
Lectures 12, 13, and 14:
Gene Prediction

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena



Sequence Annotation

As new DNA sequence data becomes available, we seek to
identify interesting features in this raw text.
The most interesting features aregenes, the portions of the
chromosome which describe how to make proteins.
Since genes and the promoter sites associated with them make
promising drug candidates, there is a considerable pressure to
quickly identify them computationally.
Indeed, automatic annotation is a big game. Every genome
sequencing project is expected to do annotation prior to
publication.



Transcription

Transcription is the process of copying the portion of the
DNA containing a gene into RNA.
Something has to happen to instigate transcription at genes
and not at non-coding regions. Thus there must be signals in
the DNA sequence which tell where to start the transcription.
An enzyme calledRNA polymerasebinds to specific patterns
at approximately 10 and 35 bases before the gene to start
transcription.
Other binding sites upstream from before the gene called
promotershelp signal when to express or inhibit the gene
from expressing as RNA.



Termination

Transcription stops when it encounters a DNA palindrome
flanking repeatedAs, forming a ‘knot’.



Translation

Translation is the process of building proteins according to
the template RNA.
A complex molecule called aribosomeworks its way along
an RNA molecule, grabbing the appropriate amino acid for
the next codon and adding to the end of the given protein.
The appropriate bases get to the right places by essentially
random motion, guided by electrostatic forces. Binding sites
ensure that the right things stick together when they bang into
each other.





Introns and Exons

Gene recognition in higher organisms (eukaryotes) is compli-
cated by the presence ofintrons, or non-coding regions.
The coding regions of genes are calledexons.

DNA

precursor mRNA
intron

Donor SiteDonor Site
Acceptor SiteInitiation Site Acceptor Site

Stop Site

mRNA (after splicing)

Folded Protein

Protein

Exon1 Exon2 intron Exon3



Why Introns?

There is controversy about why introns exist. Presumably itis
easier to evolve new genes by shuffling small parts, i.e. exons.
Some theorize that prokaryotes originally also had introns,
but lost them.



Synthesis on a Cellular Level

DNA in Eukaryotes resides in the cell’snucleus, but proteins
are translated outside the nucleus.

Transcription

Splicing

Exon Intron

Nucleus

Translation

Cytoplasm

DNA

Primary RNA
transcript

mRNA

mRNA

Protein

Cell Wall

Eukaryotic Cell

Issues of how proteins/RNA cross membrane boundaries are
critical in understanding their function, and designing drugs.



Features Which Ease Gene Prediction

In general, introns are flanked bydonorandacceptorsites GT
and AG – however, such pairs should each happen by chance
every42 = 16 bases.
Genes start with ATG and end with a stop codon (TAA, TAG,
or TGA) – however, such codons should happen every64/3 ≈
20 codons.
The length of all coding regions must be a multiple of three –
however coding regions can be split over multiple exons.
The distribution of base triples and heximers differs between
coding and non-coding regions – but you need a sufficiently
long enough region to trust statistical variations.



Problems Which Complicate Gene Prediction

Gene transfer mechanisms often introduce extra copies of
genes into genomes, which then diverge through evolution.
Distinguishing brokenpseudo-genesfrom working genes is a
difficult problem.
Sequencing errors can step on donor/acceptor sites and cause
apparent frame shifts.
Exons can be separated by several thousand bases.
Genes can overlap each other, appear in different reading
frames and on different strands.
Exons can be assembled in multiple ways throughalternative
splicing.



Laboratory-Based Approaches to Gene
Prediction

The traditional way to find genes was to do it in the laboratory.
One method is to extract and sequence RNA, since most RNA
is expressed to code for proteins.
A problem with such laboratory methods is that relatively
few genes tend to dominate the population of expressed
sequences, and hence one discovered duplicates instead of
new genes.
Directly sequencing proteins is a difficult procedure, but is
becoming easier through mass spectrometry.



Feature-Based Approaches to Gene Prediction

Gene recognition systems such asGrail, GeneID, and
GeneParserwork by searching for various ad hoc features of
genes, and then identifying regions which score high enough.
Typical features include codon bias, donor / acceptor sites,
and coding frame length.
Since stop codons should occur every 20 codons or so,
long open reading framesor ORFs without stop codons are
strongly suggestive of genes.
Dynamic programming can be used to identify the highest
scoring regions.
The best gene recognition systems tend to be species-specific,
trained on examples of known genes in the given organism.



Homology-Based Approaches to Gene
Prediction

Biology is an inherently finite discipline. There are only a
given number of genes in each of a given number of species.
Further, because of evolution, we would assume that there are
strong homologies between genes in related species.
Homology-based gene prediction systems such asProcrustes
scan databases find similarities to previously identified
coding regions.
Such homology-based approaches can only identify previ-
ously known genes, of course, but the fraction of known
genes is growing rapidly.



Conserved Sequences

A different homology-based approach to identify totally
unknown genes is to compare two whole genomes and look
for conserved regions, on the theory that sequence is only
conserved if it is important.
Alignment of many genomes (e.g. four yeasts) can be
used to accurately determine gene boundaries and eliminate
psuedogenes.



HMM Approaches to Gene Prediction

An alternate approach to building prediction programs based
on ad hoc features is to train a learning program on positive
and negative examples and havethe programselect the most
important features.
Such learning-based approaches can work surprisingly well,
often better than hand-crafted programs on fuzzy tasks.
Standard learning approaches for pattern recognition include
neural networksandhidden Markov models(HMMs).
Genscanand GeneMarkare popular gene recognition pro-
grams based on such approaches.
Building good training sets are complicated by sequencing
errors and duplications in Genbank.



Finding CG Islands

CG islandsare regions in DNA sequences where the dimer
CG repeatedly occurs.
CG sites are typically modified bymethylation. Methylated
sites are likely to mutate to TG sites, so concentations of
CGs denote where methylation is suppressed and thus have
biological significance.
My approach to locating such islands would likely be to
produce a list of all positions where CG’s occur, and then
use anO(n2) algorithm or heuristic to quickly identify all
sufficiently long, sufficiently dense sequences.



Learning Methods

An alternate approach would be totrain a program on
appropriately identified examples of CG islands and non-
islands and have itlearn to recognize them.
Hidden Markov Models(HMMs), neural networks, decision
trees, and other AI formalisms offer approaches to machine
learning.



Markov Models

Markov chainsare networks ofstateswhere there is a given
probability oftransitionbetween each pair of states.
The probability of being in states at timet is completely a
function of (1) the probability of each state at timet − 1,
and (2) the state transition function giving the probability of
mapping each state tos.
The states in a Markov chain can be used to record some
knowledge about previous states, butnot the path we used
to get to this state if there is any branching.
Typically a character or symbol is associated with each state
transition. Thus any string defines a path through the model.



Since the transition probabilities from a state are independent
of the probability of the path that took us there, the probability
of any string is simply the product of all transitions on the
path.
Note that multiplying probabilities is conceptually the same
as summing up logarithms of the probabilities, but the lateris
much more numerically stable.
By assigning each state a label ormeaning, we can use
Markov models to classify strings or parts of strings.



Higher-Order Markov Models

Markov models are good at recognizing sequences/features
with a given local structure – such as generating natural
language and speech recognition.
In higher order Markov models, the transition probability
from a state is a function of thek previous states. However,
these can be modeled as simple Markov chains by defining
more complicated states.



Recognizing CG Islands with MMs

By separately tabulating the base pair transition probabilities
in CG islands and non-islands, we can use simple Markov
models for recognition.

A

C G

T

A

C G

T

Positive states

Negative states

The critical transition CG has a probability of 0.27 in the CG
island examples, but is only 0.078 in the negative examples



Hidden Markov Models

The two models can be collapsed into one provided we allow
more than one possible next state for a given character.
This permits us to arbitrarily transition back and forth
between the two types of states, enabling subsequence
recognition.
Such models are calledhidden Markov models, since the
actual state the model is in as a function of the string is
“hidden” from the observer.



Finding Optimal Paths Thru HMMs

HMMs representnon-deterministic automatawhere there can
be exponentially many ways through the machine for any
string.
The Viterbi algorithm gives a simpleO(nm2) dynamic
programming algorithm to find the most probable path for an
n character string through anm state automata.
The labels of the states on this path can be used to annotate
the input sequence.



Computations

The probability that theith character passes through statej is
clearly defined given (1) the probability we are in each of the
m states associated with the(i − 1)st character, and (2) the
probability of each transition from states from the(i− 1)st to
theith characters.
The first is computed by dynamic programming, while the
second is specified by the input automata.
A similar algorithm can be used to find the probability of
winding up in each state for a given string, by summing
instead of maximizing.



The Backward Algorithm

We have seen how the Viterbi algorithm can be used to find
the highest probability path through a model, and that the
labels of the states on this path can be used to annotate the
sequence.
But fixating on a single path could be risky.
An alternate and perhaps more defensible annotation strategy
would be based on knowing the probabilityP (x, πi = k) that
theith symbol of the sequence being in statek of the automata
summed overall paths for a sequencex.

P (x, πi = k) = P (x1 . . . xi, πi = k)P (xi+1 . . . xL|x1 . . . xi, πi = k)

P (x, πi = k) = P (x1 . . . xi, πi = k)P (xi+1 . . . xL|πi = k)



Given the probabilities of being in each state at each time,
we can annotate each symbol/position according to which
classification has the highest weight.
The values ofP (x1 . . . xi, πi = k) are exactly what is
computed by the Viterbi algorithm.
The values ofP (xi+1 . . . xL|πi = k) can be computed analo-
gously in a right-left dynamic programming computation.



Training HMMs

If the fine structure of the training examples are properly
annotated in accord with the states of the model, the state
transition probabilities can be easily determined.
If not, parameters can be found throughiterativealgorithms,
where each training sequence is run through the model and
weights adjusted to increase the probability that training
examples are correctly classified.
In the Baum-Welchalgorithm, we calculate the forward and
backward probabilities for each sequence/each state, and
adjust accordingly. In theViterbi algorithm, we only reinforce
the strongest path for an input sequence.



The set of training sequences is run through the model
multiple times until either (1) we have hit a local optimum
and the parameters stop changing, or (2) the quality of the
model is good enough.
The quality of the model can be estimated by multiplying
(or summing the logarithms of) the probability of each of the
training sequences as scored by the model.
To guard againstoverfitting the exact training instances,
each training example might have random noise added to it,
with the amount of added noise decreasing as the training
progresses.



Topologies

To reduce the number of parameters the model must learn,
it is often a good idea to initialize, force, or combine certain
parameters in light of a priori knowledge.
It is a bad idea to set certain parameters to zero just because
you haven’t seen any examples in a given small dataset.
Forcing certain transition probabilities to zero imparts anon-
completetopologyto the network.
Multistage recognition problems such as prokaryotic genes
(promoter sites, start codon, coding sequences, stop codon)
are best modeled as progressing sequentially across stages,
moving backwards on errors.



TATA ATG GT

stop

AG

exon intronupstream

downstream

promoter
region



Sequence Homology Models

Topologies for sequence homology should permit the inser-
tion and deletion of symbols.
Silent statesor ǫ-moves can shift to successors without any
input characters. These can be used to reduce the number
of transition parameters needed, at the cost of restrictingthe
model topology.
The previously described learning algorithms can be easily
extended provided there are no cycles of all silent states.



HMMs or Ad Hoc Models?

Hand crafted, ad hoc models perform well when you
understand what you are doing.
However, often problems are messier than they seem – are CG
islands defined by anything else than the presence of many
CGs?
HMMs can be very effective even if you have no real idea
about the problem you are solving,if you have sufficient good
examples.
They can be brought on-line very quickly using generic
HMM packages, or even application specific implementa-
tions, which is a tremendous advantage in a fast-moving
world.



I like HMMs much more than other AI approaches since they
(1) are based on a natural mathematical formalism, and (2)
will do the right thing if your problem is accurately modeled
by a Markov process.
Thus there is less voodoo or extra baggage than with other
approaches.



Validating the Model

HMM models can only succeed if the training set is
sufficiently largeandrepresentative.
One approach to cross-validating a model from a small data
set is to train a model from each set ofn−1 training examples
and see how well it predicts the remaining one.
HMMs can easily be built fromanyset of labeled examples,
e.g. stock market historical data. Such models usually do
great in predicting the past on small enough training sets.
Remember:garbage-in, garbage-out!
Cautionary tales from neural networks are appropriate to
remember, (1) distinguishing cars from trucks from images,
and (2) red-lining loan models.



Biological Applications of HMMs

There are a wide variety of important biological applications
of HMMs:

• Protein secondary structure prediction: sheet, helix, or
strand?

• Gene prediction and promoter recognition.

• Protein family/motif recognition.

• Multiple sequence alignment



Gene Prediction Systems

There are benchmarks training sets of carefully curated
sequences, particularly the Busest/Guigo set of 570 vertebrate
genes.
Program accuracy can be measured in several ways, based
on classifying all prediction calls on test sequences as true
positives (TP), false positives (FP), true negatives (TN) and
false negatives (FN).
The sensitivityof a programSn = TP/AP , where AP the
number of actual positives.
Thespecificityof a programSp = TP/PP , where PP is the
number of predicted positives.



The approximate correlation AC is

AC = ((TP/(TP + FN)) + (TP/(TP + FP )) +

(TN/(TN + FP )) + (TN/(TN + FN)))/2 − 1

Early de novo gene prediction systems were based on ad hoc
feature recognition, such as Grail. Grail achieves a sensitivity
of 0.72 and a specificity of0.84.
Genscan, the best HMM-based program achieves a sensitivity
of 0.93 and a specificity of0.93.
These systems work best when trained on organism specific
data.


