xk].
Since P is regular, A = % = % Let @ = xi, then @y = %(n+k). Hence,
2(2n+k).2 4 4 n+1 2(n+1
Rp:Zf((‘)k)Axk:Z(g)f:—22(2n+k):—2(2 + n( ))784- ( )
k k n nono n 2 n

This implies limy, e Ry = 8 +limy, e 25 =8 12 =10,

The following remark simplifies the process of calculating the definite integrals. This remark will be stated later in Theorem[2.5.1]

b
Remark 2.3.1 7o find the value of a definite integral / f(x) dx, we first find the value of the indefinite integral / flx =

F(x) + ¢ as shown in Chapter[I] Then, we substitute a and b into F (x) as follows:

b b
/a F(x) dx = [F(x)]u — F(b)—F(a) .

Example 2.3.2 Evaluate the following integrals:

’ 5 7 5. [ sec(n)—4d
1. / 2x+1dx /7 ./sec X)—sax
-1 1Vl i
3 I
2. /()x2+ldx 4. / sin(x) + 1 dx 6. /3sec(x) tan(x) +x dx
0 0

Solution:

1. /ij—O—ldx: [x2+x]2,1 :(4+2)_((_1)2+(—1)):6—0:6.

N

3 3
: / P4 ldx=[5+x] =(F+3)-0=12.
0

4. /02 sin(x) +1dx= [—cos(x) +x}

w

" sec? (1) 4 dx = [tan(x) ~42] . = (tan(m) —47) — (tan(F) ~4.5) = ~4m—(1-m) = 321

r

[
/e

’ sec(x) tan(x) +x dx = [sec(x) + %]

= (sec(§)+ z)z)f(sec(0)+%)=2+71L271:1+%.

S wia

0

One application of the definite integrals is to find the area under the graph of a non-negative function f on the interval [a,b]. This is
clear from Definition[2.3:1}

A:/(;bf(x)dx

The application of the definite integrals will be discussed in detail in Chapter 7}

Exercise 3:
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- B Evaluate the following integrals:

3 T
L. / (2—x+2%) dx S. /0 cosx dx
0 n
1 3
2. / (®43x+1) dx 6. /0 sinx + cosx dx
-1
0, 3
3. / (x2+1)dx 7. [( secx(tanx + secx) dx
0 3
22 5o
4 mx 8. / dx
1 VX T sin’x

2.4 Properties of Definite Integrals

Theorem 2.4.1 If f is integrable on [a,b), then
b
1. / cdx=c(b—a),
aa
2. f(x)dx=0,
a

30 [P fx)de=— [ f(x) dx.
4. If f and g are integrable on [a,b], then f + g and f — g are integrable on [a,b] and

b b b
[ sy ar= [ 1= [ st ar.
Ja a Ja
5. If f is integrable on |a,b] and k € R, then k f is integrable on [a,b] and
b b
/ kf(x)dx=k / f(x) dx.
a a
6. If f and g are integrable on [a,b] and f(x) > g(x) for all x € [a,b), then
b b
/ f(x)dx> / g(x) dx .
a a
7. If f is integrable on [a,b] and f(x) > 0 for all x € |a,b), then
b
/ f(x)dx>0.
a
8. If f is integrable on the intervals [a,c| and [c,D), then f is integrable on [a,b] and

/:f(x) dx = /acf(x) dx-l—/cbf(x) dx .

Example 2.4.1 Evaluate the following integrals:

2 2
1. / 3dx. 2. /x2+4dx.
0 2
Solution:
2 2
1. / 3dx=3(2-0)=6. 2./x2+4dx:O.
0 2

Example 242 1f [ f(6) dv—4and [ g(x) dx =2, then find [ 37(x)~ 5 ax
a a a 2

Solution:

/ab3f(x)f¥dx:3/abf(x) dxf%/abg(x) dx=3(4)-(2)=11.
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2 2
Example 2.4.3 Prove that / (P +x2+2)dx> / (x*> 4 1) dx without evaluating the integrals.
0 0

Solution:

Put f(x) = x> +x> +2 and g(x) = x> + 1. We find that f(x) — g(x) = x> + 1 > 0 for all x € [0,2]. This implies f(x) > g(x) and from
Theorem ??, we have

2 2
/ (x3+x2+2)dx2/ (x> 41) dx .
JO 0

¥ ix<0 2
Example 2.4.4 If f(x) = { 2 x>0 ﬁnd(/ilf(x) dx ..
Solution:
Since [—1,2] = [—1,0]U[0,2], then from Theorem 22,

/jf(x)dx:/j)lf(x)dx+/02f(x)dx

0 2
= X2 dx—|—/ x> dx
—1 0
X370 x*q2
=51+ %),
-1 16 44 11

B
2
Example 2.4.5 Evaluate the integral / |x—1] dx.
0
Solution:

|x1|{ —(x—1) :x<1

x—1 x>1

Since [0,2] = [0,1]U[1,2], then from Theorem ??,

2 1 2
/ |x71|dx:/—x+1dx+/ x—1ldx
0 0 1

2 2
:PE““ﬂ+[5‘4T
:(‘7170”(27%):1.

Mean Value Theorem for Integrals

Theorem 2.4.2 If f is continuous on the interval [a,b], then there is at least one number z € (a,b) such that

[ 109 ax= sy 6-a).

Example 2.4.6 Find the number z that satisfies the conclusion of the mean value theorem for the function f on the given
interval [a,b):

1. f(x)=1+x2 [0,2]. 2. f(x) = x, [0,1].
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Solution:

1. From Theorem

x°72
—| =2(1+7
5] =20+
3=2(1477)
3 2
g
> +2z
This implies 2> = 5 = z =+ >. However, - ¢ (0,2), s0z= 5 € (0,2).

2. From Theorem [2.4.2]

This implies z = 2} € (0, 1).

From the previous theorem, we define the average value of the function f on the interval [a,b].

Definition 2.4.1 If f is continuous on the interval [a,b), then the average value fq, of the function f on that
interval is

1
T b—ala

bf(x) dx .

Jav

Example 2.4.7 Find the average value of the function f on the given interval |a,b):

L=t 02, 2 f=vE (13
Solution:
2 2
1. fm,:z‘j,/o Pr—tdx=4[5+5 x| =1[4+2-2)-(0)] =2.

Wi
—
=
(1194
| I
(98]
(98]
>
|
—

2
2. fav:ﬁ/o Vrdy=1.

Exercise 4:
-E] M Evaluate the following integrals:
5 2
1. 7 dx 3. / [x—1] dx
Jo

1 1
2. /(x375x+1)dx 4./ [3x+1] dx
J1 -1

b b
- Hir f(X) dx =2 and / g(x) dx = 3, then find
a a

5. ab 6 (x) — 8(3—’“) dx. 7. /a V f(x).8(x) dx.
6. b” F(6) +g(x) dx. 8 / * Fx) dx+ /b * £(x) dx where ¢ € (a,b).

E] - M Verify that the function f satisfies the hypotheses of the Mean Value Theorem on the interval [a,b]. Then, find all numbers z that satisfy the
conclusion of the Mean value Theorem.
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9. f(x):(x+l)3~ [avb]:[flvl} 1L f(x):\/}’ [a’b]:[174] 13. f(x>:Sinx7 [a,b]:[O,TC]

10. f(x)=1—-x%, [a,b] =[-2,0] 12. f(x)= %, [a,b] =1[1,4] 14. f(x) = cosx, [a,0] =10,7]
- M Find the average value of the function f(x) on the given interval [a, b]:

15. f(x) =X +x2—1, [a,b] =[0,2] 17. f(x) =%, [a,b] =[1,5]

16. f(x) = /x, [a,b] =[—1,3] 18. f(x) =sinx, [a,b] =10, ]

2.5 The Fundamental Theorem of Calculus

Theorem 2.5.1 Suppose f is continuous on the closed interval [a,b).
X

1. IfF(x) = / f(t) dt for every x € [a,b], then F(x) is an anti-derivative of f on |a,bD).

a

2. If F(x) is any anti-derivative of f on [a,b], then /bf(x) dx=F(b)—F(a).

.

From the previous theorem, if f is continuous on [a, ] and F(x) = / f(t) dt where ¢ € [a,b], then
c
d X
Fl=2] / f(0)di] = f(x) W efa,b].
dxl/q

This result can be generalized as follows:

Theorem 2.5.2 Let f be continuous on [a,b]. If g(x) and h(x) are differentiable, then

i[ h(x

)
L ) dt] = ) )~ £ (g8 () V€ fat]

g(x)

The following corollary is stated without proof since the proof is straightforward from the previous theorem.

Corollary 2.5.1 Let f be continuous on [a,b]. If g(x) and h(x) are differentiable, then
h(x)
LA s ar] = s ) e o],
2 [ [ S0 @] = —rsg ) Vel

\.

Example 2.5.1 Find the following derivatives:

d x sinx 1
L&) V/cost dt 4 4 L 3
X2 1 lx - 7. % Mdt
2. & 37t 5.4 cos(t*+1) dt wl
1 , °+1 7x2 1 3 li slnxmdt
X X < dx
d 3 d COosx
3.5)( x(r—=1)dt 6. ﬂ/,xt3+1dt
Solution:

X
1. %/1 Vcost dtf = +/cosx (1) =+/cosx.

xz 1
d _ 1 _ 2
2. d/\‘\/l t3 +1 dt = (x2)3+1 (2)() X041
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2 2

3. j—x/xx x(t3—l)dt:%(x/xx (t*—1) dt)

= /xz(f3 — 1) dt+x(2x(x*—1)— (x¥* = 1)) .

3
4, %/xﬂ Vitldi=0— G+ ) +1=—Vxi2.

sinx ] 1
L j— __ COosx
5. % P dt = ;- cosx = 75~

=SeCx .

X
6. %/ cos(t? + 1) dt = cos(x* + 1) +cos(x*> + 1) = 2cos(x> + 1) .

—X

o [F 1 2 1
a _ X
T & e 241 T

sinx

8. % V1414 dt =/ 1+sin*x cosx+ V1 +cos?x sinx .

Example 252 If F(x) = (> —2) / (1 3F' (1)) dt, find F'(2).
2

Solution:

CHAPTER 2. THE DEFINITE INTEGRALS

Let f(x) =xand g(x) =
[ = 1) dr. Then,
find (/)

Fl(x) = 2x/2x (t43F'(0)) di + (2% —2) (x + 3F'(x))

Then,

F'(2)= 4/22 (t43F'(1)) dt+(4—2)(2+3F'(2))

This implies —5F'(2) =4 = F'(2) = _‘51 )

Exercise 5:

- B Find the following derivatives:

si "X

1 4 CO:\/le dt 4. 4 : (sinx) V7 dt
) %/xﬁﬁm 5. %/;xsin(t—s—l)dt
3. t%('lx(tfl)dt 6. %/}:ﬁd:
E] - M Find the derivative for the given values:
9. F(x):/;\/mm, F(2), F'(2) and F"(2). -

0 sint , y
10. G(x) = / S i, 6(0).G/(0) and G'(0).

2.6 Numerical Integration

3x=1) q
7. i/ ——dt
dx x+1 t—1

SeCx

8. 4 V144 de

tanx

Hx) = / Vv ld, H(Q).

12. F(x)= sinx/ox (1+F'(r)) dt, F(0)and F'(0).

Sometimes we face definite integrals that cannot be solved even if the integrands are integrable functions such as v/1 +x3

and ¢* . In our discussion in this book so far, we are not able to evaluate such integrals. We exploit this to show the reader
a new technique depends on numerical methods. In this section, we will discuss two techniques of numerical integration

to approximate definite integrals : Trapezoidal rule and Simpson’s rule.
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2.6.1 Trapezoidal Rule

As discussed in Section[2.2] a Riemann sum approximates the area underneath a curve of a function f fromx=atox=bas
follows. First, we divide the interval [a, b] by a regular partition P to generate n sub-intervals : [xo,x1], [x1,x2], [x2,%3], .-+, [Xn—1,%n]-
Then, we find the length of the sub-intervals: Ax; = % From the Riemann sum, we have

n

Y flow),

k=1

b—a

/bf(x) dx ~ i f((ok)Axk =
a k=1

where o € ® and ® is a mark on the partition P.
As shown in Figure 2.2] we take the mark as follows:

1. the left-hand end point. We choose @y = x;_| in each sub-interval. Then,

b—a
n

/bf(x) dx =~ if(wk_l) .
a k=1

2. the right-hand end point. We choose w; = x; in each sub-interval. Then,

b—a

n

[ a0y s,
a k=1

The average of the previous two cases is called the trapezoidal rule - see Figure 2.2](C). Thus, by the trapezoidal rule, we
have

T )

T

=
=

=
[}

(4) (B) ©
Figure 2.2: Approximation of the integral by the trapezoidal rule.

Error Estimation

Although the numerical methods give an approximated value of a definite integral, there is a possibility that an error
occurs. The numerical method and number of the sub-intervals play a role in determining that possibility.



22 CHAPTER 2. THE DEFINITE INTEGRALS

Theorem 2.6.1 Suppose f" is continuous on |a,b] and M is the maximum value for f" over [a,b]. If Er is the

b
error in calculating / f(x) dx under the trapezoidal rule, then
a

M(b—a)’

Er |<
| Er|< 12 n2

21
Example 2.6.1 By using the trapezoidal rule with n = 4, approximate the integral / — dx. Then, estimate the error.
1 X

Solution:
21
1. We approximate the integral / — dx by the trapezoidal rule.
1 x

(a) Divide the interval [1,2] into sub-intervals. The length of each sub-intervals is Ax = 231 = 1

4 T &
(b) Find the partition P = {xp,x1,x2, ...,X, } where x; = xo +kAx = xo +k (b=a)

n

The partition:
xo=1, 1 3
xlzl—‘r%:l%, x3:1+3(%):11’and
Thus P = {1,1.25,1.5,1.75,2}.
(c) Approximate the integral by using the following table:
k X S () my; my f (k)
0 1 1 1 1
1 1.25 0.8 2 1.6
2 1.5 0.6667 2 1.3334
3 1.75 0.5714 2 1.1428
4 2 0.5 1 0.5
Sum = Y7 myif(x,) 5.5762

21
Thus, / - dx~ $[5.5762] =0.697 .
1 X

2. We estimate the error by using Theorem [2.6.1]

- 2
2 :>f”('x)273'

Since f”(x) is a decreasing function on the interval [1,2], then f”(x) is maximized at x = 1. Hence, M =| f"'(1) |=2
and 5
2(2—1 1

( ) =—=0.0104.

E - 7
| Er|< 12(42 96

Remark 2.6.1 By knowing the error amount, we can determine the number of the sub-intervals n before starting
approximating.

21
Example 2.6.2 Find number of the sub-intervals to approximate the integral / — dx such that the error is less than
1 X
1073,
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Solution:
From the previous example, we know that M = 2. Thus, | Er |< 2(122; ]2>3 < 1073, This implies that
2(2—1)3 103 500
2 3
1 =12.91
n- > 2 0 3 =>n> 3 9

This means we consider n = 13 .

2.6.2 Simpson’s Rule

Simpson’s rule is another numerical method to approximate the definite integrals. The question that can be raised here
is that how the trapezoidal method differs from the Simpson’s method? The trapezoidal method depends on building
trapezoids from the sub-intervals, then taking the average of the left and right hands end point. Whereas, the Simpson’s
rule is built on approximating area of the graph in each sub-interval with parabola (Figure [.2).

y}\ Pn
F
i,

a xq Xz Xp—a1 b o

Figure 2.3: Approximation of the integral by Simpson’s rule.

First, let P be a regular partition of the interval [a, b] to generate n sub-intervals such that | P |= @ and 7 is an even

n
number. Consider the first sub-interval as shown in Figure

YA

Now, take three points lie on the parabola as P,(0}y,)
shown in the next figure. Assume for simplicity 1N
that xo = —h, x; = 0 and x, = h. Since the Po(—h, ¥o) /' \pz(h_J )
parabola equation passes through three points is

ax® +bx+ ¢, then from the figure, the area under
the graph bounded by [—h, k] is

h h
/ ax2—|—bx+cdx:§(2ah2+6c).
—h

Thus, since the points Py, P; and P> pass through the parabola, then
Yo = ah®> —bh+c
yi=c¢
» =ah®>+bh+c.
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We can find that 2ah® + 6¢ = yo +4y; +y,. Thus,

W =

h
Lhax2+bx+cdx: g(yo+4y1+y2) =~ (f(x0) +4f(x1) + f(x2)) -

Generally, for any three points P;_1, P, and Py, we have

g(}’k—l + 4V +Yrr1) = g(f(xk—l) +4f () + f (1)) -

By summing the areas under the graphs, we have
b h
| £00 de =3 (£(0) + 41 () + £ (x2))

+ = (Flx2) +4f(x3) + f(xa))

W =

=

+ g(f(xn—Z) +4f(Xn-1) +f(x,,))
— b%a [f(xo) +Af(x)) +2f(x2) +4f(x3) + ...

+2f(602) +4f (1) + £ ()

b
Hence, under the Simpson’s rule, the integral / f(x) dx is approximated as follows:

[ 70 s oD a0) g 0) 427060) + 47 (05) 4425 2) 47 1)+ £ )

Error Estimation

The estimation of the error under the Simpson’s method is calculated by the following theorem.

Theorem 2.6.2 Suppose f*) is continuous on [a,b] and M is the maximum value for f* on [a,b]. If Es is the
b
error in calculating / f(x) dx under Simpson’s rule, then
a

M(b—a)’

Es|<
[ Es [< g0,

3

Example 2.6.3 By using the Simpson’s rule with n = 4, approximate the integral / Vx2+1dx. Then, estimate the
1

error.

Solution:
3
1. We approximate the integral / x> + 1 dx by the Simpson’s rule.
1

(a) Divide the interval [1,3] into sub-intervals. The length of each sub-intervals is Ax = % = %

(b) Find the partition P = {xg,x1,%2, ..., %, } Where x = xo + kAx = xo + k L4,

The partition:

xo=1,

x?:l—&—l:ll, x3:1+3(%):2%’and
A xg=1+4(1)=3

x=1+2(3)=2, 2
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Thus P = {1,1.5,2,2.5,3}.

(c) Approximate the integral by using the following table:

k Xk f () iy my f (xx)
0 I 1.4142 I 2
1 1.5 1.8028 4 72112
2 2 2.2361 2 4.4722
3 2.5 2.6926 4 10.7704
4 3 3.1623 1 10

Sum = Y7 myf () 27.0302

3
Thus, / Va2 +1dx~ 5[27.0302] =4.5050.
1

2. We estimate the error by using Theorem [2.6.2]

25

Since fO)(x) = —(15x(4x> —3))/1/(x2+1)9, then f*)(x) is a decreasing function on the interval [1,3]. Hence,

F®(x) is maximized at x = 1. Then, M =| f*¥)(1) |=0.7955 and

0.7955(3 —1)°

IR0y = oM 1074

| Es |<

3
Example 2.6.4 Find number of the sub-intervals to approximate the integral / V' x2+ 1 dx such that the error is less
1

than 1072,

Solution:

0.7955(3—1)°

From the previous example, we know that M = 0.7955. Thus, | Es |< =—+5

< 1072, This implies that

0.7955(32
i 0.7955(32)

10? 14.14
120 =>n>

This means we consider take n = 14.

Exercise 6:

-EI M By using trapezoidal rule, approximate the definite integral for the given n, then estimate the error:

1 4
1. / V2 +1dx, n=4 / G dx, n=4
1 0o x+1
4 T
2. / Vx dx, n=>5 3. / sinx dx, n=4
2 0

- M By using Simpson’s rule, approximate the definite integral for the given n, then estimate the error:
2] 2
5. ln(2):/ _dx, n=4 7. / VB + 1 dx, n=10
1 0

[ 3
6. / —— dx, n=6 8. / Vinx dx, =4
o VAL e 8

El - B Consider function f(x), and the integral I(f). What is the minimum number of points to be used to ensure an error < 5 x 1072 in the

following:
2 "
9. f(x)=e€"and I(f) = / e dx in the trapezoid rule.
0

2
10. f(x) =cosx? and I(f) = / cosx dx in the Simpson’s rule.
Jo
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Chapter 3

Logarithmic and Exponential Functions

3.1 Natural Logarithmic Function

As mentioned in Chapter|l} the integral / X dx = % + ¢ if r # —1. This means, the previous formula cannot be used

when r = —1 because the denominator will become zero. The task in this section is to find general anti-derivative of the

function %
Consider the function f(t) = 1. It is continuous
on the interval (0, +c0) and this implies that the
function is integrable on the interval [1,x]. The
area under the graph of the function f(r) = %
bounded from ¢ = 1 to # = x as shown in the

Figure ?? is

1= [ Far

t

i. e., we are looking for a function F (x) such that F' (x) = T

Definition 3.1.1 The natural logarithmic
function is defined as follows:

In:(0,0) > R,

In(x) = /fl dt

t

3.1.1 Properties of the Natural Logarithmic Function

1. The domain of the function In(x) is (0,).

1

-2+

Figure 3.2: The graph of the function y = Inx.



2. The range of the function In(x) is R as follows:

y>0 :x>1
In(x) =< y=0 :x=1

y<0 :0<x<1

3. The function In(x) is differentiable and continuous on the domain. From the fundamental theorem of calculus, we

have

dx dx t

From this, the function In(x) is increasing on the interval (0,c0).

4. The second derivative —(ln( ) = ;—21 < 0 for all x € (0,e). Hence, the function In(x) is concave downward on

dx2
the interval (0, o0).

5. lim,_,p+ In(x) = —eco and limy—ye In(x) = -co.

X
4 (1n(x)) = i/ Yar=Yweso.
1 X

Theorem 3.1.1 For every a,b >0 and r € Q, then
1. In(a b) =1n(a) +1In(b) .

2. In(5) =1In(a) —In(d).
3. In(a") = rln(a) .

3.1.2 Differentiating and Integrating Natural Logarithm Function

From our discussion above, we know that

d
iy | - _
dx n(x) X
Hence,
d 1 1
=)= —(—1)= =
(=) =— (=)=~

From this, we have

d 1
aln(|x|)f;Vx7éO.

Generally, if u = g(x) is differentiable and u # O for every x in an interval I , then

d 1d
Cm(u)) = ;d—Z,VxGI

Example 3.1.1 Find the derivative of the following functions:

1. f(x)=In(x+1) 4. :\/ln
2. gx) =In(x*+2x—1) 08X
3. h(x)=In(vVx2+1) g(x) \fln( )

7. h(x) =
8 ylx) =

'_‘C/)

in(In(x))

n(x+Inx)
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Solution:
L f(x) = 5. f'(x)= ;;I;}f = —tanx.
2. g'(x) = xfiz_ﬁl : 6. ¢'(x)= 55 Inx+ VaL =P it ‘[ = lngf :
3. W (x)= \/;27“2 i);ﬂ =75 7. K(x)= cos(lnx)( l) = w .
4. y(x)= Zx/llnix% = 2X\}1rTx . 8. y'(x) = x+lnx(1+ )= x(;c-:lll'lx) :

In the following, we present one of the simple applications of the natural logarithm function. We know that the derivative
of composite functions takes efforts and time. This problem can be solved by using the derivative of the natural logarithm
function. In a sense, Theorem and the derivative of /n are used to simplify the differentiation of the composite
functions.

. L . _ —1
Example 3.1.2 Find the derivative of the function y = ¢ fm .

Solution:

We can solve this example using the derivative rules, but this will take time. Instead, we use the natural logarithm function
as follows:

Take logarithm function (In) for both sides. This implies Iny = In|{/ {7y | =z (ln |x—1]—In|x+ 1\) . Differentiate both
sides
/ d /
Y _ 1( ! . ) Remember: —Iny = r
y S5\x—1 x+1 dx y
This implies

,_l(l_l) l(l 1)5x—1
AR N R A ) G R 1

\V/xcosx

Example 3.1.3 Find the derivative of the function: y = et 1 sinx
X sinx

Solution:

For simplicity, we use the natural logarithm function (In). Take In for both sides, this implies

In|y| = ln|m| =Iny/x+In|cosx| —In|x+ 1| —In|sinx| .
(x4 1)sinx
By differentiating both sides, we have
y 1 sinx 1 cosx

y 2/x cosx x-+1 sinx’
This implies

! ( tan ! cot ) V/Xeosx
=|-——=—tanx— —— —cotx | ———— .
Y= 2\/x x+1 (x+1)sinx

Recall, £1n|u|= ”L’—: where u = g(x) is a differentiable function. By integrating both sides, we have

/
d
/%dx:/alnhﬂ dx

=In|u|+c.

This can be stated as follows:
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/
1
/u—dx:ln|u|+c = /fdx:1n|x\+c
u x

Example 3.1.4 Evaluate the following integrals

4 dx
L 2+1 4. / NG
622+ 1 1 Vx(14vx) 7. /secxdx
X
4 a1 B A 8 [esexds
e
3. / dx 6. / cotx dx
2 xInx
Solution:

2
1. /zixdlen|x2+l|+c.
x-+1

6x% +1 L[ 123242
_ T =i =T
4x3 +2x+ 1 2] 43 4+2x+1

3 /e dx
2 xlnx

dx=1In|4x +2x+1] +c.

1
Putu =Inx=du= % dx. By substitution, we have /; du=ln|ul|= [ln(lnx)}; =In(lne) — In(In2) = In(1) —

In(In2) = —In(In2) .

4. /fM

Putu=1+x=du= 2\[ dx. By substitution, we have

1
2/fdu:2ln|u|:2[ln| 1+vx|]]=2(In3~1n2).
u

5. /tanx dx

sinx —sinx
/tanxdx:/ dx:f/ dx 1
CcosSX CcosX Remember: secx = ——

Cosx
=—In|cosx|+c

=1In|secx|+c.

6. /cotxdx:/@ dx=1In|sinx | +c.
sinx

2
secx (secx—+tanx sec”x +secxtanx
7. /secxdx:/ ( )dx:/—dx:ln\secx+tanx|+c.
(secx+tanx) secx + tanx
2
cscx (cscx —cotx CsCc”x —cscx cotx
8. /cscxdx:/ ( ) dx:/ dx=1In| cscx—cotx | +c.
(cscx — cotx) cscx — cotx
Exercise 1:

- M Find the derivative of the following functions:
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. y=In(x+1) 7. y=In(secx+x?) 13. y=In( );:21)
2. y=In(x*+2x—4) 8. y=1In(cosx) 14. y=In((x2+1)(x—1))
3. y=In(yx) 9. y:ln(sinzx) 15. y=In(yx—vx+1)
= In(Vx2 = 1In(s :
4. y=In(Vx?) 10. y =In(secx tanx) 16. y= (xz)
5. y=In(1) 11. y=cscx In(x) e
. 17. y=1 1
6. y=1In(sinx+x+1) 12. y=V2In(*+1) 8 i:lﬁgn(;nl))

- @ M Find the derivative of the following functions:

2 /7y 2.1
19. y=9/34 21 y="305 23 y=(J%ey)?
3 2 A 3/ 2.,
20, 3= D 2.y feepes e G
@- @] M Evaluate the following integrals:
3 sc? Vinx2
25. /%dx 29, [ ECL 4y 33. /ﬂdx
X +1 1 +cotx x
T ae2 4 2
26. [ 4y 0. [ S d u [ 3
T tanx Jo1 x4 +1 1 x
27. / 1 dx 31. /cscxdx 35. /M dx
xInx? : s x
28. /secxdx 32. /de 36. / ! dx
Vx+1 2 x(Inx)3

3.2 Natural Exponential Function

Since the natural logarithm function In : (0,00) — R is a strictly increasing function (see Figure [3.3)), it is one-to-one.
The function In is also onto and this implies that the natural logarithm function has an inverse function. This function is
called the natural exponential function.

Definition 3.2.1 The natural exponential
function is defined as follows:

<
I
N

exp: R — (0,00) ,

y=exp(x) = ny=x

Figure 3.3: The graph of the function y = ¢*.

3.2.1 Properties of the Natural Exponential Function

1. The domain of the function exp(x) is R.

2. The range of the function exp(x) is (0,c0) as follows:

y>1 x>0
exp(x)=< y=1 :x=0
y<1l :x<0
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3. Usually, the symbol exp(x) is written as e*. Thus, exp(1) = e and from Definition[3.2.1] we have In(e) = 1. Also,
In(e") =rlne=rVreQ.

4. The function e* is differentiable and continuous on the domain

d
a(e") =" VxeR.

From this, the function ¢ is increasing on R.

5. The second derivative % () =¢* > 0 for all x € R. Hence, the function ¢* is concave upward on the domain R.
6. lim,_,.. e = o0 and lim,_, o, ¢* = 0.

7. Since ¢* and Inx are inverse functions, then
In(¢") =x, Vxe R,

e = x, Vx € (0,00) .

Theorem 3.2.1 For every a,b > 0andr € Q, then
1. eaeb a-+b .

=e

e’ a—b
2. esze .
3. (&9 = e

\

Example 3.2.1 Find value of x:

I Inx=2 5 (e 1)e ! =
2. In(lnx) =0 4 xelnr — g
Solution:
l. Inx=2= " =¢? = x =2 Take exp for both sides
2. In(lnx) =0= "M = = Inx=1= ™ =¢! = x=e. Take exp twice

3. (x— e F =2= (x— 1)e™@ )" =2 = (x— 1)el™* = 2. This implies

xx—1)=2=x*—x-2=0=(x+1)(x—2)=0=>x=—lorx=2.

2
4, xPMr =8 = et =8 = P =8=x=2.

Example 3.2.2 Simplify the following:

1. In(eV¥) 3. (x+1)n(er )
2 e%lnx 4. o(Vx+2Inx)
Solution:

1. In(eV™) = /.
2. o3I — n VX — Jx.
3. x+DIn(e" ) =x+Dx—1)=x*>—1.

4. ¢(Vx+2Inx) _ e\/}elnx2 B~
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3.2.2 Differentiating and Integrating Natural Exponential Function

From the discussion above, if u = g(x) is differentiable on the interval , then

y=exp(x)=Iny=x.
Also,

/

—lny—)L:1=>y’=y
dx y
This implies

d
priii e, vxel = —e =¢"
X
Example 3.2.3 Find the derivative of the following functions
1. y= e\/3 x+1 3 y= 63‘305)‘_4/‘2 5 y= lnsinx
2. y=e 4 y=er— L 6. y=1In(e* ++/1—¢%)
Solution:

I Yarl I . 1
Ly = e ) 4oy =el(F)-(-e=k-4
2.y =e (= 10x) . 5.y = M) = cosx
3.y = 3cosx—4? (—3sinx—8x) .

Recall, %e“ = ey’

where u = g(x) is a differentiable function. By integrating both sides, we have

d
/e“u' dx = /ae” dx

=e'+c.

This can be stated as follows

/e“u/dx:e”—l—c = /exdx:ex—&—c

Example 3.2.4 Evaluate the following integrals

1. /)ce_x2 dx

3 /e +e "
ex_e —X
In5 tanx
2 / (3 — 4¢¥) dx 4 / d
0 cos?x
Solution:

1. /xe_"2 dx

Putu=—x>=du=—2xdx.

By substitution, we have
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In5
2, / (3 — 4e¥) dx
0

Putu =3 —4e¢* = du= —4¢" dx.

By substituting into the integral, we have

1 _ﬁ
T/udu—fg

Thus

0

/

[n5
e(3—4¢") dx=

e t+e

ex — e*x

dx .

=1
8

h

Putu=e¢"—e*=du=e"+e*dx.

By substitution, we have

1
/fdu:1n|u\+c:1n|ex—e’x|+c.
u

/

etanx

cos?x

dx = / e sec? x dx

Put u = tanx = du = sec?x dx .

By substitution, we have

/e” du=e"+c=e"" +c.

Exercise 2:

-El M Simplify the following:

1.

sin

2x+621ncnsx

2. lne‘i/}

E| - M Find value of x:

5.

Inx? =4

6. In(lnx) =1

El - B Find the derivative of the following functions:

9. y= esinx—}.vcz
10. y= xeVE
11. y=e¢*cos(Inx)
12. y=et Inx

13.
14.
15.
16.

- M Evaluate the following integrals:

I

-/
-/

62x+1 dx
VX

e

—d.
VG X

sinx
e

secx
(1 —2/xsinx)eViteosy
Vx

dx

24.

25

26.

J,
-/
/

/4 %X gin x

cos2 x

1

d
Jrev®

e

(14e¥)3

dx

3. ()C+ 2)eln(X72)
4. ln(63+21n.\')

7. xe™ =27
8. Ine*(x+2)=3

17. y=("+1)(Ve ™ +1)

18. y = sec?(e¥)

27. / MO dx

-
28. / ,de
J1 e +1
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3.3 General Exponential and Logarithmic Functions

3.3.1 General Exponential Function

Definition 3.3.1 The general exponential function is defined as follows:

a R — (0,00),
a = exlna )
Since Ina* = xIna Vx € Q, then by taking exp for both sides, we can write a* = "9 The function " is called the
general exponential function for the base a.
y y
1 1
=a*
X X

Figure 3.4: The function y = a"* fora > 1. Figure 3.5: The function y = a"* fora < 1.

In the following, we provide the main properties of the general exponential function.

Properties of the General Exponential Function

Let f(x) =a* Vx € R.

1. The domain of f(x) is R and the range is (0, ).

2. Ifa > 1,1na > 0 and this implies that xIna is an increasing function with x. This indicates that f(x) is an increasing
function (see Figure[3.4]for a > 1).

3. Ifa < 1, 1Ina < 0 and this implies that xIna and f(x) are decreasing functions (see Figurefor a<l).

Theorem 3.3.1 For every x,y > 0and a,b € R,

1. x%%P = xatb

3 ( .
2. H=xb. 4. (xy)e = x99
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Differentiating and Integrating General Exponential Function

Since a* = ¢*124 then

iax — iexlna
dx dx
_ exlnalna
=a'lna .

This can be stated as follows:

d 1
—a* =ad*.lna = addx=—ad +c
dx Ina

Generally, if u = g(x) is a differentiable function, then

d 1
—d" =d".u'.Ina = /a“.u/ dx=—a"+c
dx Ina

Example 3.3.1 Find the derivative of the following functions:

I y=2" 3. y=sin3* 5. y=In(tan5")
2. y= 3x2 sinx 4. y= x(773x) 6.y (10x +10— )
Solution:

4.y =7 3x+x( 3In7773) =7"%(1-3In7x) .
_ (5"In5) sec 2(5%)
tan(5%) :
6. y_10(1m+10 2 (10 In10— 10~ In 10) =
10 In10 (108 +107%)% (10— 1077 .

2V¥In2
2\[ln22\/ AV

Ly=
2. y = 3<sinx 3 (2xsinx +x?cosx) .
3.y = (3" In3)cos3*.

=

Example 3.3.2 Find the derivative of the following function y = (sinx)*.
Solution:

Take In for both sides. This implies Iny = xIn(sinx). Now, find the derivative of both sides

cos
Y _ = In(sinx) + =t
y sinx
=y =

(In(sinx) 4 xcotx) (sinx)* .

Example 3.3.3 Evaluate the following integrals:

I / 3 dx 3. / 3¥sin3* dx
X
2. /5"\/5x+1dx 4 /7dx
71
Solution:

1. / 37 dx . Putu=—x% = du= —2xdx. By substitution, we have

~1
- 3Lt _ 314 _ 3—){
2 / ~ 2In3 BETTE
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2. / 5*V5°+ 1dx. Putu=5"4+1= du=5"In5 dx. The substitution implies

3 3
1 1w 2(5° 4+ 1)3
_ Zd = — = .
1n5/” YT ms53n T T 3ms €

3. /3" sin3* dx . Put u = 3* = du = 3*1n3 dx. By substitution, we have

1 . 1 1 .
E/smuduf fmcoqurcffmcosS +c.

2.X
4. / >l dx . Putu =2"+1=-du =2%In2 dx. By substituting that into the integral, we have

1 /1 1 |
ln2/u u=qpinlulte=qamn25 1] +e

3.3.2 General Logarithmic Function

We know that if a # 1, the function a” is strictly increasing or decreasing, depending on the value of a. Thus, the function
a”* is one-to-one. The function is also onto and this implies that the function a* has an inverse function. The inverse is the
general logarithmic function log, for the base a.

Definition 3.3.2 The general logarithmic function is defined as follows:
log, : (0,0) = R,

x=a & y=1log,(x).

y y
y = log,(x
‘ X
1
X
Figure 3.6: The function y = log,(x) fora > 1. Figure 3.7: The function y = log,(x) fora < 1.

Properties of the General Logarithm Function

1. The general logarithm function log, x = }2—2

To see this, let y = log, x = x = @’. Take In for both sides,

, |
Inx =Ina” :ylna:y:ﬂ.
Ina
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2. If a > 1, the function log,(x) is increasing function, but if 0 < a < 1, the function log,(x) is decreasing function

(see Figures[3.6]and[3.7).

3. The natural logarithm function Inx = log,, x.
4. The general logarithm function log;,x = logx.

5. The general logarithm function log,(a) = 1.

Theorem 3.3.2 For every x,y > 0 and r € R, then
1. log, (xy) = log,(x) +1og,(y) .
2. log,(5) =log,(x) —log,(y).

3. log,(x") = rlog,(x) .

Differentiating and Integrating General Logarithmic Function

From the previous properties, we know that log,(x) = }E—Z Thus,

d ,Inx 1

d
a(logax) = a(

)

Ina

Hence, we have

1
/xlna dx =log,(x)+c.

Generally, this can be stated as follows. If u = g(x) is differentiable, then

xlna ’

d 1 1
a(logau) :m.u’ = /ulna'ul dx =log,(u)+c
Example 3.3.4 Find the derivative of the following functions:
1. y=logssinx. 2. y=log+/x.
Solution:
_ 1 1 _ _cosx  _ _
LY = 3 5y COSX = 35 = 3 - 2.5 =m0
Example 3.3.5 Evaluate the following integrals:
1 1
1. dx . 2. / ——— = dx.
/xlogx * Vx log, v/x *

Solution:

1
1. / dx
xlogx
dx

Put u =logx = du = 7. By substitution, we have

1
In(10) /f du=1In(10) In | u | +c=1In(10) In | logx | +c.
u

1
2. | ———=dx.
/\/)flogg\/;c *
dx

Put u =log, v/x = du = Tn2v By substitution, we have
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21n(2)/1 du=2In(2) In|u|+c=2In(2) In|log, /x| +c.
u

Exercise 3:
- B Find the derivative of the following functions:

1. y=3* 5. y=log Vx+1
2. y= sinx cosx 6. y= 5\/} tan.x 9. y= ln(sec 5'¥+1)
3. y=In(2) 7. y=x47% 10. y=logsx?
4. y=log,cosx 8. y=log(x+1)
- M Find the derivative of the following functions:
11. y= (sinx)* 13. y=2x°"
12. y= ()" 14, y= (x* —x)x
- @ M Evaluate the following integrals:
1
15. /)625)rz dx 17. /m dx 19. /73‘\/73"—%-1 dx
3* " log, sinx
16. /2* 2 41)d 18, [ 20./2701
cos( ) dx 8 T dx oy
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Chapter 4

Inverse Trigonometric and Hyperbolic
Functions

4.1 Inverse Trigonometric Functions

The inverse trigonometric functions are the inverse functions of the trigonometric functions: the sine, cosine, tangent,
cotangent, secant, and cosecant functions. The trigonometric functions give trigonometric ratios; meaning that they are
used to obtain an angle from the angle trigonometric ratios. The most common notations to name the inverse trigonometric
functions are arcsin(x), arccos(x), arctan(x), etc. However, the notations sin ! (x),cos ! (x),tan"! (x), etc., are often used
as well. In this book, we use the latter notations.

To find the inverse of any function, we need to show bijection
of that function (i.e., is it one-to-one and onto?). From your
knowledge, none of the six trigonometric functions are bijective.
Therefore, in order to have inverse trigonometric functions, we . . 1 1
. . . sin” ' (x) = (sin(x)) " = —

consider subsets of the domain . In the following, we plot the sin(x)
inverse trigonometric functions and determine their domains and

ranges.

Common mistake

which is not true.

y=tan~!

(3) The inverse tangent
tany=x<:>y=tan’1x X
Domain: R _‘1 1

Range: (-7,7%)

—/2 4
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(1) The inverse sine

siny=x< y=sin"'x

Domain: [—1,1] Range: [-7,7]

/2 1N
y=sin"lx
-1
_n/z 1
(4) The inverse cotangent
coty=x<<y= cot~!x
Domain: R Range: (0,7)
Y
/2
y=c¢ t1x
‘ X

-8 8

(6) The inverse cosecant
cscy:xc)y:csc’] X
Domain: R\ (—1,1)

Range: [-5,0)U (0, 7]

(2) The inverse cosine

COSy=X<=y= cos lx

Domain: [—1,1] Range: [0, 7]

y

n/

(5) The inverse secant

SeCy=x<=y= sec ' x

Domain: R\ (—1,1) Range: [0,7)U(5,x]

/2 |

y=se¢ 'x

w/2 +

y=cs¢ ' x

—n/2 |
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Differentiating and Integrating Inverse Trigonometric Functions

In general, if u = g(x) is differentiable function, then

dx 1—u2

dooo—1,
3. f;tan U=

d -1, 1 ! d -1, _ =1
1. 7. sin u—mu 4. 7. cot U= qu
d -1, _ 1 !
2. Leoslu=—=L_u 3. g sec e

-1 —1 u

d
1 6. csclu=
u dx uy/ u2—1

Example 4.1.1 Find the derivatives of the following functions:

1. y=sin"!(5x)
2. y=tan"!(e*)

Solution:
5

1.y = )
\/ 1-25x2

;o X

From the list of the derivatives of the inverse trigonometric functions, we have the following integral rules:

3. y=sec”!(2x)
4. y=sin"'(x—1)

/I _ 1
4.y = \/17(x71)2 o \/foxz '

For a > 0,

l/ﬁ

1
3. /xi dx=1sec™1(¥)+c.

vVx2 — a2

Example 4.1.2 Evaluate the following integrals:

1
S
V4 —25x2
1
2. /7dx
xVxb—4

Solution:

1. /mdx:/mdx

Putu =5x = du=5dx = dx = %. By substitution, we have

1 1 1 5
e du= gsinfl(g)—l-c: gsin’1(§)+c
1 N
2. fx s dx fx P dx
Put u = x> = du = 3x%dx. Then , we have
11 u 1 x

1 -1 —1
i/ui mdu: gESGC (5)"‘6’:656(: (?)‘FC

1 1
30— dx= [ dx.
/9x2+5 * /(3x)2+5 *

Put u = 3x = du = 3dx. By substitution, we have

/9x2+5
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/\%d"‘/,ﬁ"”

Put u = ¢* = du = e*dx. After substitution , we have

du=sec ' (u) +c=sec (e +c.

1
/ uvu?—1
Exercise 1:

- B Find the derivative of the following functions:

1. y=sin"!(Inx) 4. y=csc7(3x) T cor-1(el
2. y=rcos !(4x?) 5. y=sin"' (2 4x—1) 8. Y—COtil(f*)s
) —
3. y=tan"!(\/%) 6. y:tan’l(%) . y=sec ' (Iny/x)

E] - M Evaluate the following integrals:

1 ' 1
9. | —=d 12. / —————dx
/ /9_ 2 * secx(sin? x+ 1) 15. / 1 dx
1 g 1 xy/1—(Inx)?
10. — o7 dx 13. / ——dx
J x++481 xWx8—9 16 / cotx dx
[ L 4. [ S -/ cos?xan?x -3
Vex —4 : €2X+1

4.2 Hyperbolic Functions

Definition 4.2.1 The hyperbolic sine (sinh) and the hyperbolic cosine (cosh) are defined as follows:

& —e*

sinhx = ,VxeR,

X —X
coshx =

, I xeR.

The remaining hyperbolic functions can be defined from the hyperbolic sine and the hyperbolic cosine as follows:

inh e 1 2
tanh x — St _ ¢ ¢ , VxeR sechx = = , VxeR
coshx e +e* coshx eX+e*
coshx e " 1 2
coth x sinhx e —e X’ vx70 esenx sinhx eX—e ' x#

4.2.1 Properties of Hyperbolic Functions

In this section, we provide the main characteristics of the hyperbolic functions.

1. The graph of the hyperbolic sine (sinh) and the hyperbolic cosine depends on the natural exponential functions e*
and e~ (as shown in Figure 4.1)).

2. From Figure[4.1] the range of sinh is R and the range of cosh is [1,e0).
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............................... 1
y
y = sechx
‘ X
-2 -1 1 2
_1 1
Figure 4.1: The hyperbolic functions.

3. The hyperbolic sine is an odd function (i.e., sinh(—x) = — sinhx); whereas the hyperbolic cosine is an even function

(i.e., cosh(—x) = coshx). Hence, the functions tanh, coth and are odd functions and the function is even. This
means that the graphs of the functions sinh, tanh, coth and are symmetric around the original point; whereas the
graph of the functions cosh and are symmetric around the y-axis.

4. cosh®>x—sinh>x=1, Vxe R.
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To see this, from Definition

X

coshx —sinhx =¢™* and coshx+sinhx=¢".

Therefore,
(coshx — sinhx)(coshx + sinhx) = cosh®x —sinh>x = ¢ “e* =" = 1.

5. Since cos?t +sin?t = 1 for any ¢ € R, then the point P(cost,sint) located on the unit circle x> 4 y> = 1. However,
for any ¢ € R, the point P(cosht,sinh?) located on the hyperbola x> — y*> = 1. Figure illustrates this item.

g

Y ¥

K%P(cos t,sint) P(cosh t£inht)
!-/ x o X

x2+y? =1 xEpt =1

Figure 4.2: sinx and cosx versus sinhx and cosh.x.

As we know many identities interrelate the trigonometric functions. Similarly, the hyperbolic functions satisfies some
identities given in Theorem [#.2.1]

Theorem 4.2.1 ) 5
1. sinh(x=+y) = sinhxcoshy + coshxsinhy ; ! —htzanh )IC B secZz *
2. cosh(x=+y) = coshxcoshy+ sinhxsinhy - cothmx— 1= cstgmhxx + tanhy
3. sinh(2x) = 2sinhxcoshx 7. tanh(x+y) = T+ tanhxtanhy
4. cosh(2x) = 2cosh?x — 1 = 2sinh’x + 1 = cosh®x + 2 tanhx Y
inh2 8. tanh(2x) = ———
sinh” x (2x) |+ tanhZx
4.2.2 Differentiating and Integrating Hyperbolic Functions
The derivations of the hyperbolic functions are listed in Theorem[4.2.2].
Theorem 4.2.2
1. & sinhx = coshx 4. L cothx = —esch® x
2. % coshx = sinhx 5. %sech Xx = —sech x tanhx
3. % tanhx = sech® x 6. %csch x = —csch x cothx
Example 4.2.1 Find the derivative of the following functions:
1. y =sinhx? 3. y=esinhx
2. y=/xcoshx 4. y=(x+1)tanh®x’
Solution:
1.y =2xcosh(x?) . 3. y = e"¥ coshx .
2.y = 505 coshx+/x sinhx . 4. y = tanh?(x*) + 6x2(x+ 1) tanh(x?) sech?(x%) .

Example 4.2.2 Find % ify = xoh*,



Solution: Take the natural logarithm (In) for both sides

Iny = coshx Inx .

Differentiate both sides
!
h
Y — sinhx Inx+ 200 y' = [sinhx Inx+
y X X

coshx ’
] xcosh,\ )

From the list of the derivation given in Theorem.2.2] we have the following list of integrals:

° /sinhx dx = coshx+c ° /cschzx dx = —cothx+c
° /coshx dx = sinhx+c¢ ° /sech x tanhx dx = —sech x+c¢
° /sech2 x dx =tanhx+c¢ ° /csch x cothx dx = —cschx+c¢

Example 4.2.3 Evaluate the following integrals:

1. /sinhzx coshx dx 3. /tanhx dx
2. / MY Ginhx dx 4. / e* sech x dx
Solution:

1. /sinhzx coshx dx .
Put u = sinhx = du = coshx dx. By substitution, we have /u2 du = u? /3 + c. This implies

sinh3x
3

/sinhzxcoshx dx = +c.

2. [ e sinhx dx

Put u = coshx = du = sinhx dx. By substitution, we have /e“ du = e" +c. Hence,

/ M sinhx dx = ™M ¢

3, / tanhox dx — / sinhx o
coshx

1
Let u = coshx = du = sinhx dx. Then, we have /f du=1n|u | +c. This implies
u

/tanhx dx=1In|coshx | +c.

2¢* 2%
4. /exsechxdx:/ dx:/ ¢ dx
X+ e 62x+]

1
Put u = e** = du = 2¢>* dx. By substitution, we have / PN du=In|u+1|+c=1In|e*+1]|+c.
u
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Exercise 2:

- B Find the derivative of the following functions:

1. y=sinh(Vx3)
2. y=tanh(5x)
3. y=e*cosh(x)
4. y= £sinh(2x)

- @] M Evaluate the following integrals:

11. /w dx

© N o w

y = In(coth(x))
y = +/csch(x)

.y =sinh(tanx)

y = cosh(eV¥)

esinhx
5. —d.
/ sech x o

9. y = tanh(lnx)
10. y=+vx+1(x)

* cosh(Inx) 16 / sech x tanhx / S J
. / x = . 1+sechx cosh’x tanhx
13. / ¢“tanh(e*) dx 17. / V/3+coshx sinhx dx 20. / In( C‘;ltzhx
s
" tanh h 1
14. /(1+tanhx)3se6112xdx 18. / anh( /%) (s\; (vVx) +1) dx
X

4.3 Inverse Hyperbolic Functions

In the first section of this chapter, we defined the inverse trigonometric functions. In analogical way, we define the inverse
hyperbolic functions.

4.3.1 Definition and Properties

(1) The function sinh : R — R is bijective (i.e., it is  (2) The function cosh is injective on [0,c0), so cosh :
one-to-one and onto), so it has an inverse function [0,00) — [1,00) is bijective on [0,e). It has an inverse
. ] function
sinh” :R—R cosh™! 1 [1,00) — [0, 0)
sinhy = x < y =sinh ' x coshy =x < y=cosh 'x
y y
2 | 5 |
y=sinh™ " x
! It It It It x ! It It
-3 -2 —1 1 2 3 -3 -2 —1
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(3) The function tanh : R — (—1,1) is bijective, so it (4) The function coth : R\ {0} — R\ [-1,1] is

has an inverse function bijective, so it has an inverse function
tanh':(—1,1) > R coth ! : R\ [~1,1] = R\ {0}
tanhy =x <y =tanh ' x cothy =x < y=coth ' x
2 .
y

%

1 1

y = tanh”!
} x, y :;coth N

-1 -0.5 0.5 1 :
ENN

114

-2

(5) The function sech : (0,1] — [0, o) is bijective and  (6) The function csch : R\ {0} — R\ {0} is bijective

the inverse function is and the inverse function is
sech™ ' :[0,00) = (0, 1] csch™' iR\ {0} — R\ {0}
sechy =x < y=sech ' x eschy=x<y=csch ' x
3 .
Yy
2 A4
1 Yy = csch™ x
y = sech BB
‘ ‘ ‘ ‘ X
-1 =05 0.5 1 1.5 2
il 1
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Theorem 4.3.1

1. sinh™ x—ln(x—|—\/ 2+ ), VxeR
2. cosh™ xfln(er\/ 1), Vx € [1,0)
3. tanh 'x=JIn Vxe( 1,1)

1—x?

4. coth™'x=1In*tl Vxe R\ [-1,1]
LV e R\ [=1,1]

V1+(1)2), vxe R\ {0}

5. sech™ x= ln(

6. csch™'x = ln(% +

4.3.2 Differentiation and Integration

Theor%m '4.3.2] . ., | |
1. Zsinh™ x= \/)TH 4. §coth* xzﬁl, Vx e R\ [—1,1]
dpeh—1 y— _—
2. 4coshlx= xz Vxe( o) 5. ‘;sech lx X\/li Vx e (0,1)
3. %tanh”x- =, Vx e(-1,1) 6. gresch™ IX\F vx e R\ {0}
Example 4.3.1 Find the derivative of the following functions:
1. y=sinh~!(\/x) 4. y=In(sinh'x)
2. y=tanh~!(¢&") 5. y=csch™!(4x) g (tanh " xl)
3. y=cosh™!(4x?) 6. y=xtanh '(1) : " sec
Solution:
1.y = I 5.y’:|4‘\/7]221() H\/IGZ]
= /7 3 /7 X X<+ X X~ +
Ly = \[ o 6. y :tanh_l(};)—kx(lf(l)z)(?z) =tanh™ ( )
)2 T 1 2x . X
,_ B o 25
, v 16x4 ! . 7.y =2tanh'x L, = 72“;‘“';2
= T, - _ e
Smh \/ﬁ V/x2+1 sinh~1x 8. y =" sech™ x—x\/@

From the list of the derivatives given in Theorem [#.3.2] we have the following list of integrals:

1
o [ —— dx=sinh 1%+ °
/\/x2+a2 a4
1 _ —1x
. /ﬂdx—cosh stex>a

1
_ 1 —-1x
® /mdx—atanh E+C’

x|<a.

1
/m dx:$coth_1§+c,|x\>a.
/ \/72 Lsech! M—i—c | x|<a.
xa*—x
/ csch]H—l—c\x|>a
x\/x2—|—a

Example 4.3.2 Evaluate the following integrals:
Y
) VP —4
1
2 [ ax
Vax2+9
1
3. / ——dx
Ve +9

Solution:

dx = cosh™!

1 X
Vxr—4 (B)+e.

1
[
xV/1—x6
1
5. d
/0 16—

7 1
6. ——d
/5 16—




1
2. /7 dx = [ ——— dx
V4xt+9 / V (2x)2+9
Putu =2x=du=2dx=dx= %. By substitution, we have
1 1 1. _,u 1. 2x
E/ﬁ dM—ESIHh (g)"_C—iSlnh (?)‘i_c
[ s
——dx= [ ———dx.
e>+9 (€¥)2+9
Put u = ¢* = du = ¢*dx. By substituting the result into the integral, we have

1 s D 7] R S
/m du—TCSCI’l (T)‘FC—TC’SC”Z (g)‘i—c

1 1
—_— dx:/i dx .
/x\/17x6 xy/1—(x3)2
Put u = x> = du = 3x%dx. By substitution, we have
1 1 1 1
g/u\/ﬁ du = _gsech71(| u |)+C: _gsechil(‘ X3 |)+C .

5. Since the interval of the integral is sub-interval of (—4,4), the value of the integral is tanh~! . Hence,

i 1 X1l 1l 50 1 1.5
dx=—|tanh 'Z| =—|-In(3)—=In(1)| = =In(3) .
/(>16fo x 4[3“ 4}0 4{2 n(3)— 5 In( )} gn(3)

6. Since the interval of the integral is not sub-interval of (—4,4), the value of the integral is coth™ !, Hence,

/57 16ix2 dx = %[cmh—l ﬂz = % [m(ll) —21n(3)} )

Exercise 3:
-E] M Find the derivative of the following functions:

1. y=sinh~!(tanx) 3. y=tanh~' (Inx) 5. y=tanx tanh~! (x)
2. y=cosh™! (V%) 4. y=+x+Tesch ' (x) 6. y=(2x—1)*sinh~!(v/x)
- B Evaluate the following integrals:

o 1
A 0. [ o ar .

V222 Va2 425 13, / v
YA Ty el w2
e N [

1 1 V4 —e2x
9. / dx 12. /7 dx
J oxv/1—x* sec x(1 —sin®x)
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Chapter 5

Techniques of Integration

5.1 Integration by Parts

Integration by parts is a method to transfer the original integral to an easier integral that can be evaluated. Practically, the
integration by parts divides the original integral into two parts u and dv. Then, we try to find the du by deriving u and v
by integrating dv.

Theorem 5.1.1 [fu = f(x) and v = g(x) such that f'(x) and g'(x) are continuous, then

/udv:uv—/vdu.

Theorem |5.1.1| shows that the integration by parts transfers the integral / u dv into the integral / v du that should be

easier than the original integral. The question here is, what we choose as u(x) and what we choose as dv =V (x) dx. It is
useful to choose u as a function can be easily differentiated, and to choose dv as a function that can be easily integrated.
This statement is clearly explained through the following examples.

Example 5.1.1 Evaluate the following integral / X CcoSx dx.

Solution:

Let] = /x cosx dx. Put u = x and dv = cosx dx. Hence,

Try to choose

u = x=du=dx, u=cosx and dv = x dx

dv=cosxdx = v— /cosx dx — sinx Do you have the same result?

From Theorem[3.1.1]
I =x sinx— /sinx dx=x sinx+cosx+c.
Example 5.1.2 Evaluate the following integral / x e dx.

Solution:
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Let] = /x " dx. Put u = x and dv = ¢* dx. Hence,

u=x=du=dx,
Try to choose u = ¢* and dv =x

dv:exdxév:/exdx:ex.

From Theorem|5.1.1 I:xex—/exdx:xex—ex—FC.

Remark 5.1.1
1. Remember that when we consider the integration by parts, we want to have an easier integral. As we saw

in Example if we choose u = ¢* and dv = x dx, we have [ “% e* dx which is more difficult than the
original one.

2. When considering the integration by parts, we have to choose dv a function that can be integrated (see

Example )
3. Sometimes we need to use the integration by parts two times as in Examples and[5.1.5]

Example 5.1.3 Evaluate the following integral / Inx dx.
Solution: Let I = /lnx dx. Let u = Inx and dv = dx. Hence,
1
u=Inx=du=-dx,
X
dv:dxév:/ dx=x.

From Theorem
1
1:xlnx—/xf dx:xlnx—/ dx=xInx—x+c.
X

Example 5.1.4 Evaluate the following integral / e*cosx dx.
Solution: Let I = /ex cosx dx. Put u = ¢* and dv = cosx dx.

u=¢e" =du=¢ dx,

dv=cosxdx=v= /cosx dx =sinx .

Hence, [ = ¢*sinx — /ex sinx dx .

The integral / €"sinx dx cannot be evaluated. Therefore, we use the integration by parts again where we assume J =

/ex sinx dx. Put u = ¢* and dv = sinx dx. Hence,

u=e" =>du=¢e"dx,

dv = sinx dx = v:/sinxdx: —COSX .

This implies J = —e*cosx + /ex cosx dx.
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By substituting the result of J into I, we have
I=¢"sinx— /ex sinx dx
= ¢*sinx+e*cosx — /ex cosx dx
=¢'sinx+e*cosx—1 .
This implies 21 = ¢ sinx + ¢* cosx = /e" cosx dx = % (sinx+cosx) +c .
Example 5.1.5 Evaluate the following integral / x*e* dx.

Solution: Let I = / %" dx. Put u = x? and dv = ¢* dx. Hence,

u=x>=du=2xdx,

dv:exdx:>v:/exdx=ex.

This implies, 7 = x2¢* —2 / xe® dx

Now, we the integration by parts again for the integral / xe* dx. LetJ = / xe* dx.
Put u = x and dv = ¢* dx. Hence,

u=x=du= dx,

dv:exdx:v:/exdxzex.

This implies J = xe* — / ¢" dx = xe* — ¢*. By substituting the result into /, we have
I=x*¢" —2(x¢" —e)+c=e"(X* —2x+2)+c.

1
Example 5.1.6 Evaluate the following integral / tan~ ! x dx.
0

Solution:

Let] = /tan*1 xdx. Putu = tan~! x and dv = dx. Hence,

u=tan 'x=du= dx,

x24+1
dv:dx:>v=/dx=x.

From Theorem

1
I=x tanflx—/xzi+1 dx=x tanflx—iln(x2+1)+c.

1 1
From this, /0 tan~'x dx = |x tan~ ' x — $In(x* + 1)}0 =(tan~'(1)—11n2)— (0—$In1) =2 —1Inv2.

Exercise 1:

- M Evaluate the following integrals:
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1. /,x3lnxdx 7. /e"siandx

/3 1 1
2. /0 / sinxIn(cosx) dx 8. /0 tan~'x dx 13. / x(Inx)3 dx
3. /sinflxdx 9. /EZKCOSX dx 14. /O.lxzex dx
4. /X3de 10. /.(111«\’)2 dx 15. /xtanflxdx
5. /,xsinxdx 11. /IJI:TX dx 16. /xe’” dx
6. /xzcosx dx 12. /xsinx cosx dx

5.2 Trigonometric Functions
5.2.1 Integration of Power of Trigonometric Functions

Form 1: /sin"x cos"xdx .

This form of integrals is treated as follows:

1

1. If n is odd, we write sin” x cos™x = sin"~'x cos™x sinx. Then, we use the identity cos?x +sin’x = 1 and the

substitution # = cosx.

m—1

2. If m is odd, we write cos™x sin" x = cos x sin”x cosx. Then, we use the identity cos?x +sin?x = 1 and the

substitution u = sinx.

2 1+cos2x
2

3. If m and n are even, we use the identities cos“x = 1-cos2x

and sin®x =
Example 5.2.1 Evaluate the following integrals:

1. /sin3xdx 3. /sinsxcos4x dx

2. /cos4x dx 4. sin® xcos?x dx

Solution:

1. /sin3xdx.

We write sin’

x = sin?xsinx = (1 — cos?x) sinx. This implies /sin3x dx = [(1—cos?x)sinx dx .
Put u = cosx, this implies du = — sinx dx. By substitution, we have

3

/(l—uz) du:—u+%+c:>/sin3xdx:—cosx+

COS3X

+c

2. /cos4x dx .
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4

We write cos 2x)? = (chih)

x = (cos“x 2 . This implies

1 2
/cos4xdx:/($)2 dx
1
:Z/1+2c0s2x+c0s22xdx
—1/1dx+l/2c052xdx+100522xdx
4 4 4

1 1 1
= Z)H_ fsin2x+§/l+cos4x dx

4
1 +1 2 +1( +sin4x>+
= —x+ —sin - :
g5t gsin2r+ o (x 7 ¢
3. /sinsx cos*x dx
We write sin® x cos* x = sin*x cos*x sinx = (1 — cos?x)? cos*x sinx.
Let u = cosx = du = —sinx dx. Thus, the integral becomes
5 2 9
—/(1 —1?)ut du = —/u4—2u6—|—u8 du= —(u——fbﬂ—l—u—)—I—c.
5 7 9
This implies /sin5xcos4x dx = —Cogj + 2 cos’x— % +c

4. /sinzxcoszxdx

2 1—cos2x)(1+cos2x) — 1—cos?2x __ sin®2x — %(1—0054}(

The integrand sin’x cos?x = ( 5 5 T =% 5>+*). Thus, the integral becomes

1 1 ind
g/l—cos4xdx:§(x—suzx)+c.

Form 2: / tan"x sec”xdx .

This form is treated as follows:

1. If n=0and

secx(secx+tanx)

seortany then we use the substitution ¥ = secx tanx.

(a) m =1, we write secx =

(b) m > 11is odd, we write sec” x = sec” 2x sec’x, then we use the integration by parts.

m—2

(c) m is even, we write sec” x = sec™ 2x sec2x, then we use the identity sec?x = 1 + tan®x and the substitution

u = tanx.

2. If m=0and

sinx

(a) n=1, we write tanx = oS’ then we use the substitution u = cosx.

(b) n is odd or even , we write tan" x = tan" 2 x tan?x, then we use the identity tan?x = sec’x — 1 and the
substitution # = tanx.

3. If nis even and m is odd, we use the identity tan” x = sec>x — 1 to change the integral to / sec” x dx.

4. If m > 2 is even, we write tan” x sec” x = tan” x sec” 2 x sec’x, then we use the identity sec’x = 1 + tan” x and the
substitution # = tanx.



55

5. If nis odd and m > 1, we write tan"x sec™x = tan" ! x sec”™ !x tanx secx, then we use the identity tan?x =

sec?x — 1 and the substitution u = secx.

Example 5.2.2 Evaluate the following integrals:

1. /tansx dx 3. /sec3x dx
5. /tan4x sect x dx
2. / tan® x dx 4. / tan’ x sec* x dx
Solution:

1. Write tan® x = tan x tan”x = tan® x (sec’x — 1). Thus,
/tansx dx = /tan3x (sec’x—1) dx

= /tan3x sec’x dx—/tan3x dx

tan®
= alzll a —/tanx (sec’x—1) dx

4
tan™ x
= 1 —/tanx sec?x dx+/tanx dx

tan*x  tan’x
=~ "3 +1n|sec x| +c.

2. Write tan® x = tan*x tan®x = tan*x (sec?x — 1). From this, the integral becomes
/tan6x dx= /tan4x (sec’x—1) dx

= /tan4x sec’x dx—/tan4x dx

5
tan” x
=—- /tanzx (sec?x—1) dx
tan’ x 2 2 2
= 5 —/tanxsec xdx+/tan xdx
5 3
tanx tan’x 2
= — +/sec x—1dx
5 3
tan’x  tanx
= 5 — 3 +tanx—x+4c.

3. Write sec’x = secx sec?x and let I = /secx sec® x dx.
We use the integration by part to evaluate the integral as follows:
u =secx = du = secx tanx dx ,
dv=sec’xdx=v= /sec2x dx =tanx .
Hence,

I =secx tanx — /secx tan’ x dx

3x —secxdx

=secx tanx—/sec
=secx tanx — I +1In | secx+tanx |

1
= E(secx tanx+1n | secx+tanx |)+c.
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4. Express the integrand tan’ x sec* x as follows

4 2 2 2

tan’ x sec*x = tan’ x sec?x sec?x = tan® x (tan’x+ 1) sec’x .
This implies
/tansx sectx dx = /tansx (tan®x+ 1) sec’x dx
= / (tan” x +tan’ x) sec®x dx

. tansx n tanéx
8 6

+c.

5. Write tan*x sec*x = tan*x (tan?x+ 1) sec?x. The integral becomes

/tan4x sectx dx = /tan4x (tan®x+ 1) sec’x dx

= (tan®x +tan* x) sec®x dx

o tan’ x n tand x
7 5

Form 3: / cot’x cscx dx .

This form of integrals is treated as the integral / tan” x sec™ x dx, except we use the identity csc>x = 1+ cot®x.
Example 5.2.3 Evaluate the following integrals:
1. / cot® x dx 2. / cot*x dx 3. / cot® xesctx dx

Solution:

1. Write cot® x = cotx (csc?>x — 1). Then,
/coth dx = /cotx (csc?x— 1) dx

= /(cotx csc? x — cotx) dx = 700t2x—ln | sinx | +c .

2. The integrand can be expressed as cot* x = cot? x(csc>x — 1). Thus,

/cot4x dx = /cot2x (csc?x—1) dx

3

cot’ x
:/cotzxcsczxdxf/cotzxdx: T+cotx+x+c.

4 3

3. Express the integrand as cot® x csc*x = csc?x cot*x cscx cotx. This implies

/cotsx csctxdx = /csc3x cot* xcscx cotx dx
= /csc3x (csc®x —1)%cscx cotx dx

= /(csc7x —2csc x+csc’x) escx cotx dx

— CSC8X CS06)C CSC4)C

8 + 3 4

+c.
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5.2.2 Integration of Forms sinux cosvx,sinux sinvxandcosux cosvx

We deal with these integrals by using the following formulas:

1

sinux cosvx = 5 (sin(u—v) x+sin(u+v) x),
. . 1

sinux sinvx = > (cos(u—v) x—cos(u+v)x),
1

cosux cosvx = > (cos(u—v) x+cos(u+v) x) .

Example 5.2.4 Evaluate the following integrals:

1. /sin5x sin3x dx 3. /cos5x sin2x dx

2. /sin7x cos2x dx 4. /cos4x sin6x dx

Solution:

1. /sinSx sin3x dx .

From the formulas given above, we have sin5x sin3x = % (cos(2)x — cos(8)x) . Thus,

1 1 1
/sinSx sin3x dx = E/(cost—cosfo) dx = Zsian— Esin8x+c .

2. /sin7x cos2x dx .

Since sin7x cos2x = % ( sinSx + sin 9x) , then

1 1 1
/sin7x cos2x dx = 5/(sin5x+sin9x) dx = BT cos5x — ﬁcos9x—|-c .

3. /coséx cosdx dx .

Since cos 6x cos4x = % (cos 2x+ cos 10x) , then

1 1 1
/sinéx cosdx dx = 3 /(cos2x+(:0510x) dx = Zsin2x+ 2—Osin10x+c.

Exercise 2:

- B Evaluate the following integrals:

1. /sinzxcos(’x dx 7. /sin\z/}\/;c dx 13. /SCCSX dx
2. /sinsxcoszx dx 8. /cotzx csed x dx 14. /tanéx dx
3. / sin® xcos’ x dx 9. /cot4x cse x dx 15. / sin7x cos3x dx
4. /cos°(4x) dx 10. /tan3x secd x dx 16. /cos4x cos3x dx
5. /tan4x dx 11. /tanzx sec x dx 17. /sinSx sin3x dx
6. /cotsx dx 12. / tanZ x sec> x dx 18. /sin 3x cosSx dx
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5.3 Trigonometric Substitutions

In this section, we are going to study integrals consist of the following expressions va? —x2, Va% +x? and v/x2 —a?
where a > 0. To get rid of the square roots, we convert them using substitutions rely on trigonometric functions. The
result will be integrals involve power of trigonometric functions. The latter integrals will be evaluated by using the
methods given in section[5.2.1] The conversion of the previous square roots is explained as follows:

1. Va2 —x*=a cosOif x =a sin®.
If x = a sin® where 8 € (—1/2,7/2), then

a
\/azfxzz\/azfazsinze x
=\/a?(1 —sin’@) )
=Va?cos?0 a? —x2
=a cos0.

2. Va?2+x2=a secOif x=a tan®.
If x = a tan® where 6 € (—7/2,7/2), then

Va2 +x2 = \/a2+a2tan29
=1/a*(1+tan?9)
=Va%sec?

=a secH .

3. Vx2—a* =a tan0 if x = asec®.
If x = a secO where 8 € [0,t/2) U [r,31/2), then

Va2 —a? = Va?sec?0— a2 R *
=/a%(sec20—1) 5
= Va?tan? 0 a
=a tan@ .

Example 5.3.1 Evaluate the following integrals:

x? 6 \/x2=25
Z./ dx 2. / Xr " 3. /\/x2+9dx
V1—x2 5 x4 o

Solution:

1. Letx =sin® where 6 € (—t/2,1/2), thus dx = cos 6 d6. By substitution, we have
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x2 sin%@
7dx:/7 cos0 do
/vl—x2 V1—sin%0
/sm Gcose
cos6 1

X
:/Sin 0 4o

1
_ 5/1 0520 d

1 —x?

1 1.
= 5(97551n29)+c

1
= E(Ofsine cosB)+c

Now, we must return to the original variable x:

)CZ
/7 dx=L(sin ' x—xv1—x2) +c.
V1—x2 z

2. Letx =5 secO where 8 € [0,/2) U [r,3®/2), thus dx =5 sec6 tan® d6. After substitution, the integral becomes

1/2 20—
/M 5secH tan® d6 = — / an 6 X
625 sect0 25 ecge N
:g/sin 0 cos0 do 5
1
- 5
75 sinO+c .

x2_25 d_x— 1 |:(x272’;5)3/2:|6 _ 1
5

6
We must return to the original variable x: /5 a == — 500 -

3. Letx = 3tan® where 0 € (—7/2,1/2). This implies dx = 3sec® 0 d. By substitution, we have

/\/x2+9 dx:/\/9tan26+9(3secze) e
_ 3
—9/sec 6 do 259

9
= E(secx tanx+In|secx + tanx]) .

This implies 3

./ /2
/\/ﬁd (x X +9 +In| x—;9—|—x|)+c

Exercise 3:

- B Evaluate the following integrals:
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1 3
1. /7dx d
x2V/x2 16 7. / /T—_8 dx X
2. /\/9—x2dx g sec?x J 13. /72dx
T Vo Vit
3. /73dx 1 14./ dx
o | e (1)1
4. ﬁdx 10. /«/x2716dx 15. /e"'ﬁdx
S . Vo— 22
s. /mdx 1. /\/e%—zsdx 16‘/ xzx dx
2 COosSx
X 12. /7dx
6. /(167)52)2 d V2 —sinx

5.4 Integrals of Rational Functions

fx)

In this section, we study rational functions of the form g(x) = ) Where f (x) and g(x) are polynomials.

The practical steps to integrate the rational functions can be summarized as follows:

» Step 1: If degree of g(x) is less than degree of f(x), we do polynomial long-division; otherwise we move to step 2.

From the long division shown on the right side,
we have h(x)

gx) )

f(x) r(x)
qx) =—==h(x)+—=,
W= ="
. . . r(x)
where h(x) is called the quotient and r(x) is
called the remainder. L J

» Step 2: Factor the denominator g(x) into irreducible polynomials where the result is either linear or irreducible

quadratic polynomials.

» Step 3: Find the partial fraction decomposition. This step depends on step 2 where if degree of f(x) is less than the

degree of g(x), then the fraction % can be written as a sum of partial fractions:

q(x) =P (x) + P (x)+P3(x)+ ...+ P,(x) ,

where each P;(x) = W’m € Nor P(x) = % if b> —dac < 0. The constants A, B, ... are computed later.

» Step 4: Integrate the result of step 3.

x+1
—2x—38

Example 5.4.1 Evaluate the following integral / S5 dx.
X

Solution:

Factor the denominator g(x) into irreducible polynomials : g(x) = x> —2x—8 = (x+2)(x —4) . We need to find constants
A and B such that

x+1 A B Ax—4A+Bx+2B
5 = + =
xX*=2x—8 x+2 x—4 (x+2)(x—4)

Coefficients of the numerators: Multiply equation @ by 4 and add the result to equation @
A+B:1—>® 4A+4B =4
—4A+2B=1
—4A+2=1-(C2)
By doing some calculation, we have 6B=>5

_ 1 _5
A_gandB—g,thus
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1 1/6 5/6 1
/de / / d+/ / dx—fln\x+2\+fln|x 4| +c.
2 _2x-8 +2

263 —4x —15x+5
xX24+3x+2

Example 5.4.2 Evaluate the following integral /

Solution:

Since the degree of the denominator g(x) is less than
the degree of the numerator f(x), we do polynomial
long-division.

From the long division given on the right side, we have

2x  —10

X 43x42) 27 —4F —15x 45
2% +6x2 +4x

—10xZ —19x +5

11x+35 —10x2 —30x —20

xX243x+2° 11x 425

q(x) = (2x—10)+

Now, factor the denominator g(x) into irreducible polynomials : g(x) = x> +3x+2 = (x+ 1)(x+2) . Thus,

11x+25 A B Ax+2A+Bx+B

AT —10)+ = (2x—10
P o Bl Sl e e, Sk Y ey o oy

g(x) = (2v—10) +

)

and we need to find the constants A and B.

Coefficients of the numerators:

Multiply equation @ by —2 and add the result to equation @
A+B=11-(1) —2A-2B=-22
24+B=25-(2) 24+B =25

By doing some calculation, we have
A =24 and B = —13, thus

/()d /2x—10 dx+/7d +/7dx

=x*—10x+14In | x+ 1| =31In|x+2]| +c.

Remark 5.4.1
1. The number of constants A,B,C, ... is equal to the degree of the denominator g(x). Therefore, in the case of
repeated factors of the denominator, we have to check the number of the constants and the degree of g(x).
2. If the denominator g(x) contains irreducible quadratic factors, the numerators of partial fractions should
be polynomials of degree one.

2x” —25x—33
Example 5.4.3 Evaluate the following integral / xi(fc—S)
Solution:
Since the denominator g(x) has repeated factors, then
26 —25x—33 A N B N C A —4x—5)+B(x—5)+C(x*+2x+1)
(x+1)2(x—-5) x+1 (x+1)2 x—-5 (x+1)2(x—35) ‘

Coefficients of the numerators:
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A+C=2— @ Hint: Multiply equation @ by 5 and add the result
—4A+B+2C=-25— @ to equation @ to have a new equation contains A and
C.

~54-5B+C=-33-(3)

By solving the system of equations, we have A =5, B =1 and C = —3. Hence,

/2x2—25x—33 dx—/ +/ dx+/
(x+1)2(x-5) ) x+1 x— 5

:51n|x+1|+/(x+1)_ dx—3In|x-5|

=5In|x+1]|— —3ln|x—5]|+c.

1
(x+1)

1
Example 5.4.4 Evaluate the following integral / )ﬁd}(.

Solution:

The denominator g(x) is factoblack into irreducible polynomials, so

x+1 A Bx+C_Ax2+A+Bx2+Cx
x(x24+1)  x  x2+1 x(x2+1)

Coefficients of the numerators:

We have A=1,B=—1and C = 1. Hence,
1 1
/” d—/ v+ [ S5 ax
+1
In x| / d+/ L 4
=1In — | — —— dx
o x2+1 o x2+1

1
=In|x| —Eln(xz—l—l)—f—tan*]x—i—c.

Exercise 4:

- M Evaluate the following integrals:

X
L /x(xlfl) dx o ./x2+Zx+6 dx
) ./Ozmd)C 10. /x2+3x1+9 dx
3. /xz%ztdx . /(xl)(x;H) dx 17. /x?%dx
X .
4. /Xiz,lx,z dx 12. /7()(“)1;2_4) dx 18. /01 lJ:ex dx
3 .
[ e & B 0. [ s
6./mdx 14./x21+1dx 20./ﬁdx
5 2 _ 2
7 /1 xzj-3xl—4dx 15. /3;3:)(73;:;“

3 .
X /2 sinx
8. /751;: 16. / sy
J x2=25 Jo  cos?x—cosx—2 *
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5.5 Integrals of Quadratic Forms

In this section, we provide a new technique for integrals that contain irreducible quadratic expressions ax> + bx + ¢ where
b # 0. This technique is completing square method: a” 4 2ab + b*> = (a=+ b)?. Before starting presenting this method, we
provide an example to remind the reader on how to complete the square.

Example 5.5.1 The quadratic expression x> — 6x + 13 is irreducible. To complete the square, we find (%)2, then add and
substrate it as follows:

Remember:

x* —6x +13= X —6x +9-9+13 If a quadratic polynomial has roots, it is reducible;
—(x—3)2 =4 otherwise it is irreducible.

Hence, x* —6x+13 = (x—3)> + 4.

In the following examples, we use the previous idea to evaluate the integrals.

1
E le 5.5.2 Evaluate the following integral | ———————=dx.
xample valuate the following integra /x2 “6r1 13 X

Solution:

The quadratic expression x> — 6x + 13 is irreducible. By using the complete the square, we have

1 1
dx = dx .
/x2—6x+13 * /(x—3)2+4 *

Let u = x — 3 = du = dx. By substitution,

1 I, u I _;,x=3
/mduzitan (§)+C:§tan ( 2 )+C
Example 5.5.3 Evaluate the following integral / #dx.
x2—4x+8

Solution:

Since the quadratic expression x> — 4x + 8 is irreducible, we use the complete the square as follows:

X X
= — 4
/x2—4x+8 * /(x—2)2+4 *

Let u = x — 2 = du = dx. By substitution,

u+2 u 2
———du= | ——d ———d
/u2+4 ! /u2—|—4 M+/u2+4 !

1
ziln\u2+4|+tan*1(g)
x—2
2

= 1ln(()c—2)2—|-4) +tan~!(

2 ) +e

1
Example 5.5.4 Evaluate the following integral / ——dx.
P Jollowing imiesral | ==

Solution:
By completing the square, we have 2x — x> = — (x> = 2x) = —(x* = 2x+1—1) =1 — (x — 1)%.
Thus,

/\/ﬁdx:/\/l—(lxi—l)zdx'

Let u = x — 1, then du = dx. By substitution, the integral becomes

1
du=sin""(u)+c=sin""(x—1)+c.
| = . .
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Example 5.5.5 Evaluate the following integral / Vx2+2x—1dx.

Solution:

By completing the square, we have x*> +2x — 1 = (x+ 1)> — 2. Thus,

/\/mdx:/w/(xﬂ)tz dx .

Let u = x+ 1, then du = dx. The integral becomes / Vus—2du.

Use the trigonometric substitutions, in particular assume u =
V2 sec® = du = /2 secH tan® dO where 0 € [0,7/2) U i3
[r,37/2). By substitution,

2/tan29 se09:2/5e039—sec9d9.

From Example|5.2.2] we have 2 / sec’® —secB dO = sec® tand —In | secO+tan® | +c¢ . By returning to the variable u

and then to x,

/\/mdx:u\/u27271n|u+\/u272|+cz(x+1) (x+1)272fln|x+1+\/(x+l)272\+
2 V2 2 V2

Exercise 5:
- M Evaluate the following integrals:

1 1 0 1 1
1. ——d 5. / —— dx 9. /7dx
/o 2rdats VB2 V6—6x— 202
1 1 .
2. —d. - 10. 2—x)d.
/x276x+1 * 6. /xz+8x,9d’f 0 /VX( x) dx
2x+3 sec? x
; /idx S w [
xX24+2x-3 V1—dx—x2 tan?x — 6tanx+ 12 dx
— X
4. /X zts 3. /eidx 12. /\/872)67)62 dx
2x — x2 e 2% — 1 .

5.6 Miscellaneous Substitutions

We study in this section other three important substitutions needed in some cases.

5.6.1 Fractional Functions in sin x and cos x

The integrals that consist of rational expressions in sinx and cosx are treated by using the substitution u = tan(x/2), —% <

x < 1. This implies that du = mz(# dx. Since sec?x = tan®x+ 1, then du = “ZTH dx. Also,
. X X X sin(%) X
sin(x) =sin2(Z) =2 sin(%) cos(Z) =2——2% cos(=) cos(%)
2 2 2 cos(3) 2
—2tan(%) cosz(%)
_ 2tan(3)
(2)

&
[\®}
'SOI\)

S
S}

+

—



For cosx, we have

cos(x) = COSZ(%C) = cos2(%) — sinz(g)

We can find that Use the identities:

(x) 1 . (x) " seci(’z‘):tanzz(g)le

cos(=) = and sin(=) = . 2(X) Lgin2(X) =

3 o) > 21l cos“(3) +sin”(3) =1

This implies
1—u?
cos(x) = T

The previous discussion can be summarized as follows:

For the integrals that contain rational expressions in sinx and cosx, we assume

7142—1—1 2u 1—u?

u=tan(x/2), du 5 dx, sin(x) = 2a1 cos(x) = T

Example 5.6.1 Evaluate the following integrals:

1 1 1
1. / — dx 2. /7dx 3. /— dx
1+ sinx 2+ cosx 14 sinx+cosx

Solution:

1
1. / — dx
1+ sinx

Let u = tan 3, this implies du =

2u

and sinx = T

2 I . .
Hi” By substituting that into the integral, we have

1 2 1
f qu=2f
/1—|— 2u_ ] 4y2 " /u2+2u—|—1 "

14+u?
:2/@+U4du
2 P -2
Tutl T mnil

+c.

1
2. —d
/2+cosx x
1+u?

Let u = tan 3, this implies du = 5~ and cosx = 1=

1+

2 . .
5. By substitution, we have
u

1 2 1
2+14:Zz 14+u u-+3

1
3 / 1 + sin(x) + cos(x) dx
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2u

T and cosx = 1=

1+

o 2,
Assume u = tan %, this implies du = 2%, sinx =
2 P 2

2 .
ZZ . By substitution, we have

1 2 2
du= [ ——d
/1+ 2?12 /2+2u !

1+ 14u?
1
= d
/ 14+u "

=ln|l4+u|+c=In]| l+tan%|+c.

5.6.2 Integrals of Fractional Powers

In the case of integrands that consist of fractional powers, it is better to use the substitution ¥ = x» where n is the least
common multiple of the denominators of the powers. To see this, we provide an example.

1
Example 5.6.2 Evaluate the following integral / m dx.

Solution:

1 . .
Put u = x4, we find x = u* and dx = 4u’du. By substitution, we have

1 3 u?
/ il du:4/ du
w2 +u u+1

1
:4/u71du+4/7du
1+u

=2u* —4u+4In|u+1|+c
=2x—4yx+4In| Vx+1]|+c.

5.6.3 Integrals of {/ f(x)

Here, we assume that the integrand is a function of form {/ f(x). To solve such integrals, it is useful to assume u = {/ f(x).
This case differs from that given in the substitution method in Chapter i. e., ¥/ f(x) f(x) where the difference lies on
existence of the derivative of f(x).

Example 5.6.3 Evaluate the following integral / ver—+1dx

Solution:

Assume u = /e* + 1, this implies du = 2\/% dxand u? = &+ 1. By substitution,

2u? 1

1 1
:2u+2/7du+2/7du
u—1 u—+1
=2u+2In|u—1]4+2In|u+1]|+c
=2vVer+1+2In(vVer+1—-1)+2In(vVer+1+1)+c.

Exercise 6:

- B Evaluate the following integrals:



67

1
1. —d
/\/fc+w *
x1/2
71+x3/5 dx

" 1
3./751
Joosx 1"

4. / \/)?\/f-él dx

W

1
. —d
/ 1+ 3sinx *
1

d.
/37cosx *

7. /ﬁd}c

1/2
x
T/ Y dx

1
9. /71116
Ve +1
1
10. / YR dx

1
11. —d
/ 1—2cosx x
1

. /%dx
sSinx -+ cosx



68

Chapter 6

Indeterminate Forms and Improper
Integrals

6.1 Limit Rules

The limit is defined as the value of the function as the variable approaches to ¢ value. A few examples are given
below:

Example 6.1.1
1. limy,3=3. 3. limyywtan~lx =%,
2. limy 1 x=1. 4. lim, ,g/x=2v2.

As you noted, the functions in the previous example are continuous. Meaning that, the limit is equal to the value of the
function if it is continuous. Before discussing this issue deeply, let’s see some general rules of the limits.

If limy_,. f(x) = L and lim,_,. g(x) = M, then
1. Sum Rule: lim,_, (f(x) 4+ g(x)) =limy—¢ f(x) +limy_.g(x) =L+M.
2. Difference Rule: lim, .. (f(x) — g(x)) =limy_, f(x) —limy_.g(x)=L—M.
3. Product Rule: lim, . (f(x).g(x)) = limy—, f(x) X limy_,cg(x) =LxM .
4. Constant Multiple Rule: lim,_, (k f(x)) =k lim,_, f(x) =k L.
5

. Quotient Rule: 1imxﬂc(%) = lmeoef) _ L

T limy—cg(x) M

Example 6.1.2
1. lim_0(x* —2x+ 1) = lim,_ox*> — 2lim, ,ox+lim, ;o1 =0—-0+1=1.

2. limy_,gsinx cosx=0.

lim,_y3 1

. 1 _
3. lim,_,3+ =3 = Tmes 3] —
. X _ limxﬁl.x . l
4 My oy = o) — 2

6.2 Indeterminate Forms

In this section, we examine several situations, where a function is built up from other functions, but the limits of these
functions are not sufficient to determine the overall limit. These situations are called indeterminate forms.
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Case Indeterminate Form
Quotient % and 2

Product (0.0 and 0.(—eo)
Sum & Difference (—o0) + oo and eo — o
Exponential 0%, 1, 17> and oo”

Table 6.2: List of the indeterminate forms.

Example 6.2.1
1. limy_0 % = 8 3. l%mx%m x? llnx = 1O.oo
2. ]imxi)oo%:z 4. llmx*>1+(m—m):oo—oo

Indeterminate Forms:

To treat such limits, students in previous courses were multiplying the function by a conjugate or using factoring method.
In this course, we present a new method called L’'Hopital Rule. Usually, this method is used for a fractional function
where we calculate the derivative of the numerator and denominator.

L’Hopital Rule:

Theorem 6.2.1 Suppose f(x) and g(x) are differentiable on an interval I and ¢ € I where f and g may not be
differentiable at c. If % has the form % or 2 at x=c and g'(x) # 0 for x # ¢, then

/

if limy ¢ 7

1~

)
x)

exists or equals to oo or —oo.

—~

Remark 6.2.1
1. L’Hopital rule works if ¢ = dz0 or when x — ¢ or x — ¢™.

2. Sometimes, we need to apply L’Hopital rule twice.

Example 6.2.2 Use L’Hopital rule to find the following limits:

. e . 1
]. llmxﬂ5 x2—1252 . 3. hmx%w % .
2. im0 S2% 4. limye &
Solution:
1. limy_,;5 v;;*_lzgz = % and this is an indeterminate form. By applying L'Hopital rule, we have
li Vi—1-2 i 1 1
im-——— =lim—nw—=— .
x5 x2—=25 x—5 4x\/m 40
2. lim,_yo % = %. To treat this indeterminate form, we apply L’Hopital rule lim,_,¢ % =lim, o F* =1

3. limy_e l% = = and this is an indeterminate form. Apply L’Hopital rule, lim,_,. l% =limy_—eo % =0.

4. limy_ye % = 2. By applying L’Hopital rule, we have lim,_; %x =limy_,e ? =00,

=)
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Example 6.2.3 Use L’Hopital rule to find the following limits:

1. lim,_,+ x> Inx 3. limy (ﬁ - ﬁ)
2. limx_%(l —tanx) sec(2x) 4. lim, (1 —i—x)%
Solution:

1. lim,_,o+ x*Inx .

The limit is of the form 0.c, so we cannot use the L'Hopital rule. However, if we rearrange the expression, we may
able to use the L’Hopital rule. Meaning that, we need to rewrite the expression in a way enables us to apply the
L’Hopital rule. Note that

Plnx =
X2

The limit of the new expression (lim,_,o+ lnf) is of form Z. Therefore, we can apply the L’Hopital rule:

X

xZ

1
lim 2Inx= lim —% = lim - =0. L' Hopital rule
x—0t x—0F ol x—0t —2

2. lim,_,x (1 —tanx) sec(2x) .

The limit is of the form 0.0, so we try to rewrite the function to apply the L’Hopital rule. We know that secx =
1/cosx, thus
(1 —tanx)

1—t 2x) = —-+—>
(1 —tanx) sec(2x) cos(20)
Now, the limit of the new expression is of form g. From the L"Hopital rule, we have

1—t 2 2)?
lim (1 — tanx) sec(2x) = lim (1 tanx) = lim =— (v2) =—1.
x> 1 x> cos(2x) x—T 2sin2x 2

3. limes (7 — &) -

By substituting 1 into the function, we have the indeterminate form co — co. To treat this form, we write the function

as a single fraction
1 1 Inx—x+1

x—1 Inx (x—1)nx’

The new expression takes the indeterminate form % From the L"Hopital rule,

I S g
)

lim( =lim————
x—1x Inx+x—1

a—lx—1  Inx
which is of form % Therefore, we apply the L’Hopital rule again. This implies

1 1 . -1 —1

i I _
lim (-5~ i) M nxr2 2

4. Timy_o(1+x)5 .

This limit is of form 1”. To treat this form, we assume that y = (1 —i—x)%. By taking In for both sides, we have

1
Iny = —In(1
ny=— n(1+x)

1 In(1 0
— limIny = lim S In(1 4+ x) = fim S _ 0
x—0 x—0 X x—0 X 0
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1
By applying the L'Hopital rule, we have lim,_,o w = lim,—,0 ]T‘ =1.

==

Thus, lim,_olny = 1 = eliM=0ly — ol = Jim,_,e™) = ¢ = lim, 0y = ¢ = lim,_,o(1+x)x =e.

Exercise 1:

-[14 W Find the following limits:

. 2 4 . S
x"—4x+4 e
L limyp =555 6. lim,0- % 1L limyp g
. 2 . 1 3
2. limy3 );%';9 7. limyo (ex +x) * 12. limy_o tanx
b . . 2 : ? X
: COSx+sinx 8. limy_e 2
3. limy e SRS T e 13, Tim,. 2020
4. limeyo 15 9. limy o+ oy . e
. . 1 —sinx 14. llm“'_’o(ﬁ)
5. lim,_,z/+ tanx 10. limy,_yr/0 ¥

6.3 Improper Integrals

b
Definition 6.3.1 The integral / f(x) dx is called a proper integral if

1. the interval |a,b) is finite and closed, and
2. f(x) is defined on [a,b].

If condition 1 or 2 is not satisfied, the integral is called improper. From this, we have two cases of the improper
integrals.
6.3.1 Infinite Intervals

In this section, we study integrals of forms

/:f(x) dx, /iof(x) dx, L_mf(x) dx .
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Definition 6.3.2 .
1. Let f be a continuous function on [a,=°). The improper integral / f(x) dx is defined as follows:
a

oo 1
/ f(x) dx=lim / f(x) dx if the limit exists.
a = Jq

b
2. Let f be a continuous function on (—oo,b|. The improper integral / f(x) dx is defined as follows:

b b
/ f(x)dx= tlim f(x) dx if the limit exists.
. ——o0 J;

The previous integrals are convergent (or to converge) if the limit exists as a finite number i. e., the value
of the integral is a finite number. However, if the limit does not exist or equals too, the integral is called
divergent (or to diverge).

3. Let f be a continuous function on R and a € R. The improper integral / f(x) dx is defined as follows:

/:cf(X) dx=/j;f(x) dx—|—/:f(x) dx .

The previous integral is convergent if both integrals on the right side are convergent; otherwise the integral
is divergent.

Example 6.3.1 Determine whether the integral converges or diverges:

oo 1 el X had 1
1./ 4 20 [y 3./ o
o 22 o 112 el 2
Solution:
1 /m L =i /t L 4x. The integral
. — dX = l1m — aX. € 1mtegra
0 @+2)2 T T el (r+2)2 g

/ot (x—i—12)2 dx:/ot(Hz)iz dx = {xllz}; =2 ta)

Thus,

lim (L+f) =—(0+35)=—5.

dx = —
R v PRI S

ro1
li —
fin ) e
Therefore, the integral converges.

) t
2. [ 2 dx=1im [

o 1+A2 Rt A dx. The integral

T x _1 5 t_l 5 1 _1 )
/o 1422 dv= 5 |n(1-+x )}0—21“(1“) 5In(1) =5 In(1+7%) .

Thus,
t
lim
t=oo Jo 1422

dx—EJLTcln(l+t )=oo.

Therefore, the integral diverges.
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< ] 01 o] 1
3. / —— dx= lim dx+ lim —— dx. We know that,/i dx=tan " ‘x+c, so
oo 122 == J;  14x2 t—e o 14x2 1+x2

0 1 t
. . _ 1 . -1 . -1 .
Jm ) T 4 fy e = im0t 0] i [an ) o)
o 1 . 1
= tgrjlmtan (t)—&—}lﬁrgtm (1)
T, W
=—(—z)+z=m.

Therefore, the integral is convergent.

6.3.2 Discontinuous Integrands

Definition 6.3.3
1. If f is continuous on |a,b) and has an infinite discontinuity at b i.e., lim,_, ;- f(x) = *oo, then

/abf(x) dx:tglgl/(ltf(x) dx .

2. If f is continuous on (a,b] and has an infinite discontinuity at a i.e., im,_,,+ f(x) = *oo, then
b a
/ F)de=tim [ f(x)dx.
a t—at Jt

In items 1 and 2, the integral is convergent if the limit exists as a finite number; otherwise the integral is
divergent.

3. If f is continuous on [a,b] except at ¢ € (a,b) such that im,_,+ f(x) = too, the improper integral

b
/ f(x) dx is defined as follows:
a

/abf(x) dx:/ucf(x) dx—i—'/cbf(x) dx .

The integral is convergent if the limit of the integrals on the right side exists as a finite number.

Example 6.3.2 Determine whether the integral converges or diverges:

4 1 T 1 1
1./ dx 2. /4 COSY ix 3./ — dx
0 (4—x)3 0 +/sinx 32

Solution:

1. Since lim,_,4- ——~

+ = o and the integrand is continuous on [0,4), from Definition [6.3.3
(4—x)2

4 1 4 3
/ - dx=1lim [ (4—x) 2 dx
0 (4—x)7

t—4=J0

li 2 '
= uum

t—4~ [\/4,)5}0

Thus, the integral diverges.
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2. The limit lim,_,q+ \‘7’% = o0 and the integrand is continuous on (0, §], thus

T n
1 cosx . i cosx
dx = lim ——— dx

v/sinx =0t Jr  /sinx
n
=2 lim {\/ sinx} ¢

t—0t t

—\/@)

1
=2 lim (5=
t—0+ \4/§
2
7
The integral converges.
3. Since lim,_,o- Xiz = lim,_,o+ é = oo and the integrand is continuous on [—3,0) U (0, 1], then

Vv

| 1 11
/ = dx = lim -+ lim =
3 X t—0-J-3X =0t Jr X

—17t —171
— lim [—} — lim [—}
t—0- L x 1-3 =0tL x 1t
1 1 1
— _ lim [7+7]+ lim [—1+7}
t—0—- Lt 3 t—0t t

= o0 ,

The integral diverges.

Exercise 2:

- B Determine whether the integral converges or diverges:

roo 2 ]

1./ 1oix 7. dx
1 X J1 l—x

2. / - dx 8. / = dx 13./ dx
1 X 0o x—1
=3 ] . T

3 — dx / 14. / sec?x dx
4 VX 0 \/72 0
0 " 1

x —x 15. d.

4. ./7we dx / dx 5 /oszrl x
oo /2

5. / & dx / 16./ tanx dx
0 0

6 / LI /
2 X*l ex+e X
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Chapter 7

Application of Definite Integrals

7.1 Areas

The definite integral can be used to calculate areas under graphs. The simplest case of this application is when we find the
area by calculating a single definite integral.

b
In Chapter we mentioned that if f > 0 x € [a, ], the definite integral / f(x) dx is exactly the area of the region under

a
the graph of f(x) from a to b. In more formally, we state this application of the definitg integrals as follows:
y=/f(x)

1. If y = f(x) is a continuous function on [a,b] and

f(x) > 0Vx € [a,b], the area of the region under

the graph of f(x) from x = a to x = b is given by

the integral: R

b
A= / f(x) dx a b
a

2. If f(x) and g(x) are continuous functions and
f(x) > g(x) for every x € [a,b], then the area A R
of the region bounded by the graphs of f and g
is given by the integral:

A= [ (709 - () ; o
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y
x=f©)
b
3. If x = f(y) is a continuous function on [c,d] and
f(y) > 0Vy € [c,d], the area of the region under
the graph of f(y) from y = c to y =d is given by
the integral:
a
d
A= [ o) dy
c
y
d A4
4. If f(y) and g(y) are continuous functions and
f(y) > g(y) for every x € [c,d], then the area A
of the region bounded by the graphs of f and g
is given by the integral: 2
d o
A =/ (f() —g() dy
.
Example 7.1.1 Express the area of the shaded region as a definite integral then find the area.
2
(1) (2) ,
y
flx)=2x+1
R
B
1 3 X a -
Solution:
3
(1) Area: A = [32x+1dx= [x2+x]l - [(32+3)7 (12+1)] —12-2=10.
(2) We have two regions:
Region (1) : in the interval [a, ] Region (2) : in the interval [c, b]
Upper graph: y = g(x) Upper graph: y = f(x)
Lower graph: y = f(x) Lower graph: y = g(x)
c b
Area A| = / (8(x) = f(x)) dx. Area Ay = / (f(x) —g(x)) dx.
a c

The total areais A = A +A».
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Example 7.1.2 Sketch the region by the graphs of y = x> and y = x, then find its area.

Solution:

The region bounded by the two curves is
divided into two regions:

Region (1): in the interval [—1,0]
Upper graph: y = x*

Lower graph: y =x

0 x*x
A1=/_1x3_xdx: {Z—E}:: {0_(%_%)} -

Region (2): in the interval [0, 1]
Upper graph: y =x

Lower graph: y = x3

o [ oo 34T 4
1
2

The total areais A = A| +Ar = %4—% =

Example 7.1.3 Sketch the region by the graphs of y = sinx, y = cosx, x = 0 and x = ¥, then find its area.

Solution:

Note that, over the period [0, %] the two curves
intersect at J.

ENE)

Area: A :/ (cosx —sinx) dx
0
. I
= [smx—&—cosx}o

-5+ -]
=1+V2.

y =sinx

n)4

y =cos

Example 7.1.4 Sketch the region by the graphs of x = \/y fromy = 0 and y = 1, then find its area.

Solution:

The area bounded by the function x = /y over

the interval [0, 1] is

b
I
DWW S—
S
&
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Example 7.1.5 Sketch the region by the graphs of x =2y, x = % + 3, then find its area.

Solution:
First, we find the intersection points: y
y 21
2y=§+3:>4y:y+6:y:2.
The two curves intersect at (4,2). 1.5+ _
) x—2y
2y
Area:A:/ (2 +3-2y)dy 1
0o 2
2.3
:/0 (=g +3)dy x=y/2+3
3 5 0.5+
2
[ 4 Y 0
X
=-346 ; ‘ / 1
=3 1 2 3 4
Exercise 1:
- B Sketch the region bounded by the graphs of the equations and find its area:
1. y:ﬁﬁy:07x:1.x:3 10. y=x*, x=y—2,y=0 19. y=vVx—T,y=x x=1,x=2
5 [ D _ _ 20. y=ée",x=-2,x=3
2. y=x,x=0,x=2 1. x=y",y=0,y=2,x=0 It ’
' , ’ Y o _ _ 21, y=e" x=0,x=1
3.y=x+2,x=1,x=4 12. x=3,y=1,y=3,x=0
P ’ p 2 22, y=Inx,x=1,x=5
4. y=x*+1,y=0,x=0,x=2 13. x=(Q+ 1), y=2,y=5x=0 .
/ 3 23. x=siny, y=0, y=mn/4
5. y=x4+1,y=0,x=0,x=1 14, y=x"—4x,y=0,x=-2,x=0 .
6. vsi 0. x—m ’ 15 y=xd y=2 24. x=siny, x=cosy, y=0, y=n/4
A ’ ’ 25. y =sinx, y = cosx, x = —n/4, x =
7. y=tanx, x=1/4, x=7/3 16. y=x,y=2x,y=—x+2 /4
8 y=-xy=x+1,x=0 17. y=vx+l,x=1,y=0 26. y=(x+1)2+2,x=-2,x=0
9. y=yx,x+y=2,y=0 18. x=y,x=y—5,x=0,x=2 27 x=1Iny, x=0,y—1,y—e

7.2 Solids of Revolution

Definition 7.2.1 The solid of revolution (S) is a solid generated from rotating a region R about a line in the same

plane where the line is called the axis of revolution.

Example 7.2.1 Let f(x) > 0 be continuous for every x € [a,b]. Let R be a region bounded by the graph of f and x-axis
form x = a to x = b. Rotating the region R about x-axis generates a solid given in Figure[7.1|(right).

Y B

=Y
=Y

Figure 7.1: The figure on the left shows the region under the continuous curve y = f(x) on the interval [a,b]. The figure on the right
shows the solid S generated by rotating the region about the x-axis.
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Example 7.2.2 Ler f(x) be a constant function, as in Figure The region R is a rectangle and rotating it about x-axis
generates a circular cylinder.

y Y
y=f(x)=c y=f(x)=c

Figure 7.2: The figure on the left shows the region under the constant function y = f(x) = ¢ on the interval [a,b]. The figure on the
right shows the circular cylinder generated by rotating the region about the x-axis.

Example 7.2.3 Consider the region R bounded by the graph of f(y) fromy=ctoy=d asin Figure( left). Revolution
of R about y-axis generates the revolution solid (right).

A VA
dl—.
p o x=f()
C-- iy . -
X X

Figure 7.3: The figure on the left displays the region under the function x = f(y) on the interval [c,d]. The figure on the right displays
the solid S generated by rotating the region about the y-axis.
Exercise 2:

- B Sketch the region R bounded by the graphs of the equations, then sketch the solid generated if R is revolved about about the specified
axis.

1. y=xx=1,y=4 about x-axis 6. y=cosy,y=0,y=m/2 about y-axis

2. y=yx,x=0,x=9 about x-axis 7. y=e¥y=0,y=3 about y-axis

3. y=Ilnx,x=0.5,x=¢> about x-axis 8. x=y+1l,y=—-1,y=5 about y-axis

4. y=e'x=—1,x=5 about x-axis 9. y= xz.,y =x about x-axis
5. y=sinx,x=0x=m= about x-axis 10. y=yx,y=x about y-axis

7.3  Volumes of Solid of Revolution

In this section, we study three methods to evaluate the volume of the revolution solid known as the disk method, the
washer method and the method of cylindrical shells.

7.3.1 Disk Method

Let f be continuous on [a,b] and let R be the region bounded by the graphs, x-axis and the points x = a, x = b. Let S be
the solid generated by revolving R about x-axis. Assume P is a partition of [a,b] and wy € [xx_1,x;]. For each [x;_1,x¢],
we form a rectangle, its high is f(wy) and its width is Axy.

The revolution of the rectangle about x-axis generates a circular disk as shown in Figure[7.4] Its radius and high are

r:f(wk), h:Axk.
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y=f(x

y=rf)
T an, %,bvx a Gt

Axk A‘xk

Figure 7.4: The figure on the left shows a continuous function f on [a,b]. The figure on the right shows a solid S generated by revolving
R about x-axis.

From Figure[7.4] the volume of each circular disk is
Vie=1(f (wi)) A

The sum of volumes of the circular disks approximately gives the volume of the solid of revolution:
n n ) b 2
V= kZIAVk = ’}grgo];ln (f(wi))* Axg =7 / [f(x)] dx.

Similarly, we find the volume of the solid of revolution about y-axis. Let f be continuous on [c,d] and let R be the region
bounded by the graphs, y-axis and the points y = ¢, y =d. Let S be the solid generated by revolving R about y-axis.
Assume P is a partition of [c,d] and wy € [yx—1,yx]. For each [yr_1,yx], we form a rectangle, its high is f(wy) and its width
is Ayy.

The revolution of each rectangle about y-axis generates a circular disk as shown in[7.5] Its radius and high are

r:f(Wk), hZA)’k

f(wr) A @

d 23
" :f(y) = 10)
Ay, L Ayy

>
Figure 7.5: The figure on the left shows a continuous function f on [c,d]. The figure on the right presents a solid S generated by
revolving R about y-axis.

The volume of the solid of revolution given in[7.5|(right) is approximately the sum of the volumes of circular disks:

V=Y v = }glgoin(f(Wk))szk =n/d [F0)]* dy.
k=1 k=1 ¢

The volume of the solid of revolution by the disk method can be summarized in the following theorem:
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Theorem 7.3.1
1. If V is the volume of the solid of revolution determined by rotating the continuous function f(x) on the
interval |a,b] about the x-axis, then

V:n/ab[f(x)]zdx.

2. If V is the volume of the solid of revolution determined by rotating the continuous function f(y) on the
interval [c,d] about the y-axis, then

ven| “o)R ay.

Example 7.3.1 Skeich the region R bounded by the graphs of the equations y = \/x, x =4, y = 0. Then, find the volume
of the solid generated if R is revolved about x-axis.

Solution:

y=vx_ y=vx

=Y
=Y

The previous figure shows the solid generated from revolving the region R about x-axis. Since the rotation is about x-axis,
we have a vertical disk with radius y = /x and thickness dx.

Thus, the volume of the solid S is

V=7c/04(\/;c)2dx:7t/04xdx:g[xz}z:2[16—0] =8n.

Example 7.3.2 Sketch the region R bounded by the graphs of the equations y = e*, y = e and x = 0. Then, find the volume
of the solid generated if R is revolved about y-axis.

Solution:

YA

= Y
= Y

The previous figure shows the region R and the solid S generated by revolving the region about y-axis. Since the revolution
of R is about y-axis, then we need to rewrite the function to become x = f(y).

y=¢ =hy=Ihe'=x=Iny=f(y).

Now, we have a horizontal disk with radius x = Iny and thickness dy. Thus, the volume of the solid S is

e e
V:n/ (Iny)* dy = [Zy—i—y (Iny)> —2y Iny 1:e—2.
1
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Example 7.3.3 Let x = y? on the interval [0,1]. Rotate the region around the y-axis and find the volume of the resulting
solid.

Solution:
YA y/
1 """é """"""""""" [ — ]
1= _'}12 S Y= },2
X X

Since the revolution of R is about y-axis, we have a horizontal disk with radius x = y2 and thickness dy. Thus, the volume
of the solid S is
1 T 1 T
v=r/| (*?d :f[ 5} :7[170} S
/0 O dy=2 ], = 3 s

Example 7.3.4 Sketch the region R bounded by the graphs of the equations y = cosx, x =0, x = Z. Then, find the volume
of the solid generated if R is revolved about x-axis.

Solution:

Yy =Cosx 1 Yy =cCcosx

NS
=Y
S

The region R and the solid S generated by revolving the region about x-axis is provided in the figure. Thus, the disk to
evaluate the volume of the generated solid S is vertical where the radius is y = cosx and the thickness is dx:

T

I, T (3
V=n cos“xdx=— 1+cos2xdx:f{x+
0 2 Jo 2

sinzx}%_n{g_o} s
o 2 h

2 2 4

7.3.2 Washer Method

The washer method is a generalization of the disk method for a region between two functions f(x) and g(x). Let R be a
region bounded by the graphs of f(x) and g(x) from x = a to x = b such that f(x) > g(x) (see Figure[7.6). The volume
of the solid S generated by rotating the area bounded by the graphs of the two functions around x-axis can be found by
calculating the difference between the two solids generated by rotating the regions under f and g:

v= [P ac- [[lgp ax
= [ (P~ o) ax.

Similarly, let R be a region bounded by the graphs of f(y) and g(y) such that f(y) > g(y) from y = ¢ to, y = d (see Figure
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[7.7). The volume of the solid S generated from rotating the area bounded by the graphs of f and g around y-axis is

/ J> dy— / ]* dy,
—/ g)?) dy.

Theorem [7.3.2] summarizes the washer method.

Theorem 7.3.2 1. IfV is the volume of the solid of revolution determined by rotating the continuous functions
f(x) and g(x) such that f > g on the interval |a,b] about the x-axis, then

v [ (0P - g .

2. IfV is the volume of the solid of revolution determined by rotating the continuous functions f(y) and g(y)
such that f > g on the interval [c,d] about the y-axis, then

d
v=x [ (F0)P=s0)) dy.

=f(®)

y=fe) y=f@) y-
\ R _r=9® ; ﬂy = g(x) \_%3} = g(x

o, <

Ay T

Figure 7.7: The volume by the washer method for the solid S generated from rotating the area around y-axis.

Example 7.3.5 Let R be a region bounded by the graphs of the functions y = x> and y = 2x. Evaluate the volume of the
solid generated by revolving of the bounded region about x-axis.

Solution:

Let f(x) = x* and g(x) = 2x. First, we find the intersection points:

f)=glx) === -2x=0=>x(x-2)=0=>x=0o0rx=2.
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(2.4)

v by =x?

=Y
=Y

(0,0)

Substitute x = 0 into f(x) or g(x) gives the same value y = 0. Similarly, substitute x = 2, we have y = 2. Thus, the two
curves f and g intersect in two points (0,0) and (2,4).

The figure shows the region R and the solid generated from revolving that region about x-axis. A vertical rectangle
generates a washer where

the outer radius: y; = 2x,
the inner radius: y,» = x> and
the thickness: dx .

The volume of the washer is
dv = E[foxz} dx .

Thus, the volume of the solid over the interval [0,2] is

3 5

4x3 xSﬁ [32 32}_64

2 2
_ 252 — (2] dx — /42_4 _ o[ X _ e
1% TE/O [(2x)% = (x*)°] dx TEO X —x" dx 75{3 5 5"

Example 7.3.6 Consider a region R bounded by the graphs y = \/X, y = 6 — x and x-axis. Rotate this region about y-axis
and find the volume of the generated solid.

Solution:

YA YA

2
= x=6— y

o/
¥
A 4
=

The two curves y = y/x and y = 6 — x intersect in one point (4,2). The region R

is shown in the figure. The revolution of that region generates a solid S. Since the y=+vx=x=3y=f(y)
rotation is about y-axis, first, we need to rewrite the functions as x = f(y) and x = andy=6—x

g(y). Thus, x = y? and x = 6 — y. Second, a horizontal rectangle generates a washer =x=6-y=23()
where

the outer radius: x; =6 —y,
the inner radius: x, = y* and
the thickness: dy .

The volume of the washer is
dv =n[(6—y)>— (*)*] dy.
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The volume of the solid over the interval [0,2] is

6-y7° ¥

V:“/Oz[(6*y)zf(y2)2]dy:n{f - grzn[( 64 32,

0

Example 7.3.7 Reconsider the same region as in Example enclosed by the curves y = \/x, y = 6 — x and x-axis.
Now rotate this region about the x-axis instead and find the resulting volume.

Solution:
From the figure, we find that the solid is made up of two separate functions and each requires its own integral. Meaning
that, we use the disk method to evaluate the volume of the solid generated by each function:

YA YA
6 \ V= v”f -'}r — ,Jf

~J[4.2) 4,2
™. y=6—x Do =l

a |

4 6
-y / xdx—+T / (6— x)2 dx Note: we used the substitution method to do the
0 4 second integral (with u = 6 —x and du = dx)
212,507,
= — _ — 6 —
2 {x o 3 (6-x) 4

The revolution of a region is not always around x-axis or y-axis. It could be around a line parallels x-axis or y-axis.

Remark 7.3.1

1. Ifthe axis of revolution is a line y = yy, the volume is as the case when the region revolves around x-axis.

2. If the axis of revolution is a line x = xo, the volume is as the case when the region revolves around y-axis.

The difference between the revolution of the region about axis and the line y = yy or x = xq is in calculating the
inner and the outer radius.

The following examples illustrate the previous remark.

Example 7.3.8 Evaluate the volume of the solid generated by revolution of the bounded region by graphs of the functions
y =x? and y = 4 if the revolution is about the given line:

(a)y=4 (b)x=2
Solution:

(a)
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y=4
=2 2 x =2 2 X
Here, we have a vertical circular disk:
the radius of the disk: 4 —y = 4 —x?, and
the thickness: dx .
The volume of the disk is
dV =mn(4—x*)?dx .
The volume of the solid over the interval [—2,2] is
2 2 8 512 512
1% :n/ (4—x%)? dx:n/ 16 — 8x* +x* dx:n[16xf fx3+x—] =—Tn.
-2 -2 3 512 15
(b)
VA VA
f’%
=2 2 x =2 2 x

In this case, a horizontal rectangle will generate a washer where
the outer radius: 2 + VY

the inner radius: 2 — ., /y and

the thickness: dy .

The volume of the washer is
dV =n[2+5)* - (2—y)?] dy=8nydy.

The volume of the solid over the interval [0,4] is

4 16
V:n/ Sﬂdx:Tn {y%
0

Example 7.3.9 Sketch the region R bounded by the graphs of the equations x = (y — 1)2 and x =y+ 1. Then, find the
volume of the solid generated if R is revolved about x = 4.

Solution:
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Vo VA
& (43 (43) ==
i x=4 e f—
P ﬁ'— (T nh&.
( ‘ x (1,0) e : X
x=y+1

First, we find the intersection points:
=1 =y+1=y"—2y+1=y4+1=y*—3y=0=>y=0o0ry=3.

Thus, the two curves intersect in two points (1,0) and (4,3). The figure shows the region R and the solid S. A horizontal
rectangle generates a washer where

the outer radius: 4 — (y —1)2,
the inner radius: 4 — (y+1) =3 —y and
the thickness: dy .

The volume of the washer is
dV =n[(4—(y—1)*)> = (3—y)*] dy.

Thus, the volume of the solid over the interval [0, 3] is

V:TE/03(4—( 1)) —-(3—-y)tdy= n/l6dy 8/ —1) dy—l—/ —)*dy— /3 y) dy

8(y—1)* (y—1° (3—y)*13 108
3 + 5 + 3 }0_15

[16

7.3.3 Method of Cylindrical Shells

The method of cylindrical shells sometimes easier than the washer method. This is because solving equations for one
variable in terms of another is not sometimes simple (i. e., solving x in terms of y and versa visa). For example, the
volume of the solid obtained by rotating the region bounded by y = 2x> — x> and y = 0 about the y-axis. By the washer
method, we would have to solve the cubic equation for x in terms of y and this is not simple.

In the washer method, we assume that the rectangle from each sub-interval is vertical to the axis of the revolution, but in
the method of cylindrical shells, the rectangle is parallel to the axis of the revolution.

As shown in the next figure, let

r1 be the inner radius of the shell,

r, be the outer radius of the shell,

h be high of the shell,

Ar = ry — r; be the thickness of the shell,
= % be the average radius of the shell.

< = —>
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The volume of the cylindrical shell is

V= nr%h — nrlzh
SRl
= TC(Vz + 7‘1)(!"2 — rl)h

= 27'C(r2+r1 )h(r2 —r1)

= 2nrhAr .

Now, consider the graph given in Figure[7.8] The revolution of the region R about y-axis generates a solid given in the
same figure. Let P be a partition of the interval [a,b] and let wy be the midpoint of [x;_1,xx].

The revolution of the rectangle about y-axis generates a cylindrical shell where
the high = f(wy),
the average radius = wy and

the thickness = Axy, .

W

a/“\b X

Xg—1 i Xk
:P k

Figure 7.8: The volume by the method of cylindrical shells for the solid S generated by rotating the region around y-axis.

Hence, the volume of the cylindrical shell
Vie = 21wy f (i) Ax .

To evaluate the volume of the whole solid, we sum the volume of all cylindrical shells. This means

V:

»
™=
X

Vk =2n Z wkf(wk)Axk .
k=1

From Riemann sum

n b
tim Y wif (v Axe = [ f () i
k=1

a

and this implies

1% :271:/bxf(x) dx .

Similarly, if the revolution of the region is about x-axis, the volume of the solid of revolution is
d
14 =2n/ yf(y) dy.

The volume by the method of cylindrical shells can be summarized as follows:
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Theorem 7.3.3
1. If V is the volume of the solid of revolution determined by rotating the continuous function f(x) on the
interval |a,b] about the y-axis, then

V:2T|:/bxf(x) dx .

2. If V is the volume of the solid of revolution determined by rotating the continuous function f(y) on the
interval [c,d] about the x-axis, then

d
V=2n/c yf(y)dy .

Example 7.3.10 Sketch the region R bounded by the graphs of the equations y = 2x — x> and x = 0. Then, by the method
of cylindrical shells, find the volume of the solid generated if R is revolved about y-axis.

Solution:

VA VA

Since the revolution is about y-axis, the rectangle is vertical where
the high: y = 2x —x2,

the average radius: x,

the thickness: dx .

The volume of a cylindrical shell
dV = 2mx(2x — x*) dx .

Thus, the volume of the solid is

2 2 20 x*2 16 16, 8
v:zn/o x(2x—x2)dx:2n/0 22— dr=2m| -] =om(F- ) =T

Example 7.3.11 Sketch the region R bounded by the graphs of the equations x = \/y, x =2 and y-axis. Then, find the
volume of the solid generated if R is revolved about x-axis.

Solution:

(24

= Y

(0,0) (0,0) 2
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Since the revolution is about x-axis, the rectangle is horizontal where
the high: x = Vs

the average radius: y and

the thickness: dy .

The volume of the cylindrical shell
dV =2my./ydy.

Thus, the volume of the solid is
veon [ ysdy—om [ yid 3" 320
= = 2 = — 2 _ — — = —
n/oy‘/yy n/oy Y 5{”0 5[ } 5

Exercise 3:

- Bl Sketch the region R bounded by the graphs of the equations and find the volume of the solid generated if R is revolved about the x-axis:

l. y=x+1,x=0,x=1 4. y=x,x=0,x=4 5 >
5 7. y=1=-x",y=x

2. y=x341,x=0,x=2 5. y=yx, x=y 8 v+l vextl

3. y=x,x=0,x=2 6. y=sinx, x=0, x=m7/2 Symealhy=ad

EI- Bl Sketch the region R bounded by the graphs of the equations and find the volume of the solid generated if R is revolved about the y-axis:

2 e v | v
Cv=2 y=1 y—4 12. x=lny,y=1,y=

9. y=x%,y » Y x=lIny, y y2€ 15. xy=4,x+y=5

10. y=+/x,y=0,y=3 13. y=x, y=(x—1)"+1 16 v 12— 8

11 x=cosy, y=0, y=1/2 14 y=¢', x=1,x=2,y=0 Sy

- M Set up evaluate an integral for the volume of the solid obtained by rotating the region bounded by the given curves about the specified

axis:
17. y=x%,y=1,aboutx = 1 22. y=x—x% y=0aboutx=2
18. y=x?, y = 1, about x-axis 23. y=x>,y=0,x=1, x=2aboutx =1
19. y=x2, x=y? abouty = —1 24, y=x*,y=0,x=1,x=2aboutx=4
20. y=+vx—1,y=0,x=5aboutx=35 25. y=+x—1,y=0,x=5abouty=3
2. y=x2,x=0,y=1,y=4abouty =1 26. y=x* y=sin(%) aboutx = —1

- M Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the specified

axis. Sketch the region and a typical shell.
27. x=1+y* x=0, y=1, y =2 about x-axis ) .
. 32. y=x", y=x about x-axis
28. x= VY, x= 0, y =1 about x-axis . x .
3 . 33. y=sinx, y=cosx, x=0, x = 7 about y-axis
29. y=x", y=_8, x =0 about x-axis ) .
34. y=x"+x, y=0 about y-axis

30. y=1, x=1, x=2 about y-axis
YT * Htymaxis 35. y:x-&-%.,y:Saboutx:—l

31. y=x?, y=0, x = 1 about y-axis

7.4 Arc Length and Surfaces of Revolution

7.4.1 Arc Length

Let y = f(x) be a smooth function on [a,b]. Assume P = {x¢,x1,...,x,} is a regular partition of the interval [a,b] and let
Y0,Y1,---,Yn be the points on the curve as shown in the following figure.

The distance between any two points (xg_1,yx—1) and (xx,yx) in the curve is



91

d(yi—1,9%) = [ (D) + (Ayi)?

= (B2 + () — f(w1)?

) () —f 1)
‘“”“V“* BaP

:b—a¢L%Vuw—ﬂml>2

n Axy,

Figure 7.9: The length of the arc of f(x) from x =a to x = b.

From the conditions of the mean value theorem of differential calculus for the function f on [x;_;,x;], we have

f(ci) = M
Xk — Xk—1

for some ¢; € (x¢_1,xx). Thus, the distance between (xx—1,yx—1) and (xx,yg) is

boa iy [f/(en]?

d(Yi—1,yx) =

The sum of the distances is
b—a
n

[\/H [f(e)])* + \/1+ [f(c)] 4+ 1+ [f’(cn)]z} .

The previous sum is a Riemann sum for the function y/ 1+ [ f (x,-)} ? from a to b where for a better approximation, we let
n be large enough. From this, the arc length is

L(f) :/ah\/l—f— [f’(x)rdx

Similarly, let x = g(y) be a smooth function on
[c,d]. The length of the arc of g from y = ¢ to
y=dis

L(g)=/cdv1+ (¢ 0] dy-

Figure 7.10: The length of the arc of g(y) fromy =ctoy=d.

Theorem 7.4.1
1. Lety = f(x) be a smooth function on [a,b]. The length of the arc of f is

L(f):/ah\/u[f’(x)}zdx.

2. Let x = g(y) be a smooth function on [c,d]. The length of the arc of g is

L(g):/cd\/1+[g'(y)]2dy-
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Example 7.4.1 Find the arc length of the graph of the given equation from A to B:

1 y=5-Vx3; A(0,5), B(4,-3)
2. x:4y; A(an)a B(174)
Solution:

(DI y=5-vx = f/(x) = =357 = (f' (1) = Jr = 1+ (f(¥)* = 2 = T+ (F ()7 = 5=

The length of the curve is

b [ | oo :3[403_43}:8[“”370‘1

4
0

—

Qfx=dy=g'(y)=4= (1) =16=1+(E' 1)) =17= 1+ })*= V1T .
The length of the curve is

L:m/o4dy:m[y]z:m[4_o}:4m.

Example 7.4.2 Find the arc length of the graph of the given equation over the indicated interval:

1. y=coshx; 0<x<?2
22x=ht+1y % —2<y<-1
Solution:

(1) If y = coshx = f'(x) = sinhx = (f'(x))? = sinh>x = 1 + (f'(x))> = 1 +sinh®x = /14 (f'(x))? = coshx .
The length of the curve is
2 2
L= / coshx dx = [sinhx} = sinh2—sinh0 = sinh?2.
0

6_1)2 6,12 _~ 6
DI x=pt+ 2 =g 0) =307 = 5) = (€ 0)* = Lgh = 1+ (/)7 = 2

This implies
12 6 6 2 6
Yo+ 41 O°+1)2 Y41
1+(g'(y))2:y76:$ 1+ (g'(y)? = R

Since y < 0 over [—2, —1], the length of the curve is
-1 4 11—t 35
L—— 3 ,3d:_{y7_7} =2
_2 Y +y Y 2y2 -2 8

7.4.2 Surfaces of Revolution

Definition 7.4.1 The surface of revolution is generated by rotating the curve of a continuous function about an
axis.

Let y = f(x) > 0 be a smooth function on the interval [a,b]. Let P = {xo,x1,...,X,} be a partition of the interval [a, b]
and yg,y1,...,y» be the points on the curve as shown in Figure [7.11} If Dy is a frustum cone generated from rotating
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the subinterval [x;_j,x;] about x-axis. The area of a frustum cone with radii r; and r, and slant length ¢ is S.A =
n(r1 +r)l.

From this, the surface of Dy, is
S.A(Dy) =7 f (x) + f (xe—1)] & bk

where A/ is the length of the subinterval [yx—_1,yk] i-e., A = /(Axx)% + (F (o) — £ (x—1)) %

From the intermediate value theorem, there exists @y € (xx_1,x) such that
fOa) = fla—1) = f(on) Ax .
This implies Al = Axg+/ 1+ [f/(0))* .

For n large, f(x;) = f(xk—1) = f(®) and this means
n
SA=Y 2mf(on)\/1+ [f(@)]> Axy .
k=1
From Riemann sum,

- b b e
A=1 2 / ZQX =7 X 1 /x de:z 1 “y dx,
S.A Hmk; Tf () / 1+ [F (0r)]? A xi n/a | F(x) | /14 [f'(x)] n/a v +<dx)

If the rotation is about y-axis, then

S.A:27t/ab|x| 1+[f/(x)}2dx:2n/ab|x|mdx.
®

p sy =f()

c.;, bV

Figure 7.11: The surface of revolution generated by rotating the curve of a continuous function about x-axis.

Similarly, if x = g(y) is a smooth function on [c,d]. The surface area S.A generated by revolution the curve of g about
y-axis fromy=ctoy=dis

S.Azzn/cd|g(y)\ 1+[g’(y)]2dy=2n/cd|xlmdy.

If the rotating is about x-axis, then

S.A:Zn/cd|y| 1+[g’(y)]2dy:2n/cd|ylmdy-



94

Theorem 7.4.2
1. Lety= f(x) be a smooth function on |a,b).
o [fthe rotating is about x-axis,

S.A:2n/ab|y| 1+ (') dx .

e [fthe rotating is about y-axis,

S.A:27t/ab|x| 1+(f’(x))2dx.

2. Let x = g(y) be a smooth function on [c,d]. The surface area of revolution about y-axis is

e [f the rotating is about y-axis,
d 2
S.Azzn/ |x |\ 1+ (g() dy.

o [f the rotating is about x-axis,
d 2
S-A=2n/ Y[y 1+ (') dy.

Example 7.4.3 Find the surface area generated by revolving the curve of the function \/4 — x%, —2 < x < 2 around x-axis.

Solution:

b
We use the formula S.A = 275/ | f(x) | /14 (f(x))? dx.
a

—ZX )C2
Iy = VA= = () = = (0P = g = 1 (WP = g = 1+ (70 = — =

V4 —x2 4—x? 4 — 4 —x2
2 2
The area of the revolution surface is S.A = 21 / Va—x2 dx=4m|2+2| = 167.
-2 V4 —x2 [ ]
Example 7.4.4 Find the surface area generated by revolving the curve of the function x =y> on the interval [0, 1] around
Yy-axis.
Solution:

d
We use the formula S.A = 27:/ [ FO) 1A/ 1+ (f"(y))? dy.

Ifx=y =g () =3"= (') =% =1+E' (1) =1+9" = /1+(g(1)>=V1+9%*.

1 1
The area of the revolution surface is S.A = 27:/ YV1I+9tdy=% {(l +9y4)%} 0= 7 [10\/ 10— 1} )
0

Exercise 4:
- M Find the arc length of the graph:
. y=Inx, 1 <x<3
y=mny, ISXs 8. x=1/4—32,0<y<1

2. y=¢€,0<x<1

3. y=2241,1<x<3 9. x=4-2y,0<y<2
4 y= % 1<x<4 10. x:czz)shy,lﬁyg?:
5. y=12,0<x<1 Il x=73,1<y<4
6. y=In(cosx), /4 <x<m/3 12. x=y*,0<y<1

7.

x:%(y—l)%,lgygz 13. x=ln(secy), 0<y< %
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- @ M Find the area of the surface generated by revolving the curve about the specified axis:

14.
15.
16.
17.
18.
19.

y=14—x2, —1 <x < | about x-axis
y= xz, 1 <x <2 about y-axis

y=¢" 0 <x<1 about x-axis
y=Inx, 1 <x <3 about y-axis

y = sinx, 0 < x < 7/2 about x-axis
x=¢", 1 <y <2 about y-axis

20.
21.
22.
23.
24.

9x =y+ 18, 0 <x <2 about x-axis
y :x3, 0 < x < 2 about x-axis
y=cos2x, 0 <x < m/6 about x-axis
y = /x, 1 <y <2 about y-axis
y=1-x%, 0<x< 1 about y-axis
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Chapter 8

Parametric Equations and Polar
Coordinates

8.1 Parametric Equations of Plane Curves

In this section, we rather than considering only functions y = f(x), it is sometimes convenient to view both x and y as
functions of a third variable ¢ (called a parameter). The resulting equations x = f(z) and y = g(¢) are called parametric
equations. Each value of ¢ determines a point (x,y), which we can plot in a coordinate plane. As ¢ varies, the point
(x,y) = (f(¢),g()) varies and traces out a curve C, which we call a parametric curve.

Example 8.1.1

If we consider the interval —1 < x <2,
then we have

Y
¥y
Lety = f(x) = x>. The
function is continuous = ,
and its graph given in 1 i 0
the followin ure: T: 1
f gﬁg e SNIA =11
T X | 1] I?k; I
] 1 X

Now, letx =t and y = 1> for —1 <t < 2. We have the same graph where the last equations are called parametric equations
for the curve C.

Remark 8.1.1
1. The parametric equations give the same graph of y = f(x).
2. The parametric equations give the orientation of C.
3. To find the parametric equations, we introduce a third variable t. Then, we rewrite x and y as functions of
t. The result is the parametric equations:
x = f(t) parametric equation for x,
y = g(t) parametric equation for y.

Example 8.1.2 Write the curve given by x(t) = 2t + 1 and y(t) = 4> =9 as y = f(x).

Solution:
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Since x = 2t + 1, then ¢ = (x — 1) /2. This implies y(¢) = 4> —9 = 4(%)2 —9=y=x>-2x—8.
Example 8.1.3 Sketch and identify the curve defined by the parametric equations x = 5Scost, y=2sint, 0<t <2w.

Solution:

Let’s first find the equation in x and y. Since x = Scost and y = 2sin¢, then cost = x/5 and sint = y/2.

We know that y
2 s 2 A5
Ccos t2+81r12t—1 e
XY T
25 + 4 —I4I—3L;L1_ 1‘ '_: 3I ‘4 X
Thus, the graph of the parametric equations is an ellipse. =

Example 8.1.4 For the following curve x = sint, y =cost, 0<r <2m,
1. find an equation in x and y whose graph contains the points on the curve,
2. sketch the graph of C,
3. indicate the orientation.

Solution:

1. We know that cos?f 4 sin?¢ = 1. This implies

CrP=1. /\
N

e e |
Therefore, the graph of the parametric equations is a circle. —/ x

3. The orientation can be indicated as follows:

t 0 5 T

X 0 1 0

y 1 0 ~1
(xvy) (071) (170) (07_1)

Now, if x = f () and y = g(¢) are parametric equations for the curve C. We are going to study slope of the tangent line at
a point and second derivative.

8.1.1 Slope of the Tangent Line

Suppose f and g are differentiable functions. We want to find the tangent line at a point on the parametric curve x = f(z),
y = g(t) where y is also a differentiable function of x. From the chain rule, we have

dy dy dx

dt  dx dt’

If dx/dt # 0, we can solve for dy/dx:
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dy

/ dy ar -
=== f —#0

Yo ax T ! a7

Remark 8.1.2
e [fdy/dt =0 such that dx/dt # 0, the curve has a horizontal tangent.
e [fdx/dt =0 such that dy/dt # 0, the curve has a vertical tangent.

Example 8.1.5 Find the slope of the tangent line to the curve at the indicated value:
I x=t+1,y=1>+3t;att =—1.
2. x=0-3t,y=1>-5t—1;art=2.
3. x=sint, y=cost; att = .

Solution:

dy _ % a3
Ly =f=f=22 =23
t

The slope of the tangent line at # = —1 is D —

dx
2y —d - f xS
dt
The slope of the tangent line at r = 2 is % = _71.
3oy ==
The slope of the tangent line at r = ¥ is % =-—1.

Example 8.1.6 Find the equations of the tangent line and the vertical line at t = 2 to the curve x =2t, y=1>—1.

Solution:
_dy G2,
Y T ax T dx 2

The slope of the tangent line at t = 2 is m = 2. Thus, the slope of the vertical line is _71 = _71 At t = 2, we have
(x0,y0) = (4,3). Therefore, the tangent line is

y=3=2(x—4)
and the vertical line is Remember:

{ y—yo=m(x—xo)
—3=—=(x—-4).
y 5—4)

Example 8.1.7 Find the points on the curve C at which the tangent line is either horizontal or vertical.
I x=1—-t,y=1>.
2. x=0—4t,y=1>—4.

Solution:

1. Slope of the tangent line is m = % = z% =2 = 2.
t
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For the horizontal tangent line, the slope m = 0. This implies —2¢ = 0 and then, t =0. If t =0, x=1 and y = 0.
Thus, the graph of C has horizontal tangent line at the point (1,0).

For the vertical tangent line, the slope =L = 0. This implies A 5 = 0, but this equation cannot be solved i.e., we
cannot find value for ¢ to satlsfy % = =0. Therefore, there is no vertical line.

2. Slope of the tangent line is m = % = % = 3t2224.

For the horizontal tangent line, the slope m = 0. This implies 3 2 — = 0 and this is acquiblack if = 0. If = 0,

x=0and y = —4. Thus, the graph of C has a horizontal tangent line at the point (0, —4).

For the vertical tangent line, the slope — =1 —0. This implies ’3’2t+4 0 and this is acquiblack if t = + \Zf Ifr= \[,
— _ -2 . _ 16 _ -8

x=3 f alI;d y8 . Also, 12 =5 X=35 and y = =*. Thus, the graph of C has a vertical tangent line at the

points (3\/5,’3 )and(3\/§, =2).

8.1.2 Second Derivative in a Parametric Form

If we want to find the second derivative of a parametric curve x = f(¢), y = g(¢) where f and g are differentiable functions,
we use the following formula:

Example 8.1.8 Fmd and 3 at the indicated value:
1. x:r,y:ﬂ—latt:l.

— — a1 _ T
2. x=cost,y=sintatt=73.

Solution:

dy _ dx _ dy _ dy/dt _ dy _

1% =2rand & = 1. Thus, £ = 0% =2 Atr =1, % =2(1) =2.
2y _ dy/dt _
dx? T dx/dt T

2. 9 — cost and d* — _sint. Thus, @ = Y4 — _tanx, Atr =5, 9@ — L

< dr : > dx T dxjdi : T3 AT B

d’y _ dy/dt _ —sint 1
dx? ~ dx/dt T —sint —

8.1.3 Arc Length and Surface Area of Revolution

In the previous chapter, we study how to calculate the arc length of a smooth function f on an interval [a, b]. We concluded

that the arc length of f is
b
/ 2
= [ I+ d
/a [f (x)] g

Let the curve C has the parametric equations x = f(¢) and y = g(¢) where a <t < b. Assume f” and g’ are continuous,
then
dy dy/dt

fo == dx/di -




100

. / 2 , 2 A0 (dv /dr)?
From this, 1+ [f (x)] =1+ {Z;?Z;} = %. Thus,

L+ [ ()] dx = \/ (dx/ "(’3;/25;15/ A g Y “ /;t(dy/ WP = \J(dxjaiy+ (/a2 d

We conclude that the length of the curve x = f(¢), y = g(¢) where a <t < b is given by

d
P2 (D2 g

In the following, we find the formula to evaluate the surface area of revolution of parametric curves. Let the curve C has
the parametric equations x = f(r), y = g(¢) and a <t < b such that f’ and g’ are continuous. From the previous chapter,
we know that if the rotation is about y-axis, then

S.A:2n/ab|x| 1+[ff(x)}2dx:2n/ab|\)£/\ 1+[f/(x)]2dx.

=f()
=\ (G

Thus, the surface area of revolution about y-axis is

b d d
S.A :zn/a 1@ 1 (G + () dr.

Similarly, we can find that if the rotating is about x-axis, then

b d d
SA= 2n'/a g0 1 (5 + (5 ar.

Theorem 8.1.1 Let the curve C has the parametric equations x = f(t), y = g(t) and a <t < b such that ' and g’

are continuous.
b | dx dy
L= — )+ (—=)%drt.
[ar@
2. Surface area of revolution:

1. Arc length:
e if the revolution is about x-axis,

b dx\2 ,dy\2
S.A=2n / — —)" dt
I (G) T (G
o if the revolution is about y-axis,

b
S.A:27t/a x| (%)2—1—(%)2&.

Example 8.1.9 Find the arc length of the curve x = e cost, y=e'sint, 0<t<7Z.
Solution:

: d dy
First, we find d—’l‘ and .

dx . dx .
— =¢'cost —e' sint = (— )% = (¢’ cost — €' sint)?

dt dt
d d
di)t) =¢'sint + ¢’ cost = (d—);)2 = (¢'sint + €' cost)? .
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Thus,

dx o . dy
(dt) +(dt

Therefore, the arc length of the curve is

Lzﬁ/ogetdt:\ﬁ[et}

)2 = e* cos®t — 2¢* costsint 4 ¢* sin®t 4 ¥ sin®t + 2¢? sint cost + e* sin?t = ¥ + ¥ =27 .

S A

2\6(@%—1).

Example 8.1.10 Find the surface area of revolution of the curve x = 3cost, y = 3sint, 0<t < % around x-axis.

Solution:
d
We use the formula S.A = / df —)2 dt since the rotation is about x-axis. We find % and % as follows:
d
E 3s1nt:>(d);) = 9sin’s
d d
d%) =3cost = (d—):)2 =9cos’t .
Thus,
d d
(di;)2 + (d%)2 = 9(sin®¢ +cos?t) =9 .
This implies
T T 1
SA= 181t/3 sint df — —18% [cost}; — _18n [5 —1] =om
0

Exercise 1:

- M Curve C is given parametrically. Find an equation in x and y, then sketch the graph and indicate the orientation:

. x=t,y=2t+1,1<t<3 5. x=Int,y=¢,1<t<4

2. x=cos2t,y=sinr,0 <t <1/2 6. x=3cost,y=13sint,0 <r <2%
3. x=2t,y=(20)2,-1<1r<1 7. x=3+2,y=t—1,-1<t<5
4. x=1+4cost,y=1+sint,0<7r <2mw 8. x=ty=r1<r<3

) 2y N
H-E M Find 2% and ZT% at the indicated values:

H

9. x=Ry=+latr=1 13. x=¢',y=e'+1latt=0
10. x=1t/3,y=r3/2att =2 14. x=t+cost,y=sinratt =m/4
1. x=vV3,y=2t+1atr=1 15. x=tcost,y=tsintatt =0
12 x=2+1,y=1-1atr=3 16. x=+t,y=r*atr=1
- @ M Find the slope of the tangent line to the curve at the indicated value:
17. x=2t,y=(2t)%atr =1 21, x=3t+2,y=t—latr=1
18. x:ﬁ7y:2t+lat1:2 22. x=t-+cost,y=sint att =m/6
19 x=2+1,y=1-ratr=3 23 x=t,y=0,atr=1
20. x=cos2t,y=sint att =7/3 24. x=v/t,y=r*att=5
- @ M Find the points on the curve C at which the tangent line is either horizontal or vertical.
25. x=t,y=1,1eR 28. x=12,y=13 -3t R
26. x=4t,y=1>tcR 29. x=3t>—6t,y=+/1,t >0
27. x=Int,y=¢',t >0 30. x=1—sint,y=2cost,t € R
. . 38| M Find the length of the curve:
Lx=3t+2,y=1t—1,—-1<r<3 35. x=Int,y=t,1<r<4
32. x=32y=23,0<r<2 36. x=1+cost,y=1+sinr,0<t <™
33, x=t,y=13,1<t<4 37. x=3cost,y=3sint,0 <r < m/4
34. x=sint,y =cost,n/6 <t <m/4 38. x=12,y=13,0<1r<1/2

@- @ B Find the area of the surface generated by revolving the curve about the specified axis:

39. x=12,y=1,0<t <1 aboutx—axis 43. x=12,y=1,0<t <2 aboutx— axis
40. x=¢'cost,y=¢'sinr,0 <t <% aboutx—axis 44, x=1+cost,y=1+sint,0 <t <m abouty— axis
41. x=t,y=1%,1<r <4 abouty— axis 45. x=sin’t,y =cos’t,0 <t <m/2 about y— axis

42, x=1,y=+/1,0<t <2 aboutx— axis 46. x=3t2,y=1,0<t <2 aboutx— axis
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8.2 Polar Coordinates System

Previously, we used Cartesian coordinates to determine points (x,y) as shown in Figure (left). In this section, we are
going to study a new coordinate system called a polar coordinate.

Definition 8.2.1 The polar coordinate system is a two-dimensional coordinate system in which each point P on a
plane is determined by a distance r from a fixed point O that is called the pole (or origin) and an angle 0 from a

fixed direction.

p(xpy1)
EEEae

Pole
x Polar axis

x1

Figure 8.1: The Cartesian coordinate on the left and the polar coordinate on the right.

Example 8.2.1 Plot the points whose polar coordinates are given:

1. (1,51/4) 3. (2,-2m/3)
2. (2,37) 4. (3,3m/4)
Solution:
(1) (3)
. %ﬁ .\‘ __2“ Polar axis i
—_—
) Polar axis
2
1 2m
51 p[Z,—?]
PU:I) [} .
©) @)

p2im 2\ 5 J Polar axis 3
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Remark 8.2.1

1. From the definition, the point P in the polar coordinate system is represented by the ordeblack pair (r,0)
where r, © are called polar coordinates.

In the polar coordinates (1,0), if r > 0, the point (1,0) lies in the same quadrant as ©; if r < 0, it lies in the
quadrant on the opposite side of the pole. Meaning that, the polar coordinates (r,0) and (—r,0) lie in the
same line through the pole O and at the same distance | r | from O, but on opposite sides of O.

In the Cartesian coordinate system, every point has only one representation, but in the polar coordinate

system each point has many representations. The following formula gives all representations of each point
P(r,0) in the polar coordinate system

2.

(n0+2nm) = (r,0) =(—r,0+(2n+1)n) ne€Z.

Example 8.2.2 In Example(8.2.1) the point (1,5n/4) could be written as (1,—3m/4), (1,131/4) or (—1,1/4):

) A
Polar axis 1\ Polar axis
1 A
s/ v, 1137[
L) o Ly
— m
1 ﬂ | Polar axis » p(l'IJ
4 |
3n e/
pl-—) o . tm
4 4
Polar axis
«r(-17)

8.2.1 Relationship between Rectangular and Polar Coordinates

Let (x,y) be a rectangular coordinate and (r,8) be a polar coordinate.

Let the pole at the origin point and polar axis on
x-axis, and the line = § on y-axis as shown in Figure[8.2}

it

* P(x,y) = (r,6)

rsin @

rcosf %

Pole Polar axis

Figure 8.2: The relationship between the rectangular and polar coordinates.

From the triangle OAP

X
cosO = - =x=rcos0,
r
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sin® = Y = y=rsin0.
r

Thus,
x? +y? = (rcos8)? + (rsin®)?,
= r*(cos*0 +sin’9) .
This implies, x* +y* = r* and tan® = .

The previous relationships can be summarized as follows:

X = rcos0, y = rsin0, tanG:X, P4y =7
X

Example 8.2.3 Convert the points from the polar coordinates to the rectangular coordinates:

1. (1,m/4) 3. (2,-2m/3)
2. (2,m) 4. (4,3m/4)
Solution:

— _ =2n
l.rzlandez%. 3. r=2and 6 = 5.

—2
x=rcosh = 2005(%) =-1,

L 1
x=rcos0=(1)cos(=)=——,
(eos()= 5
. ., —2T
o 1 y=rsm6:2sm(—):—\/§.
y:rsinez(l)sin(z):\ﬁ. 3
Thus, (x,y) = (—1,—/3).
Hence, (xay):(%a%)- 4. r:4and6:%’t.
2. r=2and 0 =m. 3
T
x=rcos®=2cos(m) =—-2, xfrcosef4cos(z)f—2ﬁ7
y=rsin® =2sin(n) =0 . y:rsin6:4sin(%n):2\@.
Thus, (x,y) = (—2,0). o
() =( ) This implies (x,y) = (—2v/2,2v/2).
Example 8.2.4 Convert the points from the rectangular coordinates to polar coordinates:
1. (5,0) 3. (0,2)
2. (2v/3,-2) 4. (1,1)
Solution:

I.x=5andy=0
2P = =540
=r=>5.
Also,tanG:)%:%:O:SB:O.
Thus, (r,0) = (5,0). Remember, in the polar coordinate system each point has many representations (Remark
[B:2:1).
2. x=2v3andy= -2
=2 =x2+y* = (2V3)* +(-2)?
=r=4.
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Also,tanezﬁz—:\%éezﬁ,

Thus, (1,0) = (4, 2F).
3. x=0andy=2

Also,tanf =2 =co=0=17.
This implies (r,0) = (2,5) .

4. x=1landy=1

Also,tanf=2=1=0=

BE S an

R

This implies, (r,0) = ).

)

:r2:x2+y2202+22
=r=2.

- - S-S LR

=r=v2.

Example 8.2.5 Convert the rectangular equation to the polar form:

1. x=17
2.y=-3
Solution:

1. x=7=rcos0=7.
2. y=-3=rsin0=-3.

3.2 +yr=4

4. y* =9x

3. x4y =4
4. y* =9x

K +y* =4=r*cos’0+4 12 sin’0 =4
= r*(cos’ 0 +sin’0) = 4
= =4
=>r=2.

y2 = 9x = r*sin’0 = 9rcos
= rsin”0 = 9cos O
= r=9cotBcscH .

Example 8.2.6 Convert the polar equation to the rectangular form:

1. r=3
2. r=sin0
Solution:

3. r==6c¢co0s0
4. r=secH

1. r=3= \/{;Ei;jgi =3=x2 +_y2 =9

e _ 2 _ 2,2 2,032y
2.r=sinb=r=i=r=y=x+y =y=x"+y"—y=0.

3. r:60059:>r:6§¢r2:6x:>x2+y276x:0.

1
cosO

4. r=secO=r=

=rcos0=1=x=1.
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8.2.2 Tangent Line to a Polar Curve

Let r = f(0) be a polar curve where f” is continuous at (ro,6). Then,

x=f(8)cosO, y=f(0)sin0.

From chain rule, we have

dx ) , ) dr
6= —f(0)sin0+ f'(0)cos® = —rsme—l—%cose ,
% = f(0)cosO+ f'(8)sin® = rcos 0+ %sine :

If j—g # 0 at 0 = 0, the slope of the tangent line to the graph of r = f(0) at (ro,09) is

dy dy/d®  rocosg+sin®y(dr/de)

dx dx/d®  —rysin@y-+cosB(dr/d®)

Remark 8.2.2
1. If % = 0 such that Z—)e‘ = 0, the curve has a horizontal tangent line.

2. If % = 0 such that % = 0, the curve has a vertical tangent line.

Example 8.2.7 Find the slope tangent of the curve r = sin® at 8 = 7.

Solution:

. dx .
Xx=rcosB = x =sinBcos6 = 70 cos’>0 —sin’ 0 ,

d
y=rsin® = x=sin’0 = ch =2sinBcosH .

@_ 2sinBcos 0O
dx  cos20—sin0

At O = %, % =1and % = 0. Thus, the curve has a vertical tangent line.

Example 8.2.8 Find the points on the curve r =2 +2cos0 for 0 < 0 < 21 at which tangent lines are either horizontal or
vertical.

Solution:

ﬂ = —2sin0 —4cos0Osin0 ,

= 0 =2cos0+2c0s’0 = — =
X = rcos cos0+2cos 70

d
y=rsin@® = 2sin6+2cosOsin6 = £ =2c0s0—2sin>0+2cos> 0 .

For the horizontal tangent line,

d
d—g =0=2cos0—2sin>0+2c0s’0 =0 = 2c0s>0+cos®—1 =0= (2cos®—1)(cosO+1)=0.

This implies 6 = w, 8 = ©t/3, or 6 = 5n/3. Therefore, the tangent line is horizontal at (0,7), (3,7/3) or (3,57/3).

For the vertical tangent line,
dx .
6= 0= sinB(2cosO+1)=0.
This implies 8 =0, 8 =&, 6 = 21/3, 8 = 47/3 or 8 = 2. However, we have to ignore 6 = 7t and 6 = 27 since at these

values dy/d® = 0. Therefore, the tangent line is vertical at (4,0), (1,2m/3), or (1,471/3).
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8.2.3 Graphs in Polar Coordinates

Before starting sketching polar curves, it is important to know when the polar curves are symmetric about the polar axis,
the vertical line 6 = %, or about the pole.

» Symmetry in Polar Coordinates

Theorem 8.2.1

1. Symmetry about the polar axis.
The graph of r = f(8) is symmetric with respect to the polar axis if replacing (r,0) with (r,—8) or
with (—r,t — 0) does not change the equation.

2. Symmetry about the vertical line 6 = 7.
The graph of r = f(8) is symmetric with respect to the vertical line if replacing (r,0) with (r,t—8)
or with (—r,—8) does not change the equation.

3. Symmetry about the pole 6 = Q.
The graph of r = f(0) is symmetric with respect to the pole if replacing (r,0) with (—r,0) or with
(r,0 + 1) does not change the equation.

W ©

y y y
.y § M
" 9(:6) = Do s m s ("0 A/
/ (-r—8) \, / Al A
/ \, v/ (v &)
T/ - ¥ & /)]
/x \| /X Polé Polaraxis
/ . N /e : l/){ olar axis
o " 6 8 x /
Pole |7 | Polaraxis Pole | y Polar axis /
X
\ N
% (r,—6) o(r,—8)
Figure 8.3: Symmetry in Polar Coordinates: (A) symmetry about the polar axis, (B) symmetry about the vertical line 6 = %, and (C)

symmetry about the pole 8 = 0.

Example 8.2.9 1. The graph of r = 4cos0 is symmetric about the polar axis since

cos(—8) =cosH .

2. The graph of r = 4sin® is symmetric about the vertical line ® = % since

sin(m—0) =sin® and —rsin(—0) = rsin6 .

3. The graph of r* = a®sin20 is symmetric about the pole since
(—r)* = a*sin26,
= r? =a*sin26 .
Also,
r? = d®sin2(n+90)),

= a*sin(21+26),

= a%sin20 .
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» Sketch of Polar Curves

Here, we take two examples to explain how to plot polar curves.

Example 8.2.10 Sketch the graph of r = 4sin6.

Solution:

Note that, r = 4sin® is symmetric about the vertical line ® = % since sin(m — 0) = sin®. Therefore, we restrict our
attention to the interval [0,7/2]. The following table displays some solution of r = 4sin6:

T T T T
9 0 6 1 3 2
0 2 4/vV2 | 2v3 |4
APy b
" v:4sin9’_‘—",
rd
/ W2)
1
= \
y (52 \
\h
Ppolef @0 Polar axis X polelf @0 Polar axis x

Example 8.2.11 Sketch the graph of r = a(1 —cos8) where a > 0.

Solution:

The equation is symmetric about the polar axis since cos(—6) = cos 0. Therefore, we restrict our attention to the
interval [0,7]. The following table display some solution of the equation r = a(1 — cos9):

T T 27
0 3 2 3 T
r 0 a/2 a 3a/2 2a
¥ ¥
_ m 3a 2 3a
S i i el -l
= P(fa - P(f @)
N T a N T a
N P(5.5) b B(Z:5)
\ “i3ial X gEl7h
\. ) \ f
N |/ o If
P(m.2a) \\Q P(m.2a) \\g
- - :
Pole Polar axis \ Pole | Polar axis
\\ 3
~
i ko

» Some Special Polar Graphs
e Lines in polar coordinates
1. The polar equation of a straight line ax+bx =cis r = m .

2. The polar equation of a vertical line x = k is r = ksec® . Put r =ksecO = r= cokse'
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3. The polar equation of a horizontal line y =k is r = kcscO . Putr =kcscO=r= ﬁ
4. The polar equation of a line that passes the origin point and makes an angle 8¢ is 6 = 0 .
e Circles in polar coordinates
1. The circle equation its center at O and radius aisr =a .
2. The circle equation its center at (a,0) and radius |a| is r = 2acos© .

3. The circle equation its center at (0,a) and radius |a| is r = 2asin® .

y y y
r=2asinfd
N LYY
r=—2acosf|r=2acosd ;
r=—2asinf

o Cardioid
l.r=a(l£cos6) 2.r=a(l=£sinb)
r=a(l4cos8) r=a(l—cosB) r=a(l+sin6) r=a(l—sin0)

ANNA
VERY

J J

X

e Limacons
r=axtbcosO ORr=a=xbsin0O
l.r=a=xbcosB

(@) r=a+bcosH

»
T
D
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(b) r=a—bcosB

a
155

< ¥

\_’\_/
x ¥

2. r=a=xbsin0

(a) r=a+bsind

M
[
[~
A
o

o a

(b) r=a—bsin0O

<1 b

SIS

e Roses

1. r=a cos(nB) 2.r=a sin(n®) where n € N.

1. r=a cos(nb)

(SR~

(D).

Rie: | o2l

Sl

IV
]

Sl RS}

J

=Y
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n=>5
y g
X
=3
2 y ;
X

2. r=a sin(nB)

>

n=4
y{
X
n=2 n=3 n=4
%v+ %
X

Note: If n is odd, there are n petals. If # is even, there are 2n petals.
o Spiral of Archimedes
r=ab

a>10 a<0

D
o
G)

Exercise 2:

-El B Find the corresponding rectangular coordinates for the following polar coordinates:

1. (1,%) 4. (3,m)

2 (1) 5. (1) 0
’ b oY 8. (3,
3.2, 6. (—3,2m) 3.5)

E- 16| B Find the corresponding polar coordinates for the following rectangular coordinates:

9. (1,1) 12. (v/3,3) 15, (4,2)

10. (0,2) 13. (2,v2) 16' (7’3 3

1. (1,-1) 14. (3,0) A

-@ M Convert the rectangular equations to the polar form and vice versa:
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17. x=9 20. r=2cos® 5

2, .2 2 _ 23. r= 1=
18. x“+y =1 21. x* =3y ) 3} Sl;' o
19. r=cscO 22. 2 —y*=16 - =27 2sm

- M Sketch the graph of the polar equations:
25. r=secH 27. r=2+2sin0
26. r=4cos8 28. r=3+2cosO

- M Find the slope tangent of the curves at 8 and then find the points on the curve at which the tangent lines are either horizontal or
vertical:

29. r=2sinfat@=1% 31. r=cos70atf =
30. r=3+42cosBatb=7% 32. r=1+sinBat®

T
2z, 33. r=1—cosbat6=%
=3

8.3 Area in Polar Coordinates

Let r = f(8) be a continuous function on the interval [0, 8] such that 0 < o < § < 27. Let f(8) > 0 over that interval and
R be a polar region bounded by the polar equations r = f(8), 6 = o and 8 = B as shown in Figure 8.4]

Figure 8.4: Area in polar coordinates.

To find the area of R, we assume P = {0;,0,,...,0,} is a regular partition of the interval [o,8]. Consider the interval
[0k—1,0] where AO; = 0, — 6;_1. By choosing @y € [0_1,0;], we have a circular sector where its angle and radius
are AB; and f(wy), respectively. The area between 6;_; and 6; can be approximated by the circular sector ( see Figure

2
The area of the circular sector is M, thus the area of R is A = ¥}_; 1[f(ox)]*> 26y . For n — oo, we have from
Riemann sum

Similarly, assume f and g are continuous on the interval [, B] such that f(8) > g(6). The area bounded by the curves of
f and g on the interval [a, ] is

Example 8.3.1 Find the area of the region bounded by the graph of the polar equation

1. r=3 3. r=4sin0
2. r=2cos0 4. r=6—6sin0
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Solution:

1. From the figure, the area is

1 21 9 2 9 2T
A== [ 32do=2 dezf[e} —on.
2 Jo 2 o 20700 =77

ie.,

y
=3
Note that, one can evaluate the area in the first quadrant and / 3
multiply the result by 4 to find the area of the whole region k

A4(;/0§32d6)18 02 dezls[e]fz%.

2. We find the area of the half circle and multiply the result by
2 as follows: y

1 & n
A:2(7/2(2cose)2 d9> :/2400526d6
2 Jo 0
:2/71+00526d6
0

s
:2[e+sm29]7
2 Jo

2[5

r = 2cosB

=T.

)
3. The area of the region is oy
1 /m 16 (™
A:E/O (4sin6)2d9:Z/0 1~ c0s20 df
sin26717™
o)
2 Jo
:4[n—0} =
=4r.
4. The area of the region is ya
1 r2n
A== [ 36(1—sin6)>do
2 Jo
21
:18/ |~ 25in® + sin’0 d6 o e
0
0 sin2072n x
= 18[0+2c0s6+ 2 — o
2 4 Jo
:18{(275-1—2—1—75)—2]
=54rn .

Example 8.3.2 Find the area of the region that is inside the graphs of the equations r = sin® , r = /3 cos®.



114

Solution:

First, we find the intersection point of the two curves.

r =v3cos#

sinG:\/§c059:>tan9:\/§:>6:§.

From the figure, the region is divided into two small regions:
below and above the line §.

(1) Area of the region below the line %:

1 %
Alz—/asinzﬁde
2 Jo

wl| g

:1/71—coszede o=
4 Jo

Ir. sin2013%
51n23“] . 2

2
V3
T

rm
13
[
13

(2) Area of the region above the line %:

1 &
A2 = E /1[2 (\[30089)2 de
3

/fl+cos29d6 6=

:9+sinz2eﬁ ﬂ
s

-0 -G+ - X

ﬁ}

4
[T_v>
L6 4

wl g

|
mw A\w AlW AW
o

Total area = A +A, = 57 —

5\&

Example 8.3.3 Find the area of the region that is outside the graph r = 3 and inside the graph r =2+ 2cos®6.
Solution:

As shown in the figure, we find the area in the first quadrant and then we double the result to find the area of the whole
region.
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The intersection point of the two curves in the first quadrant
is

24 2c0s0=3= cosB=» = 6=

cosO = cosf =~ =—.

2 3 y

r = 2(1+ cos#)

I
Area:A:2(5/34(1+cosﬂ)2—9d9)
0

E 2
:/ 4(14+2cos6+cos“8) —9 do
0

=/§SCOSG+400829—5d9
0

wia

[8 sin 0 + sin20 — 39

9
=2V3-m.
3 T

Exercise 3:

- M Find the area of the region bounded by the graph of the polar equation:
1. r=4sin0 4. r=2cos6
2. r=1+sin® 5. r=06(14sin8)
3. r=5 6. r=2(1—cos0)

7. r=23cos30
8. r=3+2sin6

El - B Find the area of the region bounded by the graph of the polar equations:
9. inside r = 1 +cos 8 and outside r = 3cos 0 14. inside both graphs r =2cos8 and r = 2sin®
10. inside r =2+ 2cos6 and outside r = 3 15. outside r = 3 and inside r = —6cos©
11. outside r =2 —2cos 0 and inside r =4 16. inside both graphs r = cos0 and » = —sin6
12. inside both graphs » = 1+4cos6 and r =1 17. between the graphs r = 1+ sin® and inside » = 3sin®
13. inside » = 1 +sin®6 and outside r = 1 18. inside both graphs r =2 and r = 2+ 2sin0

- @ M Find the area bounded by the graph of the polar equation:

19. r=1—cos0 in the first quadrant

20. r=1+sin0 and r = 3sin0 in the second quadrant

8.3.1 Arc Length and Surface of Revolution in Polar Coordinates
8.3.2 Arc Length in Polar Coordinates

Let the polar function r = f(8), o < 8 < 3 be smooth. We know that
x=f(0)cosO and y= f(0)sin®, <O <P.
Thus,

(%w(%) — (f'(8)cosB— £(8)sinB) + (1'(6) sin® + f(8) cos )’

= (£'(8))*cos*0 —2£(6) f'(8) cosBsin® + (f(6))*sin*6

+ (f (8))sin®0+2£(8)f'(® )cosesm9+(f(6))200s29
= (f'(8))*[cos®® +sin*6] + (£(6))*[sin> 6 + cos 6]

i
= (£'(8)*+(£(0))° .

From Section in the previous chapter, the arc length of the curve is
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p dr
L= 24 (Y2 gp
/oc r+(Zg)

Example 8.3.4 Find the length of the curve:

1. r=2 3. r=e
2. r=2sin0 4. r=2-—2cos6
Solution:
L. r?+(49)% = 4. Thus,
2r 2r
L= \/Zdezz[e} —4n
0

2. 2+ (%)2 = 45in” 0 + 4 cos? O = 4(sin? 0 + cos? 0) = 4. This implies

L:/nﬂdezz[erzzn.
0 0

27 27
L:/ \/26*290’9:\6/ efedez\@[l—efzn].
0 0

4. r2+(%)2 =4 —8cos0+4cos>0+4sin’0 =8 —8cos® = 8(1 —cosH)

21 21
L:/ V/B(1—cosH) dezzxfz/ VT—cos6db .
0 0

We know that cos?v = W Ifv= g, then cos? g = %. Thus,

27 0 2751 0 0
L:4/0 \/cos2§d6:8/o 5¢08 5 dG:S[sinE]g:&

8.3.3 Surface of Revolution in Polar Coordinates

Let the polar curve r = £(6), a < 6 < B be smooth. Then,

x=f(0)cosB and y= f(0)sin6, a <O <P.

From Section in the previous chapter, we have the following:

1. the surface area of revolution about the polar axis (x-axis) is

SA= 21r/jf(6) sine\/(f(e))2 +('(8))7 a8

This implies

B d
SA= 2n/ rsin®y /2 + (55)2 o
« a8




117

2. the surface area of revolution about the line 6 = % (y-axis) is

S.A= Zn/ocﬁf(e)cose\/(f(e))z—&- (f’(@))2 de .

This implies

B / d
SA= Zn/ rcosOy/r2 + (—r)2 de
o do

Example 8.3.5 For the curve C: r = 2sin®, find the area of the surface generated by revolving the curve C about

1. the polar axis.

2. the line ® = %.

Solution:
LI dr
1. WeusetheformulaS:Zn/ rsin® r2+(%)2 de .
o
2 dris ‘2 2 .2 2
r +(%) =4sin“0+4cos”0 =4(sin“0+cos”0) =4 .
Thus,

sin206

T T
S.Azzn/ 25in%0 \/Zdezzm/ (1—c0s20) d6 = 4z [0 — “o|* = 4z [n— 0] = 4n? .
0 0

B / d
2. We use the formula S = 275/ rcos0y/r2 + (d—;)2 d0. Thus
o

S.A:Zn/72sin9c059\/1dez —%[COSZG]E =—4n[0—1] =4m.
0

Exercise 4:
-E] M Find the length of the curve:

1. r=3cos6 4. r=3
2. r=sin® 5. r=3+2cos6
3. r=2(1—cos®) 6. r=cos46

- M Find the area of the surface generated by revolving the graph of the equation about the polar axis:
7. r=1+cos6 10. r=4
8. r=cos6 11. r=3cos36
9. r=(2-3cos0) 12. r=6(1+cos0)

- M Find the area of the surface generated by revolving the graph of the equation about the line 8 = 5
13. r=1+sin0 16. r=2(1+sin®)
14. r=2 17. r=4cos40
15. r=(1-sin0) 18. r=sin®
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