For My Mother
Contents

Preface .. xiii
Acknowledgments .. xv
Trademark Names .. xvii

Chapter 1 Introduction .. 1
 No Design Experience? No Worries ... 1
 Full Disclosure ... 2
 What Is a “GISer”? ... 3
 Tick-Tock Goes the Clock ... 3
 Why Good Design Matters .. 4
 Audience .. 5
 How to Use This Book ... 5
 Skipping the How-tos to Get Straight to the Good Stuff 6
 Companion Web Site .. 6
 End Notes ... 7

Chapter 2 Creative Inspiration .. 9
 You Can Be Creative .. 10
 Doing .. 10
 Seeing .. 11
 An Example of How to See ... 11
 Applying All of This to Your Map .. 12
 Summary and Final Prodding ... 13
 A Few Places to Start Seeing Art from Your Desktop 14
 End Notes ... 14

Chapter 3 Layout Design .. 15
 All Together Now .. 15
 Wait! Stop! ... 15
 Layout Checklist ... 17
 Element Details and Examples ... 17
 Title ... 19
 Best Practices .. 19
 Placement .. 20
 Style ... 20
 Subtitle ... 21
 Best Practices .. 22
 Placement .. 22
 Legend .. 22
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Practices</td>
<td>22</td>
</tr>
<tr>
<td>Placement</td>
<td>24</td>
</tr>
<tr>
<td>Style</td>
<td>24</td>
</tr>
<tr>
<td>Maps</td>
<td>25</td>
</tr>
<tr>
<td>Best Practices</td>
<td>26</td>
</tr>
<tr>
<td>Placement</td>
<td>26</td>
</tr>
<tr>
<td>North Arrow</td>
<td>27</td>
</tr>
<tr>
<td>Best Practices</td>
<td>27</td>
</tr>
<tr>
<td>Placement</td>
<td>27</td>
</tr>
<tr>
<td>Style</td>
<td>27</td>
</tr>
<tr>
<td>Date</td>
<td>28</td>
</tr>
<tr>
<td>Best Practices</td>
<td>28</td>
</tr>
<tr>
<td>Placement</td>
<td>28</td>
</tr>
<tr>
<td>Authorship</td>
<td>28</td>
</tr>
<tr>
<td>Best Practices</td>
<td>29</td>
</tr>
<tr>
<td>Placement</td>
<td>29</td>
</tr>
<tr>
<td>Style</td>
<td>29</td>
</tr>
<tr>
<td>Scale Bars</td>
<td>29</td>
</tr>
<tr>
<td>Best Practices</td>
<td>30</td>
</tr>
<tr>
<td>Style</td>
<td>30</td>
</tr>
<tr>
<td>Page Border</td>
<td>31</td>
</tr>
<tr>
<td>Placement</td>
<td>31</td>
</tr>
<tr>
<td>Style</td>
<td>31</td>
</tr>
<tr>
<td>Neat Lines</td>
<td>31</td>
</tr>
<tr>
<td>Placement</td>
<td>32</td>
</tr>
<tr>
<td>Style</td>
<td>32</td>
</tr>
<tr>
<td>Graticules</td>
<td>33</td>
</tr>
<tr>
<td>Best Practices</td>
<td>33</td>
</tr>
<tr>
<td>Style</td>
<td>33</td>
</tr>
<tr>
<td>Network Path</td>
<td>34</td>
</tr>
<tr>
<td>Best Practices</td>
<td>35</td>
</tr>
<tr>
<td>Style</td>
<td>35</td>
</tr>
<tr>
<td>Disclaimer</td>
<td>35</td>
</tr>
<tr>
<td>Best Practices</td>
<td>35</td>
</tr>
<tr>
<td>Style</td>
<td>35</td>
</tr>
<tr>
<td>Data Sources</td>
<td>36</td>
</tr>
<tr>
<td>Best Practices</td>
<td>36</td>
</tr>
<tr>
<td>Style</td>
<td>36</td>
</tr>
<tr>
<td>Data Citations</td>
<td>37</td>
</tr>
<tr>
<td>Best Practices</td>
<td>37</td>
</tr>
<tr>
<td>Logos</td>
<td>37</td>
</tr>
<tr>
<td>Best Practices</td>
<td>38</td>
</tr>
<tr>
<td>Placement</td>
<td>38</td>
</tr>
<tr>
<td>Graphs</td>
<td>38</td>
</tr>
<tr>
<td>Best Practices</td>
<td>38</td>
</tr>
<tr>
<td>Placement</td>
<td>39</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Photographs</td>
<td>40</td>
</tr>
<tr>
<td>Best Practices</td>
<td>40</td>
</tr>
<tr>
<td>Placement</td>
<td>40</td>
</tr>
<tr>
<td>Style</td>
<td>41</td>
</tr>
<tr>
<td>Graphics</td>
<td>41</td>
</tr>
<tr>
<td>Best Practices</td>
<td>41</td>
</tr>
<tr>
<td>Placement</td>
<td>41</td>
</tr>
<tr>
<td>Style</td>
<td>41</td>
</tr>
<tr>
<td>Map Number</td>
<td>42</td>
</tr>
<tr>
<td>Placement</td>
<td>42</td>
</tr>
<tr>
<td>Style</td>
<td>42</td>
</tr>
<tr>
<td>Tables</td>
<td>42</td>
</tr>
<tr>
<td>Best Practices</td>
<td>43</td>
</tr>
<tr>
<td>Style</td>
<td>43</td>
</tr>
<tr>
<td>Copyright</td>
<td>44</td>
</tr>
<tr>
<td>Placement</td>
<td>44</td>
</tr>
<tr>
<td>Style</td>
<td>44</td>
</tr>
<tr>
<td>Projection</td>
<td>44</td>
</tr>
<tr>
<td>Best Practices</td>
<td>45</td>
</tr>
<tr>
<td>Placement</td>
<td>45</td>
</tr>
<tr>
<td>Inset Map</td>
<td>45</td>
</tr>
<tr>
<td>Best Practices</td>
<td>45</td>
</tr>
<tr>
<td>Style</td>
<td>46</td>
</tr>
<tr>
<td>Descriptive Text</td>
<td>46</td>
</tr>
<tr>
<td>Style</td>
<td>46</td>
</tr>
<tr>
<td>Style</td>
<td>47</td>
</tr>
<tr>
<td>Context</td>
<td>47</td>
</tr>
<tr>
<td>Arrangement</td>
<td>50</td>
</tr>
<tr>
<td>Emphasis Map</td>
<td>51</td>
</tr>
<tr>
<td>Simplicity versus Complexity</td>
<td>52</td>
</tr>
<tr>
<td>Margins</td>
<td>54</td>
</tr>
<tr>
<td>Balance</td>
<td>54</td>
</tr>
<tr>
<td>Suggestions for Further Reading</td>
<td>56</td>
</tr>
<tr>
<td>End Notes</td>
<td>57</td>
</tr>
</tbody>
</table>

Chapter 4 Fonts

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choosing the Right Font</td>
<td>59</td>
</tr>
<tr>
<td>Serif versus Sans Serif</td>
<td>60</td>
</tr>
<tr>
<td>Decorative</td>
<td>63</td>
</tr>
<tr>
<td>Script</td>
<td>64</td>
</tr>
<tr>
<td>Letter Height, Width, Line Thickness</td>
<td>65</td>
</tr>
<tr>
<td>Modifying the Font</td>
<td>66</td>
</tr>
<tr>
<td>Point Size</td>
<td>66</td>
</tr>
<tr>
<td>Other Modifications</td>
<td>69</td>
</tr>
</tbody>
</table>
Chapter 5 Color...77

Color Theory ... 79
RGB ... 80
Hexadecimal... 81
HSV .. 82
HSL .. 82
CMYK ... 82
CIELAB ... 83
The Rules.. 83
Figure-Ground.. 84
Five Shades Are Enough Already 85
Choropleth Mapping.. 86
What Color Are You Today? Color Connotations 88
Color Blending (or My Eyes Are Playing Tricks on Me) 90
Contrast.. 91
Color Everywhere Is Tiring... 92
Ensuring Readability for Color Vision Deficiency 94
Inspiration... 96
Black and White and Modern.. 97
Resources ... 98
End Notes ... 99

Chapter 6 Features ..101

Roads ..101
Colors..101
Rivers and Streams..105
Colors..105
Showing Hierarchy..105
Showing Attributes..105
Labels ...106
Bodies of Water..110
Colors..110
Labels ...110
Cities and Towns..114
Colors..114
Points ...114
Special Effects...114
Labels ...115
Polygons...116
Political Boundaries ... 118
 Colors.. 118
Conventions ... 118
Fuzzy Features .. 121
 Colors.. 121
 Technique .. 122
Elevation and Hillshade .. 124
 Hillshade Colors ... 124
 Elevation Colors ... 124
 Hillshade .. 124
 Contours and Hypsometric Tinting 125
 Spot Height Labels .. 126
 3D Elevation .. 126
Parcels .. 128
 Colors.. 128
Currents .. 132
 Colors.. 132
Wind ... 135
 Colors.. 135
Temperature .. 140
 Colors.. 140
Land Use and Land Cover ... 143
 Colors.. 143
Trails .. 149
 Colors.. 149
Utilities .. 152
 Colors.. 152
 Field Mapping .. 153
Impervious Surface ... 156
 Colors.. 156
Basins .. 159
 Colors.. 159
Building Footprints .. 163
 Colors.. 163
Soils .. 166
 Colors.. 166
 Soil Datasets .. 167
How to Show .. 167
 How Many Categories Is Too Many? 167
 From 2D to 3D (and Everything Between) 168
Geology .. 171
 Colors.. 171
Suggestions for Further Reading ... 176
End Notes .. 176
Contents

<table>
<thead>
<tr>
<th>Chapter 7</th>
<th>Media .. 179</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slides .. 179</td>
</tr>
<tr>
<td></td>
<td>Viewing Distance and Obstructions .. 180</td>
</tr>
<tr>
<td></td>
<td>Presentation Style: Fast or Slow, Busy or Simple? 180</td>
</tr>
<tr>
<td></td>
<td>Fast and Simple ... 181</td>
</tr>
<tr>
<td></td>
<td>Slow and Simple ... 181</td>
</tr>
<tr>
<td></td>
<td>Tips for Creating Simple Map Slides ... 182</td>
</tr>
<tr>
<td></td>
<td>Slow and Busy .. 183</td>
</tr>
<tr>
<td></td>
<td>Time and Research Wanted .. 184</td>
</tr>
<tr>
<td></td>
<td>Reports .. 185</td>
</tr>
<tr>
<td></td>
<td>Where to Put the Map ... 185</td>
</tr>
<tr>
<td></td>
<td>Margin Elements for Report Maps .. 186</td>
</tr>
<tr>
<td></td>
<td>Posters .. 188</td>
</tr>
<tr>
<td></td>
<td>Summary Posters ... 188</td>
</tr>
<tr>
<td></td>
<td>Detailed Posters ... 189</td>
</tr>
<tr>
<td></td>
<td>Web ... 189</td>
</tr>
<tr>
<td></td>
<td>Static .. 190</td>
</tr>
<tr>
<td></td>
<td>Dynamic .. 191</td>
</tr>
<tr>
<td></td>
<td>Dual Purposes .. 193</td>
</tr>
<tr>
<td></td>
<td>DPI ... 193</td>
</tr>
<tr>
<td></td>
<td>Export Considerations ... 195</td>
</tr>
<tr>
<td></td>
<td>Suggestions for Further Reading ... 196</td>
</tr>
<tr>
<td></td>
<td>End Notes ... 196</td>
</tr>
</tbody>
</table>

Appendix A: Layout Sketches .. 197

Appendix B: Map Examples ... 207

Appendix C: Color Swatches .. 213
Preface

With ten years in the GIS business, I have learned how to communicate effectively with bosses, clients, other scientists, and the public by using maps as the printed or digital culmination of my analyses. I am close enough to the beginning of my career, when I was blindly going about printing maps with no clear purpose or sense of style (as many other entry-level GIS professionals still do), to remember what it was like to make maps without a guidebook. Since then I have submitted hundreds of slides, report graphics, posters, and letter-sized results maps to bosses, clients, conferences, and colleagues. I wish that a book like this had existed when I began my career. Through that recognized need, I began thinking about writing one myself. This book is the result of ten years of research and practice in map design. It aims to give you a big boost up the map design learning curve that I so painstakingly climbed.
Acknowledgments

There is no way this effort would have been possible without generous support and help from many people along the way. Thank you to Susan Murray, for the excellent graphics in Figures 5.2 and 6.55; Stephen DeGloria and William Philpot, for information on Munsell colors; David Howes, who came up with the name for the book; Matthew Carter, for information on his Georgia and Verdana typefaces, and Christopher Walter, for several creative map design ideas. Thank you also to Jonathan Kirsch, Taisuke Soda, Alice Acheson, and John Lombard for helping to get the book started. Robert Berwick added considerable expertise to the geology section. Jim Humphryes helped me understand the process by which large road signs are made.

Thanks also go to Jay Watson and everyone at the Hood Canal Coordinating Council for kind words and support. Etienne Ouellet pointed me to some great Web resources. Peter Fisher gave me access to one of his articles. Anna and Kyle Welling kindly reviewed the paragraph on Chinese color traditions for accuracy. Karsten Venneman was instrumental in fact-checking the Web section, lending his own insights to the section, and helping to find temperature data when seemingly none could be found. The people of the Lone GIS Professional Group contributed many fabulous book name ideas, almost all of which were better than the original title, barring the few that were too hilarious to consider. Nonie Castro shared with me a thorough document on transferring project data from GIS software to graphic software that he authored.

My husband, Kris Peterson, offered innumerable pats on the back, editing suggestions, research assistance, and critical review. My children, Ellie and Braden, provided me with many opportunities to take breaks during the writing process that allowed me to return to it with a fresh lens. They also learned to draw maps in addition to learning to ask, “How many pages did you write today?” My brother, Josh Anderson, who has always been a great supporter, took the time to edit one of the chapters and vet my attempts at humor. Most of all, an absolutely huge thank-you goes to my mother, Pam Anderson, who enthusiastically edited every single chapter and bestowed her considerable writing skills to the finished product.
Trademark Names

Adobe (p. 185): Adobe is either a registered trademark or trademark of Adobe Systems Incorporated in the United States and/or other countries.

Adobe Illustrator (p. 191): Adobe Illustrator is a registered trademark of Adobe Systems Incorporated.

FreeHand (p. 185): FreeHand is a registered trademark of Adobe Systems Incorporated.

Google Earth (p. 1): Google Earth is a trademark of Google, Inc.

Google Maps (pp. 75, 102, 186, 187): Google Maps is a registered trademark of Google, Inc.

MapQuest.com (pp. 1, 102, 187): MapQuest is a registered trademark of MapQuest, Inc.

McDonald’s (p. 4): McDonald’s is a registered trademark of the McDonald’s Corporation.

Microsoft (pp. 60, 187): Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries.

Microsoft Virtual Earth (p. 1): Microsoft and Virtual Earth are either registered trademarks or trademarks of Microsoft Corporation in the United States or other countries.

Munsell (p. 141): Munsell is a registered trademark of Gretag-Macbeth Holding AG.

Photoshop (p. 191): Photoshop is either a registered trademark or trademark of Adobe Systems Incorporated in the United States and/or other countries.

PowerPoint (pp. 175, 274): PowerPoint is a trademark of Microsoft Corporation.

Staples, That Was Easy (p. 54): Staples and That Was Easy are trademarks of Staples the Office Superstore, LLC.

Yahoo! Maps (p. 1): Yahoo! is a registered trademark of Yahoo, Inc.
1 Introduction

If those of us in the geographic information system (GIS) realm have disregarded design in the past, we are now coming to realize that the elegant display of geographic data is as important as the data itself. Some resistance may be introduced when we talk about making a map look pretty; and rightly so. But elegance in mapping goes well beyond making a map look attractive. In this text, I explain exactly how to convey information to serve up the facts, hold the viewer’s attention, avoid potential confusion, and provide all the necessary metadata. Even with no prior experience in cartography, you can learn how to create maps with these qualities by studying these pages. Let’s begin.

A community is emerging; one that recognizes the potential for combining design’s capacity for clarity and function with the accelerated pace and scope of science. …

This is about science that needs to be communicated and design that has a mission. This is the exceptional and the inspired. Welcome to an emerging aesthetic of the new millennium.

(Seed Magazine)¹

NO DESIGN EXPERIENCE? NO WORRIES

Many of us enter the GIS profession without so much as one hour of design instruction in our formal educations. This book seeks to fill that void by providing a reference that can be thumbed through time and again as you create your maps. Included are plenty of illustrations and novel concepts to kick-start your pursuit of mapping excellence.

I had no cartography training when I got started in the GIS field and felt completely thrown into the deep end with no life preserver to help me out. There were very few books on the subject, and those were either outdated or too deep in theory for someone who wanted real-life examples and lots of pictures. Without a guide, the maps I made were probably mediocre at best. At that time it wasn’t as much of a professional faux pas for me, as a GIS analyst, to be so uninformed about formal mapmaking technique. People were usually impressed with the mere fact that a regular analyst could trot out a map at all, and they had next to no preconceived ideas as to how the map should look (except the ever-present and often misplaced concern about color that everyone seemed to have an opinion on). But even without outside pressure to make my maps look better, I still knew something wasn’t quite right — the maps I made were not doing their best to communicate.

Today, there is a lot more pressure on us. We are expected to be able to create effective maps at the outset of our careers, probably due to everyone’s growing comfort with map-at-your-fingertips technology like Google Earth, Microsoft Virtual Earth, MapQuest, Yahoo! Maps, and so on. The field of GIS has matured to a point where it is not only being used more and more but is also challenged more and more.
An influx of new GISers in recent years has provided our profession with a lot of able minds that are spurring us to new heights in all realms, including cartographic excellence. The bar has been raised.

This book’s purpose is to help you meet and surpass the new standards. In previous years, people with an interest in furthering their cartography skills could try to build them through years of slogging through books that were outdated, not in-depth enough, or that focused on an entirely different software platform from the one they were using. Then, over more years, they could apply these concepts gathered from disparate sources to their work and eventually achieve a certain level of competence. And that’s only for the GISers who tried. Think about those who couldn’t have cared less about their map designs and how they communicated their analytical results. Within this book, though, you will find a great amount of information on not only the tried-and-true traditional techniques, but also on the latest design skills that can really enhance your map products. You will learn that it is up to you to decide whether a particular accepted standard is right for your map or whether you should try a unique approach. You will learn how to cultivate your inner creative genius so that you are able to innovate. And where you need additional detail, inspiration, and instruction, there are some helpful references through which you can further your study.

FULL DISCLOSURE

I do have to explain that I did not come to the GIS field completely without design experience. While I did not have formal cartography training, I spent a year of college in a landscape architecture program before finding my calling in the natural resources sciences. You may detect some of that education coming forth in the book at times. If there was one big thing that my year of landscape architecture schooling taught me about design, it is that everyone is a critic. The positive way to think about this is that your work can always be made better. Constructive criticism from a peer group can take your work to a much higher level than if you design in a vacuum. I also learned that the process of designing, critiquing, and redesigning can be immensely time consuming. But without putting in the time and effort, the work will not resonate, it won’t tell a good story, and it won’t convey the right information.

As I briefly mentioned earlier, GIS analysts are rapidly increasing in numbers as the availability of GIS data explodes, software choices become more numerous, and interactive, free, software-as-a-service platforms allow more people than ever to realize the analytical possibilities in spatial science. GIS analysts have always been a disparate group of professionals with backgrounds ranging from the natural sciences, computer science, and planning to a whole host of other fields, and it is no different now. This means that we haven’t always had the necessary design background to make sure that analyses are properly explained, displayed, and marketed within our organizations, on the Web, at conferences, in front of community groups, in the news media, on field handhelds, and in printed publications. And now, as the GIS analyst population — much of which is lacking in design skills — grows it is
more important than ever to stress that communicating the results of analyses is a design-centered task that cannot be neglected.

WHAT IS A “GISER”?

I use the term “GISer” in this book to mean those professionals who use GIS on a daily basis to produce analyses, data, and maps for the benefit and use of others beyond the GISer himself. Professionals who fit this description have a responsibility to create truthful and informative maps that elevate the profession and to keep making cartographic advances so that data can be transformed into wisdom.

TICK-TOCK GOES THE CLOCK

Most of the guidelines found in this book consist of small touches that, when put together, make your map into a professional product. But you must be aware that though each technique may take up only a small amount of time in itself, the total time spent on all of the “little” touches that make up an entire map will be significant, especially when you are first practicing them. So what do we do about the time that it takes to build a good-looking map? How do we convince ourselves that the time it takes to make a sophisticated map is worth the effort and financial expenditure? How do we convince our bosses and clients? If “cartographer” is not in your job title, then this can be difficult, though you have certainly already decided that, to some extent, the effort it takes is worth it or you wouldn’t be reading this book.

One way to assure yourself that this is time well spent is to consider the alternative scenario. Put simply, a hastily put together map usually winds up being a bad map. And that bad map may have to be redone. This can actually lead to an even bigger time sink than designing the map correctly from the start. How many times have you waited by the plotter only to have to reprint several times to fix the errors? A successful and experienced mapmaker knows that a well-designed map takes time and effort, trial and error, and attention to the latest trends in colors, fonts, and so on. Successful mapmakers know this because they’ve been there, done that. But you can know this too, even at the beginning of your career, by reading through the design literature, such as this book, and paying close heed to the standards, conventions, and myriad other design considerations from the get-go. Even the nerdiest analyst among us can produce a quality map if only the requisite time and effort are put forth.

Not convinced yet? Try a little motivation through recognition. This might mean entering your map into a map design contest. Even if you don’t win, you will likely spend way more time on the entry than on your day-to-day maps. This extra time spent on that one contest entry will increase the quality of all the subsequent maps you make, even if you never pick up another design book. That’s because the skills you learn in making that map will stick with you over time. Another way to get recognition is to keep your map products for your yearly evaluation day. Nothing is more persuasive to a boss of a job well done than a good visual, and what better visuals to make your case than a “before I spent time on map design” map and an “after I spent time on map design” map?
Once you are a believer, you have to get your superiors on board as well. These people will often need more convincing because they have likely never tried to create a map on their own and therefore have no concept of how much effort may need to go into one. And because of that lack of hands-on experience, the person who is paying for your time can be hesitant to grant you more of it. So some strategy to combat this is in order. One approach, tailored for the Reluctant Boss, consists of taking a mapmaking assignment and creating two map products for it: the first is in the same style (or lack of style) as always; the second is completed on your own time by revising the map using the principles in this book coupled with any other reference materials that can help you arrive at a stellar end-product. This second map will, and must, look fabulous (if not, try again). Take both maps to the Reluctant Boss. Explain that the second map was done on your own time and be especially careful to describe how this new map is better than the first (in case this is a particularly design-blind boss). Also point out how many hours it took to come up with that map but emphasize that it conveys the information more accurately, effectively, and is, in the end, a better tool. Then make your case that you would like to create more maps like the second one and need the time to do it. Pointing out the benefits to your boss of a better map is always helpful as well: increased professionalism, credibility, accuracy, client satisfaction, and effective communication.

Furthermore, the argument can be made that once a nice-looking map is made, a lot of the other maps that you make can build upon that initial effort and thereby take less time. You may need only to revise your map style once a year or once every few years to reflect the latest trends. If every map you make contains decidedly different data or extends from the last, then this strategy obviously will be of little use. However, you could potentially make a case for spending the requisite time to make a good map for the higher-profile map outputs that you are tasked with, and, if the boss insists, spending less time on the minor map outputs.

WHY GOOD DESIGN MATTERS

In this book you will see me advocating for good design that is both appealing and communicates its points effectively. I have heard the argument that aesthetic design is not as important as communicative design. Indeed, some say that a design could be entirely devoid of any aesthetic quality and still be considered “good” design as long as it communicates effectively. This makes sense in some situations. I think one could fairly assert that the McDonald’s golden arches signs are good design even though many would not consider them beautiful. The same goes for a whole host of fast-food restaurant signs, which tend to use colors from opposite sides of the color wheel that are totally jarring. Sure, they look gaudy, but they get their messages across: “Eat here! We are fast and vibrant just like the colors on our signs!” However, does this apply to GIS maps? No. If we choose dissonant colors, no viewers will be able to look at the map for longer than ten seconds before their eyes start to blur. If we are lax about balancing the elements on a page then we risk losing credibility as it will look sloppy and unprofessional. If we clutter the map layout with a bunch of extraneous lines and boxes, we risk overwhelming the map with garbage. In short, an aesthetically pleasing
map is also going to be a map that communicates elegantly. Conversely, a map that does not communicate effectively might very well be guilty of ugliness.

AUDIENCE

The reader of this book is assumed to have a basic understanding of geography and GIS principles. For example, in Chapter 3, “Layout Design,” there is a section on projections. It is assumed that you know what projections are and why they are an important component of any GIS work. The section, therefore, deals with only whether a map designer ought to include projection information on a printed map document and, if so, how it ought to be formatted design-wise. Another example is in the soils section of Chapter 6, “Features,” that delves into techniques on displaying soils information in the most appropriate way. The focus in that section is almost entirely on the ways in which soil data can be displayed. Indeed, soils data are very complex and it would be beyond the scope of this design book to describe soils data in detail. In general, the book cannot discuss every aspect of every type of data that exists and every layout possibility. Therefore, it is confined to those aspects of those subjects that pertain to map design.

This book is primarily aimed at early career professionals — they have an understanding of GIS processes and procedures but generally lack a firm foundation in map design. Students of GIS, who might lack both GIS knowledge and cartography skills, will find it particularly helpful to use this book in conjunction with other texts. Alternatively, students can reserve this text for studying after a course or two in GIS has been completed. Mid- to late-career professionals will obviously have plenty of GIS analytical and procedural concepts under their belts as well as some level of sophistication in map design, but there is a lot of material in this text that can be of use for this group, especially when it comes to displaying unfamiliar data or gaining inspiration for new map design techniques.

HOW TO USE THIS BOOK

In Chapter 2, “Creative Inspiration,” you will be challenged to hone your creative skills as a complementary exercise to learning all the ins and outs of map design described in ensuing chapters. Reading Chapter 2 first will enable you to keep in mind that mapmaking is not just about knowing the proper placement of the north arrow or how to combine colors, it is about formulating a cohesive design for your unique circumstances through creative problem-solving. You can keep that in mind while you are reading through the rest of the book as they contain primarily stand alone content. The other chapters can be read in whatever sequence makes sense to you. They all go hand-in-hand. Chapter 3, “Layout Design,” does not go into detail about the design of the map element itself but rather focuses on the overall page design and, especially, what needs to be on it and what doesn’t need to be on it. In that chapter, the map is really just one of many elements that needs to be considered, albeit one that is of primary importance, of course. The term “element” is used to mean any category of object that can go onto a map page, such as the title, map, scale bar, and so on. That chapter is followed by Chapter 4, “Fonts,” and Chapter 5, “Color,” both of
which explore the fundamentals of those two subjects and are important knowledge areas for both layout design and map design. Chapter 6, “Features,” deals with map design in particular relation to common map features such as roads, streams, geology, land use, land cover, and so on. While not every feature type that could possibly be put on a map is represented in that chapter, the feature types were purposefully chosen to contain enough variety so that most mapping techniques are presented. Finally, Chapter 7, “Media,” discusses some of the intricacies in and tactics used for several common output formats: slides, reports, posters, and Web.

In many parts of this book I urge you to try to come up with novel and creative solutions to your design needs, but there is considerably more space devoted to cartographic standards and conventions. The reason is that, without a foundation in standards and conventions, you cannot be completely comfortable with your creative solutions. While ignorance does sometimes lead to novel solutions, you, as the cartographic designer, need to know the fundamentals in order to assess whether a creative solution is satisfactory. Remember that the goal for most standards in map design is to lead to a cohesive set of rules for the symbology of elements so that a viewer can easily and quickly gain insight from a map. Indeed, as Colin Ware states in his book *Visual Thinking for Design*, “… the goal of information design must be to design displays so that visual queries are processed both rapidly and correctly for every important cognitive task the display is intended to support.”

SKIPPING THE HOW-TOS TO GET STRAIGHT TO THE GOOD STUFF

You might flip through the pages of this text and wonder where the how-tos are. You know, the “click on this,” “use this menu,” type of instruction with screen shots and everything. That would be all well and good if it weren’t for two things. First, focusing on how to make the software do what you want it to gets away from our ultimate goal of achieving a great map product. In other words, don’t let technology get in the way of the design. Second, how-to guides are necessarily focused on a single software product or group of products. With many sophisticated GIS products available today in both the proprietary and open-source realms — and with many of us using not just one but a combination of these — it wouldn’t be prudent to focus on a single platform. By keeping it general, the widest possible audience can be reached. After all, the focus here is on map design, which will always contain classic elements but will also always be changing with the current fashions and technological capabilities. That said, in a few brief instances particular software products are mentioned for special cases such as graphic design software and open-source tools (noted as a generic group).

COMPANION WEB SITE

The companion Web site for this book can be found at http://www.gretchenpeterson.com. Among the things you will find there are: more learning materials, a free downloadable poster covering key content from this book, and links to helpful Web sites.
END NOTES

2 Creative Inspiration

We are going to have to face it: mapmaking is in many respects a creative process. Even if you know all of the standard practices that exist for maps, you will still have to deal with your unique data and mapping goals. And the only way to deal with those is to employ your creative skills. A lack of those skills could be extremely detrimental to your achievement of cartographic excellence. This brings us to a concept of duality in map design: you need knowledge of mapping standards and creative intelligence. Without the standards know-how, you risk everything from leaving out a bit of information that could have been useful all the way to making grievous communications errors. Without the creative skills, you could make maps that look nondescript, that don’t adequately illustrate your unique data and their ramifications, that don’t increase your professional capital, and that fail to leave a lasting impression. That is why this book, which consists largely of explanations of standards, is only part of the equation. That doesn’t mean that we will neglect the creative aspect of mapmaking, however. This chapter is all about helping you to improve your design skills through creative exercise, and other chapters include reminders to do things your unique way or suggestions for unusual mapping techniques. With those tools you should be able to increase your creative skills on your own and thereby improve your map products considerably.

You might wonder if, through this discussion on creativity, I am advocating the use of elaborate and gratuitously ornate graphics on a layout. Indeed not! (Unless you are making a map of where all the elaborate and gratuitously ornate maps reside in the world.) Creativity can mean omitting a graphic element that does not add value even though it is found on most maps (logos are a good example of this). It can mean venturing to do things in a new way when the old way just doesn’t seem to work anymore. Creativity means being open to new possibilities and being willing to implement them, even in the face of resistance from the traditionalists. And through this openness you will create maps that more closely honor their unique data and message than any robot-like mapmaker out there could.

This book, with all the great tools, books, and other reference materials that are listed here, gives you a great foundation in classic mapmaking fundamentals and new cartographic paradigms such as Web mapping, export file considerations, using graphic design software, and so on. But where, you might wonder, are you supposed to acquire skills in creativity without going back to school to get a degree in art? You might even wonder if it is possible, after say the age of eighteen, to become creative if you haven’t particularly seen yourself that way in the past. Let’s address those two questions, starting with some words about how it is most certainly possible to cultivate your creativity no matter how old you are or how entrenched you have been in the analytical side of life.
YOU CAN BE CREATIVE

I’ve always enjoyed math, solving problems, and of course, being a GIS analyst. Many would think this means that I am an analytical thinker. This would be true. But just because I know I am more naturally inclined toward left-brain thinking doesn’t mean I have neglected my right brain. From taking drawing classes in college to painting water colors in my spare time to visiting art museums, I conscientiously try to improve my creative skills. And you know what? They do improve from these activities. I see things as less black and white and more as a continuum. I see that there are many ways to present information to a viewer or reader and many of them can effectively communicate and be beautiful at the same time. I try to translate my creative experiences into all aspects of the work I do, from designing my Web site to making maps to writing reports and giving presentations. By coupling the creative brain with the analytical brain it is much easier to create truly superior products that leave positive lasting impressions than by using one’s analytical brain alone.

Every great advance in science has issued from a new audacity of the imagination.

— John Dewey, philosopher

If you are skeptical about being able to become more creative through deliberate art-centric activity, perhaps it would help to point out that a lot of research has been going on in this area over the past thirty or so years and the overarching conclusion has been that creativity can be learned. A seminal book on the subject called Drawing on the Right Side of the Brain, published first in 1979 by Betty Edwards, argued that you can learn to use the right side of your brain through conscientious attention to it. Her method to teach drawing, specifically, is through exercises in observation and fundamental drawing techniques. The main take-home message for us is that it is indeed possible to become a good artist and designer even if you haven’t started out that way, simply by looking, learning, and practicing. The concept of learning through experience was highlighted in a survey of creativity professionals that concluded that learning through experience is the most important criterion for obtaining creative achievement. Creative talent, in other words, is not just an innate ability that you either have or don’t have.

How do we translate this knowledge — that we can become creative if we try — into practical methods for success? There are two simple, concrete methods to practice, loosely labeled “doing” and “seeing.” To explain these, think about a typical art class. Students in a typical art class are taught by being required to create their own art (doing) and by viewing examples of art (seeing).

DOING

The typical GIS professional is already a step ahead in these methods of seeing and doing because we already practice the doing part as a natural component of our professional work. What I mean is that we are already making maps, sometimes on a daily basis, and therefore do not lack opportunities to try out techniques that we see and ideas that we form as a result of seeing. Therefore, it is not absolutely
necessary to make an effort to practice creativity. Now don’t think that lets you off the hook completely. Trying to stretch ourselves by creating other types of artistic end-products other than maps can still be a highly educational endeavor. Some types of activities that would help are taking an art class, keeping a sketch book to record what we see (try this instead of carrying a camera everywhere), or drawing a cartoon for a child’s entertainment, and so on. However, as I said, these aren’t absolute necessities for people in our profession if you just can’t bring yourself to undertake alternative creative pursuits.

SEEING

Seeing can be defined as the process of actively and deliberately observing and absorbing the imaginative creations of others. GIS professionals are often lacking in this realm. Ask yourself how many times you’ve sat down and studied a book full of maps in order to gain inspiration for projects, for example. What are some ways to practice seeing? The easiest and probably most important way is to view art (not just maps) on a regular basis. You can accomplish this either in large chunks of time each year or on daily forays, but however you do it, rest assured that it will make a significant impact on the professionalism, communicative ability, and memorableness of your map designs. Visit local museums and gardens, view architecture, read any of the multitudes of art and design books, and peruse magazines in any of these genres. You can most certainly include the study of maps from classic and contemporary cartographers in this list of seeing activities as well but it need not be limited to those.

While it might be best to take yourself away from your element (the computer) to practice seeing, you can start by browsing exhibitions of outstanding art galleries such as the Smithsonian American Art Museum, the Louvre, and the National Gallery of Art; or visiting the David Rumsey Historical Map Collection, all on the Web. Though many design-centric texts exist out there, my personal favorites are books by Edward Tufte, which illustrate how one can both follow some of the accepted design techniques and question others. And finally, as Garr Reynolds of the Presentation Zen blog so aptly puts it, “getting away from the computer, getting off the grid and finding time alone … is crucial to keeping the creative spirit alive.”

AN EXAMPLE OF HOW TO SEE

I was at the Seattle Art Museum with my daughter and mother, not to seek design inspiration, but just to have a fun outing with the family. But I still came away with some ideas for maps and layouts even though I hadn’t even intended to. One of the ideas came from my daughter, who was six years old at the time. At that age, kids have a knack for noticing things that our adult minds have become so accustomed to that we fail to notice them at all. I was showing her some portraits since she had been interested in how people recorded their likenesses before cameras were invented. My mother asked her why she thought the lady in one of the portraits was frowning, and my daughter replied that the lady was frowning because her portrait was in a less fancy frame than the one on the man's portrait next to it! Now, most of us wouldn’t
have even noticed the picture frames at all, or only in a cursory fashion. I took note of this and thought about how I could apply it in some creative way to the next map I was going to make. By the time we left the museum I had made a mental note that if I ever needed to make a map of historical data, I ought to try and use a fancy gilded frame as the layout border.

If I hadn't been writing this essay on creativity when I went to the museum I may have just chuckled at my daughter's insightful reply but not applied it to my work. That is why you should keep these creativity concepts in the back of your head when you are viewing art, so you are ready to file away any pertinent and applicable ideas to use back in the office. If you start practicing being open and aware of new ideas, you might feel flooded with hundreds of disparate ideas, all of which seem like good things, but that you have trouble organizing and putting to good use in your maps. At this stage you need to think about carrying a small notebook around with you so you can jot these things down. An alternative to the notebook is to use your cell phone camera to snap pictures of anything that strikes you, but only if you think the visual will be enough to remind you how you could apply it to your work.

A Sure-Fire Way to Glean Novel Ideas for Your Maps — Invite a Novice: Try this little trick the next time you are seeking a novel approach to solving a map design problem: invite a non-GISer, perhaps a teenager, or basically just someone who doesn’t have much experience with maps, to help you out. His lack of preconceived ideas about mapping will allow him to see your problem with fresh eyes and, without any background mapping skills, all of the novice’s ideas will be creative. There’s nothing like a little ignorance to bring about some useful new inventions. Your job is to weed out the unusable ideas and see if you can get one or two good ones.

APPLYING ALL OF THIS TO YOUR MAP

When you are open to new ideas, you can create a finely tailored map design that uses space wisely, emphasizes the uniqueness of your map data and subject material, and solves novel design conundrums. For example, a colleague of mine who practices the creative process quite often by both making maps on a nearly constant basis as part of his work and who keeps up with the art world through cultural excursions recently came up with two great solutions to map issues he was having. For one, he wanted a slightly unique way to separate the many pieces of a margin grouping box. His solution was to provide titles for each section of the margin but to both deemphasize the titles and use them as graphic elements by running them vertically along the separators between the margin sections. So, for example, between the legend and data sources sections he simply wrote “Data Sources” vertically in the space between them. Another example is his use of what I call the “split screen” approach, where he was faced with large amounts of data on either side of a national park that he wanted to display on his map. The national park itself, however, was not a central part of the map’s purpose and did not contain any data that he needed to display. His
solution was to cut out the national park and allude to this by presenting the map as two separate parts next to each other, separated only by a small amount of white space in between. An inset map showed the entire extent of the data to make this clear to the viewer.6

Getting started with a new mapmaking effort can be very daunting. Staring at that blank page, knowing you have umpteen elements that will have to be arranged on it in a meaningful and good-looking way, and not having a clue how you will do it is scary. People are telling you they want photographs on there, you know you need call-out boxes, and how are you going to pick a color scheme out of all the options available? Well, relax, because there’s one easy way to get started when this happens.

Use a variation of a map that has already been made. To begin, start looking up other maps that you like. Keep a book of maps by your desk for such purposes, go online, or sift through other maps that your department has done in the past. There are two ways to riff off these other works. The first is to find a layout that you really like and try to follow its general design on your own map, including placement of the title, map element, and so forth. The second is to compile a list of things that you like from each map that you want to apply to your own map, such as color schemes, emphasis map placement, title fonts, and so forth. The list can be consulted when you put together your own design so that you wind up with an amalgam of other map designs on your own. Whichever method you use you need to make sure that the final product isn’t an exact replica of the original. However, this isn’t hard to do because even if you begin with the idea of using an exact copy, you soon realize that all the unique qualities of your own data, audience, and communication needs will necessarily alter the finished product to such an extent that it no longer resembles the original. (Conversely, an inspiration map could actually lead you to not copy something that you find particularly distasteful.) Sometimes we are stifled by our own desire to start from scratch and thereby create a truly original work, thinking that this is the way that everyone does it. However, that isn’t true, because almost all works of art are related to the art that has come before them.

Another great way to get started is discussed in Chapter 3, “Layout Design,” under the section titled \textbf{Emphasis Map}. An emphasis map, simply put, is just a simple sketch on paper that you make to help organize the layout’s “big picture.” By arranging elements on paper you are allowing yourself to make mistakes, to change things around when they don’t look good, and make many iterations until you find something that appeals to you and the specific mapping needs. Start by looking at \textbf{Appendix A: Layout Sketches} because it contains several of these types of sketches that will give you some organization ideas. Indeed, you can combine the two techniques: using an inspiration map and an emphasis map by finding an inspiration map, sketching out the elements of the inspiration map, and then creating an emphasis map that is an amalgam of the inspiration map and your own map’s special characteristics.

\textbf{SUMMARY AND FINAL PRODDING}

While our daily activities almost always involve a lot of computer time doing data analysis, creating data, developing applications, and producing maps, we need to
occasionally extract ourselves from this environment in order to refresh our creative skills. Feeding our inner creative genius so that it flourishes allows us to make a lasting impression with our maps. In so doing, we make a difference to our map audience and put our career trajectories on a higher plane.

A FEW PLACES TO START SEEING ART FROM YOUR DESKTOP

These are just a few of the multitude of online options for viewing art. Links to other exciting online art exhibitions are listed on the Web site devoted to this book.

- Smithsonian American Art Museum: http://americanart.si.edu/collections/index.cfm
- Louvre: http://americanart.si.edu/collections/index.cfm
- National Gallery of Art: http://americanart.si.edu/collections/index.cfm

END NOTES

1. Purists would remind me that the term “right brain” is an overused and under-meaningful expression. According to Andrew Razeghi in *The Riddle* (p. 134), right-brain thinking is a myth: “Although the right hemisphere may generate more possibilities, it does not select one over another and therefore needs the left hemisphere. You use your entire brain in the creative process.” (San Francisco, CA: Jossey-Bass, 2008.) The reason I continue to use the terms “right brain” and “left brain” is merely that they are easily understood terms that distinguish between analytical thinking and creative thinking.

2. The book has been updated and is now called *The New Drawing on the Right Side of the Brain*, by Betty Edwards (New York: Putnam Publishing Group, 1999).

6. Thank you to Christopher Walter, GIS Manager at the Cascade Land Conservancy, Washington State, for sharing the word-as-graphical separator trick.
3 Layout Design

ALL TOGETHER NOW

So let’s say that you have just finished making the best map ever using the techniques in Chapter 6, “Features,” and now you are ready to stick on some extras like a scale bar and north arrow, quickly send it off to the printer, then sit back and let your map audience admire your work.

WAIT! STOP!

After all that hard work making your map why would you want to risk printing it without, say, a title or legend? And what if there are other things you ought to include there but didn’t? Do you expect your audience to automatically know what this map is all about? Of course the map itself is the most important part of your printed product and it is always a good idea to spend a lot of time on that aspect of your effort. But neglecting the margin elements (all non-map elements) and their arrangement within and around the main map (or maps) can make your hard work appear confusing, unreadable, or just plain ugly. The layout deserves attention so that it can act as a showcase for the main map and also provide all the elements necessary to give the audience the appropriate context with which to understand it.

So what will you need to do to create a professional-looking layout? Following these points will help you get there:

- Look through a list of all the possible things that could go on the layout — you can find one in this chapter in the Layout Checklist section.
- Decide which of those things will go on the layout and get input from others.
- Research and gain inspiration from other maps and artwork and then choose a style.
- Decide which of the layout items will be emphasized and which will be understated by creating an emphasis map.
- Decide on an initial configuration for those items.
- Build the layout.
- Obtain feedback and repeat this process as needed.

Accordingly, the layout checklist and the Element Details and Examples in the next section guide you through the process for the first two steps. The last five bullets above consist of arranging the chosen elements into a stylistically cohesive layout by utilizing the arrangement principles found in the sections following Element Details and Examples.
In order to give an overview of how a seasoned professional would create a layout, let’s continue with the example of the all-too-hasty GISer who made a great map only to ultimately undermine that effort by not considering the layout. Once it is printed, perhaps it looks so terrible that the GISer decides to get out this book and follow the methods found here. So, to begin, she adds a title to the map after considering that her audience will need a quick introduction to the map that can be read in five seconds or less. She chooses a title that succinctly explains the subject of the map without using jargon. She then realizes that the scale bar and north arrow are fine but that some text to document the data sources, author, and date ought to be included. Finally, after looking through the layout checklist, she is reminded of the need for an inset map that shows the study area’s location in a broader context for those who aren’t already familiar with it.

Now that she has taken a first look at which items to include, she asks a colleague for some input. The colleague thinks a portion of the map is too densely detailed for the map viewer to understand and recommends an inset map that shows a zoom-in to that area. With that, the GISer begins the second phase of the layout method, the arrangement. She creates an emphasis map with a preliminary arrangement of the major items, decides that the map should be the first thing the audience sees, with the title coming in at second, inset maps third, and the rest of the items last. After taking some time to arrange the elements in the GIS software, the GISer finally decides that the map is ready for printing. With some additional changes suggested by her colleagues, she revises it once again and then reprints the final product.

This GISer managed to transform her layout from a novice-looking product to a professionally designed product by following the steps and details described in this chapter. Please note that she did not need to use all of the ideas presented in the following sections, and neither do you. Some of these ideas you may use so much that they become second nature, and others you will use only when a particular layout needs them. You’ll also note that the time that it took for her to complete her initial layout was a small fraction of the time that she spent creating her second layout. In fact, the creation of a professional layout can be extremely time-consuming, even for the most accomplished layout artists. Do not consider it unusual if your unique 8.5-inch by 11-inch masterpiece takes 40 hours to design, build, and print. A poster-sized layout could take anywhere from 40 to 200 hours depending on your level of fastidiousness, familiarity with your chosen software, number of people who provide input, and perceived audience size. (Notice I say “perceived audience size,” instead of just “audience size.” The audience may indeed become much larger than originally anticipated, especially if the map is designed well. Some of the layout element descriptions, such as date and network path, will provide more detail on how you can set up the layout to provide adequate value to an unintended audience.)

As you read through the following sections, keep in mind that the main focus is on large-format layouts ranging in size from 8.5-inch by 11-inch to full posters. This is because layouts smaller than 8.5 inches by 11 inches tend to contain minimal to nonexistent margin elements as they are primarily used on Web sites, in slide shows, and in reports.
LAYOUT CHECKLIST

- Primary Elements
 - Title
 - Subtitle
 - Legend
 - Maps
 - North arrow
 - Date
 - Authorship
 - Scale bars
 - Page border
- Secondary Elements
 - Neat lines
 - Graticules
 - Network path
 - Disclaimer
 - Data sources
 - Data citations
 - Logos
 - Graphs
 - Photographs
 - Graphics
 - Map number, if series
 - Tables
 - Copyright
 - Projection
 - Inset maps
 - Descriptive text

ELEMENT DETAILS AND EXAMPLES

Each line of the layout checklist contains what is referred to in this book as a “layout element” or simply “element.” These elements include all the common ways of presenting information on a map and its surrounding layout. Any element that is not on the map itself is referred to in this book as a “margin element,” in reference to the fact that the element is located on the periphery of the layout and not directly over the map. The map itself is also an element of the layout. Since the first step in designing a layout is to decide which elements will make the cut and appear on the final map, I suggest going over this checklist to ensure that no element is overlooked. Any element that can lend additional informative support for the map ought to at least be considered during this step.

The questions you should ask yourself about each element can include (but are not limited to) the following:
Q. Would the element provide information that is crucial for correctly understanding this map?

The answer to this question is not necessarily a no-brainer. Many times, we won’t even realize that a certain graph would help explain the map better, or that a subtitle is needed, or that a photograph of each location will draw interest. First, of course, you will make the first cut. Carefully consider each element, try to put yourself in the audience’s place, and also try to consider any “unintended” audiences such as future employees, non-departmental colleagues, and so on. Asking for outside input is the next task. This is an important step that often makes the difference between a substandard map product and a well-made one. A colleague or boss can look it over and even your family can offer good advice. Soliciting a critique can be as easy as asking, “If I were to make a map of X, what elements on this list do you think would enhance your understanding of the subject?” To go a step beyond this and garner even more detailed advice, create a draft map before asking for input. Do not be afraid of critical feedback. Without it you cannot improve nearly as quickly. Your map is made for other people to look at, so why not involve the audience in the planning process? Present them with the layout checklist and have them check any element that it is not currently present but desirable.

Q. Would the element provide visual relief or create a cluttered feeling?

If you have checked every element on the checklist, then there are probably too many. An 8.5-inch by 11-inch layout will start to look cluttered by the time a fifth or sixth element is placed upon it. A poster-sized layout could possibly support the inclusion of all the layout elements if enough time is spent on their arrangement. (Time is generally what separates a good map from a poor map, not experience.) Elements like logos and text are often present on maps, but this does not mean you have to use them yourself. If they generate clutter and have no functional value, then you can safely and assuredly get rid of them.

Q. Is it necessary?

You may think everyone knows where north is because your entire work group is more than familiar with the area in question. If your map’s audience is your work group, then you are more than justified in omitting the north arrow. However, if there is an inkling of possibility that someone from “the outside” will view the map, perhaps it wouldn’t hurt to allow an unobtrusive, simple, north arrow as standard practice. I caution, though, that you have to decide when standard practice verges on the ridiculous. For example, a disclaimer on every map that your department creates is a nice idea most of the time. But when you are passing out directions to the ice cream store where you are holding a staff meeting and are required to include a disclaimer that takes up half the map, it could get silly.
Once the decisions about which elements to use and why have been made, the next step is to decide where they will go with consideration toward functional and visual appeal. Many of the non-map layout elements can be placed either on the map itself or in the margins, depending on your design schema, map characteristics, and other considerations. While those are by far the most important aspects to layout design (the what and the where), you can go further in your pursuit of layout excellence by carefully considering the design of each of those elements. You’ll need to think of each in terms of color, font, word choice, and overall style. The details for each element that follow will therefore not only help further your decision as to what to put on the layout but also help inform their placement and their style.

Title

Though a title is short, give it lengthy thought.

The title’s purpose is to succinctly pronounce the intent of the map. In many cases it also identifies the geographic location of the map as well as the authoring agency, although this is not usually in good form (see below).

Best Practices

Take a look at Figure 3.1 and decide which title you think is better.

It is not usually necessary and often unintentionally arrogant to include the authoring agency or company in first position of the title. A better approach is to include the information in the subtitle if it is deemed sufficiently important or, more advisable, to include it in the authorship element (see the Authorship section). You should think twice about putting the name of the geographic location for your map in the title. The geographic location ought to be immediately readable from the primary map element and, if needed, in its overview map element. This renders the geographic location-in-title practice redundant and, well, boring. The exception is when the map does not display an analysis of any sort, thus making the geographic location one of the main focuses of the map such as in a road map titled “Larimer County Roads.”

The title is either the primary or secondary layout element (if secondary, it is only second to the map element). It is written in large enough type to grab attention and be readable from a generous distance. It is short enough to read quickly, it is interesting, pertinent, and accurate. It ought to summarize in ten words or less the primary finding of the analysis, if there is one. Avoid any obvious and redundant terms such as “map of … ” or “analysis of … ” Also avoid using jargon such as “framework,” or “model,” as these result in useless mind-clutter for the reader. All words in a

![Schmoe County Land Consortium's Analysis of Purple Toad Habitat in Northwest Hooktown](image)

FIGURE 3.1 The first title is long and laborious and is suitable for dry analytical presentations. The second title gets straight to the point and is suitable for all audiences.
title should be spelled out, so avoid acronyms at all cost. Attention-grabbing tactics such as questions (“How Much Purple Toad Habitat Do We Have?”), sensational assertions (“Purple Toads Living Large!”), and actions (“Improving Purple Toad Habitat”) can serve the map well at conferences, in office hallways, cubicles, and many other locations.

Placement
A title is located at the top or bottom of a layout and is either center or flush left, though occasionally you will see it flush right. If placed inside an architect’s margin element box (see the Margins section), it is generally shown at the top of the box, centered, or in the case of a vertical right-hand box, flush left. The diagrams in Figure 3.2 show some title placement options. The title is depicted in these diagrams as a gray bar.

Style
Using all capitals is acceptable in a title; however, consider a small-cap style for a slightly more readable look, especially if using a bold font in conjunction with the uppercase style. A drop-cap for the first letter may also be used. Some argue that all capitals is never okay because people cannot easily decipher the letter codes as they read when the letters are all the same height. As the argument goes, lowercase letters are read easily because of the different heights of various letters, resulting in specific shapes for each word. These shapes allow a reader to scan a word rather than look at it letter by letter. This makes words that are in all capitals, and therefore all the same shape, harder to read, resulting in more time taken to read the same words. However, a title on a layout usually needs a lot of emphasis in order to attain its proper placement as number one or two in the hierarchy of layout elements. Often, the all-capital
style is the only way to achieve the amount of emphasis needed. Additionally, a title containing ten words or less ought to be short enough not to cause any undue reading strain on your audience, regardless of the uppercase style.

You can use other techniques instead of or in addition to the all-caps and small-caps styles to provide title emphasis. These are drop shadows to lend additional visual weight; special leading characters such as a pipes (|), leading dots (…), or colons (:); drop-caps and extra-large first letters; and underlining. In terms of color choice, dark grays are being used much more now and are a great alternative to black, which tends to be more obtrusive and harsh. Therefore, a bold dark gray can make a modern statement as long as the title retains its proper level of emphasis. If it still doesn’t seem bold enough, then switch to black. Also, avoid using bold red, as it tends to contribute to a dizzying Willy Wonka effect. Some style options are shown in Figure 3.3.

FIGURE 3.3 There are many different ways to bring a title to life. Shown here are several options ranging from simple to complex. The last title uses expanded character spacing which requires a serif font for better readability (see Chapter 4, “Fonts”). The other titles are in a sans serif Arial font.

SUBTITLE

The subtitle is comprised of any spillover text that is slightly less important than the title but still somewhat necessary to fully understand the map. This is a better place to put the geographic location of the map and the sponsoring or authoring information than in the title. But again, if possible, leave that type of information for metadata text blocks in less conspicuous locations of the layout rather than the subtitle. Ideally, the subtitle provides further detail that the viewer needs to know prior to being able to understand the map element(s).

If your title does not state a key finding or impressive fact, then this information could also be placed in a subtitle. For example, the title, “Channel Conditions Database Developed for In-Stream Data” could have a subtitle such as, “Data from multiple sources and protocols integrated seamlessly into a single comprehensive spatial database.” In this case the what is described in the title and the why is described in the subtitle. Another example would be a title/subtitle pair such as, “Species Distribution Change over Time” subtitled with, “Five Species Tracked — Four Show Significant Change.” You notice that unnecessary words are discarded for the sake of conciseness and that the subtitle here is relating the key finding of the study. A non-analysis-type map might use a subtitle to relate an important qualifier.
for the map such as this title/subtitle pair: “Animal Shelter and Rescue Organizations” subtitled with, “Non-Homecare Facilities Only.”

Best Practices

The subtitle is displayed in the same font as the title but carries slightly less emphasis than the title. This is accomplished by not using a bold font on the subtitle, employing a smaller font size than the main title, and perhaps italicizing or indenting the text to further deemphasize and separate it from the main title.

Placement

The subtitle is placed directly below or to the right of the title.

Legend

The legend is a standard element on most layouts. It provides the color and symbol key look-up details for the map element. It is comprised of an item (icon, point, line, polygon) and its label (description of the item). If the layout is being created for a narrow audience such as your work group and the map includes commonly understood feature types with standard symbology such as county boundaries, water bodies, elevation, and so on, then these may be granted an exception from inclusion in a legend. Wider audience maps may also exclude certain given feature types drawn with standard symbology such as blue water bodies or green land expanses; however, these are left to the discretion of the map author. Only exclude map layers from a legend — or the legend itself from the layout — purposefully. Don’t just forget some. Err on the side of the more legend items the better, since a map is not worth much if its features cannot be understood. What is obvious to the map author can easily be unknown to the map viewer.

In some situations the entire legend could conceivably be omitted. For example, map layouts on slides aren’t always necessary due to the fact that the presenter will be talking about the slides and can point out the necessary features. Legends are also often unreadable on slides presented to a large audience. Be cautioned, though, that many slides are reproduced online or in other media, and these will need legends, especially when they are not accompanied by the presenter’s notes. Another situation in which you could omit a legend is when you are creating report maps that comprise a series of similar features. In this case, one legend at the beginning of the series can apply to all the maps and thus allow more space for the map elements on the subsequent pages. Simple, small report maps may also have so few features that they only need to be explained in the text of the report or in the map captions.

Best Practices

Items are placed to the left of their corresponding label. Complicated legends with many items necessitate the usage of grouping levels. The two forms of grouping levels most commonly seen are the categorical group (e.g., all land use colors placed separately from all stream-level colors) and the shape-type group (e.g., all polygon features placed separately from all line features). Use headings to describe each group in categorically separated legends, if your organization schema is not immediately
obvious. When categorical separations are not needed, shape-type groupings are often displayed in the following order: points, lines, polygons. Other times they are displayed in the order of relevance to the overall map purpose.

Default legends produced in the GIS are a great way to begin production of the legend but ought to be further manipulated prior to map publication. First of all, make sure there isn’t too much space between the items and their labels. Also, if the legend is describing a gradient of values (choropleth color scheme), then those items will look more professional if they are touching each other rather than separated by white space. Don’t forget that color gradients can be depicted vertically (see Figure 3.4) or horizontally (see Figure 3.5).

A label can still be associated with each item although in many cases we can do without the intermediates and label only the maximum and minimum values. An often overlooked feature of the default legend is the default legend font. The font needs to be changed to match the other fonts on the map so that a cohesive style is maintained.

As with gradient-type items, the groups of items do not need to be arranged vertically if it would fit better on the page to distribute them horizontally. The legend in Figure 3.6 illustrates a horizontally oriented legend.

A legend title such as “legend,” “symbols,” “key,” or “map key” can be associated with the legend. If a title is used, ensure that it does not obscure the main points, which are the items and labels. For that matter, it may be better to eliminate the legend title altogether as it is usually obvious what the items and their labels are. A floating legend (explained later) within the map element may be one situation when the title is more necessary in order to provide clear separation between the two elements, especially if there are other floating text boxes on the map.

FIGURE 3.6 A horizontally oriented legend is shown here.
Placement
Legends need to be within or nearby the map element with which they are associated. Legends can be placed outside of the map element, in the margin, in either of the following two cases: if there is only one map element on the layout or if all map elements on the layout share a common legend. If there are multiple map elements with different features on each, it is not always clear which legend goes with which map unless the legend is superimposed on its map element. When placed inside the map element it ought not to obscure the underlying data and is often therefore placed in areas that are not important to the map’s purpose such as on the ocean for a terrestrially focused map or on the land for a marine-centered map. In such instances a background box is often needed to provide uniform background color on which to set the text.

Style
When the legend is placed outside of the map element it can be encased with a shaded box or outlined box. However, it may look better if the outline and shading are done away with so that the legend can be incorporated with the other margin elements. This creates fewer seams on the layout. If a separation is still desired, a compromise is to use a shortened line above and below the legend (see Figure 3.7).

Under certain circumstances you might use the same background color for your legend background that you use in the map element to ensure that the colors will look the same in the legend as they do on the map. For example, let’s say you have a map with some buoy locations shown in yellow on top of blue water. For the map’s legend, though, you’ve chosen a light-yellow, almost tan, background color. If you try to superimpose the buoy color onto this light-yellow legend background, you’ll see that the buoy color doesn’t look nearly as vibrant as it does on the blue water background. It may even look like a different color entirely (see Figure 3.8). If you find this sort of thing happening on one of your maps, the best thing to do is to change the background color of the legend to something that more closely matches the main background color of the map. This particular effect is called a “chromatic contrast.” The same thing can happen with grayscale colors — called “achromatic contrast” or “lightness contrast.”

As far as the legend labels go, try changing the style of the text around a bit to add some interest and variety. For example, if you are using a graduated symbol to

![MAP KEY](image)

FIGURE 3.7 Rather than creating a full box around the map key, a short line above and below the legend items could suffice, keeping things neat but uncluttered.

© 2009 by Taylor & Francis Group, LLC
represent numerical ranges, you could go with a common format such as “0–10%” or you could try a slight change such as “0 to 10%.”

MAPS

The map element is a large graphic that shows off data in coordinate space. There are two questions that you need to answer as soon as you start thinking about a layout. The first is how many maps do you need on one layout? And related to that is the second question: should you overlap multiple layers onto one large map element or separate the layers onto multiple smaller map elements?

Multiple maps are generally used when displaying the same data over separate time periods (in such cases a common scale and legend are important) or when displaying differing geographic extents that all have related data. Additionally, multiple maps may be required when ancillary data that contribute to the overall map purpose need to be displayed but are not central to the main purpose. Multiple maps on one layout can be highly informative as they offer on-the-fly analysis by the viewer of the map, thus making the map interactive and more likely to endure in the viewer’s memory. Whether your layout will contain one map or many, the map element(s) will be your primary means of conveying information to the viewer and therefore will likely be the layout element that takes, by far, most of your time to create and polish. Indeed, Chapter 6 is devoted solely to the techniques used in developing and refining

FIGURE 3.8 This is an example of chromatic contrast. The two inside boxes are actually the same yellow color, but it looks different depending on the background. This becomes important when you trying to match legend colors to map colors.
the map element. It can be designed in conjunction with the rest of the layout or it can be designed prior to the layout design process.

Best Practices
Because Chapter 6, “Features,” describes in detail the best practices and other design considerations needed to create a map element, this section focuses solely on general design considerations for map frames and geographic extent. Essentially, the map or maps can be framed with a border (either simple or fancy) or it can be left to “float” in the layout space without a border. A studied look at many of the most impressive, elegant, and recently designed maps will reveal that for the most part their designers have included no map frame. In contrast, many of the GIS maps made prior to the last few years were made with these frames. It is also an observation that early GIS careerists will retain the default frame in their map layouts, perhaps due to a lack of interest in the subject considering how difficult it can be simply to get the map on the page in the first place or a perceived need to separate the map from the other layout elements. Usually, however, there is such a stark contrast between the map and the surrounding layout that there is no need to provide the visual separation that a border provides. For example, a map that is completely covered in various colors put onto a layout with a white background already has a built-in visual separator in the white space between the map and the other elements.

Often when we are faced with presenting the results of an analysis we wonder if the analysis extent should be the same as the visible map extent or if we ought to include the surrounding geography in order to provide context, even though it may detract from the central focus. For example, let’s say you’ve analyzed which households will be impacted by a proposed tax increase within a town’s boundaries. Do you display just the town, given its irregular border, or do you show the houses that lay outside the town boundaries as well, out to such an extent that the map becomes a square or rectangle shape? A few techniques are used to solve this problem. You can decide to either clip out all the outlying areas, leaving the map to “float” within the rectangular or square area that the page requires or you can decide to include the other areas. Another technique is to include the analysis extent plus the outer boundaries but generalize the data in the outer extent. Another is to provide the context while still maintaining the focus on the analysis extent by changing the outer extent to a faded or semitransparent look. This last technique gives the analysis extent a popped-out effect.

Placement
In most cases the map element or elements will consume the majority of the layout space. When there is a hierarchy of maps on the same layout there should be no doubt as to which is the main map. It is either set apart in size or position or, most effectively, both. When just one map is desired it is placed in a central but slightly off-center location on the layout. (If you have multiple time series maps, they are usually all of the same size and shape, and when put together they function similarly to a single large map in terms of layout placement.) Does this mean that you have to conform to this convention? Not necessarily, but make sure you have good reason not to. For example, there are layouts that contain a centered map with, say, logos
or pictures surrounding it on all sides such as a city tourist map that is distributed for free but contains advertisements around the map on all sides. Because the advertising is very important on that type of layout it can be acceptable, but on most analytical and informational layouts, surrounding the map with an equal amount of margin information on all sides results in an undesirable amount of clutter and lends itself to confusion as to what the main focus of the layout is.

North Arrow

The north arrow, whether it is fancy or unadorned, has the sole purpose of illustrating the orientation of the map to the viewer. Yes, it is true that most GIS maps are already oriented with north at the top of the layout. However, there are certainly instances where this is not the case and therefore it is standard practice to include the north arrow. Its inclusion is almost always warranted. Nautical charts and other orienteering maps should show both true north and magnetic north. In fact, these types of maps usually illustrate the directions on a compass rose, rather than a north arrow, which shows at least four, and sometimes more, cardinal directions.

Best Practices

Keep the north arrow small, simple, and unobtrusive for most modern layouts. Historical visualizations or other unique situations may warrant a fancier, bolder look.

Placement

North arrows are best left in a less conspicuous area of the layout. Sometimes you might use one to conveniently balance out some other element. Grouping the north arrow with other ancillary map information such as the scale bar and legend is another common practice. In a very small layout meant for a slide or in an in-line report graphic, the north arrow can be placed directly on the map element, in a corner, perhaps with a white box behind it if it is unreadable against the background (or alternatively change the color as in white on black or black on white). This is also a technique used sometimes in 8.5-inch by 11-inch layouts and more rarely on larger layouts. The larger layouts tend to show the north arrow outside of the map element and grouped with the scale bar and other supporting information.

Style

For some reason we GISers (and, indeed, cartographers as a whole) have not developed one standard north arrow that everyone uses. Instead, there exist hundreds of the things out there to choose from, in all manner of styles. And even with that, GISers still sometimes get the idea that each company or department ought to develop its own. It is almost like a logo in these cases. And to this I say, well, why not? It is fairly easy to design one yourself and it will help further our cause to put a unique stamp on our map.

As mentioned earlier, the trend in mapping design has been going toward simplistic north arrows for some time. The context and style of your overall layout will help determine whether you should stick with this trend or branch out to a fancier style.
(perhaps you are displaying historical data, an archeological dig, or some other type of map that may lend itself to a less modern-era north arrow).

DATE

The date referred to here is the date on which the layout was printed. (Dates of your data sources are addressed in the Data Citations section). It is important to include the date on most layouts that are intended to be stand-alone prints. Layouts destined for reports do not necessarily need a date because the report ought to already contain date information, although it is still recommended to include one should there be any chance that the map will be copied separately from the report. Layouts destined for slide shows also do not need a date for the same reason, although one could be included if the slide show will be posted in a digital realm or if your map slide will be separated from the title slide (or wherever the date is).

Stand-alone layouts, such as 8.5-inch by 11-inch sheets and larger, should include date information as a form of embedded version control (e.g., “Oh, I see now, that was the old map I printed out last week. Here’s the one from this week.”). The date also gives the audience an idea of the map’s vintage for maps that endure. Whether the layout designer considers the map an enduring one is usually inconsequential. Maps often contain items of value that are referred to long after the mapmaker originally thought possible. For example, the map you created only for this week’s board meeting might take on a life of its own by getting passed around (digitally or on paper) after the meeting, and before you know it you have created a lasting legacy map that people have photocopied and put in their files. Let’s hope you thought to put a date on it so that those who will pull it out of their files and “dust” it off will instantly understand whether it is of a useful vintage or not. In summary, inclusion of the date on a map or layout is often a preemptory practice used to mitigate unforeseen events.

Best Practices

The date can be preceded by text such as “printed on:” to dispel any confusion over whether the date refers to the data or the day of printing.

Placement

The date is considered metadata and therefore should be placed with the other margin elements in an inconspicuous location.

Authorship

“Authorship” refers to the person and agency who designed the map, created the analysis, and put together the layout. It can include more than one author if these tasks were completed by several people, but it always includes at least one name, not just the agency. Authorship information is not to be confused with logos, which don’t necessarily state who created the map. For example, does that logo near the title signify that that was the company that contributed the underlying data, performed the analysis, designed the layout, or sponsored the work? Who knows? Authorship
is a plain-text way of getting that information across to the viewer of the map. The agency that commissioned the map or is in some other way involved in the map’s reason for being can be signified more prominently than the authorship information, as long as the author’s name is included somewhere on the layout. Indeed, many times the sponsoring agency’s name winds up in the title of the layout, although I do not consider this a best practice (see the Title section).

Best Practices
According to Edward Tufte, in his book Beautiful Evidence, the author’s name is important to include for many reasons such as signifying that someone is taking responsibility for what is contained in the printed work, providing the contact name for follow-up questions, and signaling reputation (or lack of). Furthermore, he states, “Authorship credit is too often absent from corporate and government reports; we should remember that people do things, not agencies, bureaus, departments, divisions. People may do better work when they receive public acknowledgment and take public responsibility for their work. The good [Charles Joseph] Minard put his name on nearly all his work and personally signed with pen and ink ... some of [his] ... figurative maps.”

Placement
Conference posters can include the authorship information directly after the title and subtitle or in the descriptive text portion of the poster, or in a corner by itself. If placed under the title(s), we will often see the author(s) names followed by numbers in superscript that are referenced elsewhere on the poster for the author’s affiliation and contact information. On smaller maps and even some poster-sized (non-conference) maps, my preference is to put the authorship information in a corner, in dark gray, italicized text. In this way it is clearly metadata: it is there if the viewer needs it but does not intrude on the layout.

Style
The authorship information ought to include as much information as possible including organization, address, phone numbers, E-mail addresses, and Web addresses. This information can be organized with comma or pipe separators (|) to ensure a neater look than hard returns between each item. Incidentally, a practice that is sometimes used in architectural renderings is to have certain supervisors sign off on the completed design. This could be a useful addition to a GIS map being used in a work-group situation. For example, if the map needs to be examined by several supervisors you might type out their names next to several blank lines to serve as signature lines.

Scale Bars
A scale bar is a graphic that shows the map viewer how to translate between map units and real-world units. While historic maps often had verbal scales such as, “200 feet to the inch,” or “1 inch = 200 feet,” the modern convention is to use a graphic scale
due to the fact that when a map is scanned, shrunk, and put on a slide, or some other similar enlargement or reduction process, the scale will remain accurate.

Best Practices

Modern scale bars are simple and unadorned. In many cases the viewer needs to see only two divisions (one at the beginning and one at the end) and a number indicating the distance between those divisions in real-world units. This is due to the fact that the typical GIS map is not used to measure distances. The scale bar, therefore, serves only to illustrate the general scale of the geographic extent. Subdivisions aren’t needed. The point is, if you are creating a simple map, stick with a simple scale bar. For example, let’s say you are making a 3-inch by 3-inch graphic for a newspaper story that shows general school district boundaries, you do not need to create a huge scale bar showing four major and four minor divisions. A single line with labeled end-points will suffice. Even with simple scale bars, however, there is utility in providing multi-unit scales together on the same map so that the viewer need not perform mental unit conversions should a different unit be desired. Of course, maps that are used for the primary purpose of pinpointing an exact location or distance such as hiking maps or road maps do require a more detailed scale bar that shows subdivisions and their associated measurements.

Style

Scale bars are almost always black, or in some instances, dark gray, in color. The font used should conform to the other fonts used on the layout. Several layout styles are possible depending on the space allowed within your layout. The more compact form of the scale bar is used more often on modern maps, whereas the more linear form is a relic from previous decades (see Figure 3.9).

Either format is acceptable, though one should tend toward the compact form since it is more balanced and modern. As mentioned earlier, multiple-unit scale bars are sometimes required or beneficial. In this case, we can simply show two separate scale bars with the different units but place them close enough to one another maintain an orderly looking layout (see Figure 3.10).

![Figure 3.9](image1.png)

FIGURE 3.9 Two formats for scale bars are shown here. The compact form is more modern, the linear form is classic.

![Figure 3.10](image2.png)

FIGURE 3.10 When two scales are required, place them close together like this.
You might also want to note the map scale as a representative fraction (e.g., 1:24,000) in the same visual space as the scale bar as in Figure 3.11.

An uncommon way of depicting scale, but still worthy of your note should your data be especially suited for it, is to show the scale in area form. Many population density maps, for example, are shown in square mile or square kilometer units and would be ideal for this kind of scale graphic. Additionally, a map with buffers around points at certain distances could also use a scale graphic. See Figure 3.12 for examples. If these types of scales are used, they ought to be shown in conjunction with a conventional scale bar as well.

Page Border

A page border is used to group all the layout elements together by means of a single graphic line surrounding all of the elements. When the layout consists of a single map element with all other elements floating on top of the map, the page border is sometimes, but not always, redundant with the map border. When the layout contains elements outside of the map element(s), a page border is usually used to contain those items.

Placement

The page border is placed around all the layout elements, including a narrow white-space buffer that acts as a frame. The frame does not have to be white; it can be any color that unifies the layout. The frame ought to be the same width or proportional to the other separating spaces on the layout.

Style

Double lines, single lines, varying thicknesses, shadow boxes, rounded corners, and so on are all used and acceptable. The simplest and best is the single-line page border so as not to detract from the surrounding elements. Just make sure that poster-sized maps at C size or larger are at least 3-point thickness, up to 5-point thickness for E-size sheets.

Neat Lines

A neat line is simply a graphic line placed on the layout. These lines can be used singly, in tandem, or in groups and can consist of simple lines or boxes. A large

![Figure 3.11](image.png)
FIGURE 3.11 A scale bar coupled with a representative fraction.

![Figure 3.12](image.png)
FIGURE 3.12 Other scale types can also be depicted on the layout including square area and buffer distance.
neat line around the entire layout is referred to as a “page border” and is discussed, fittingly, in the Page Border section preceding this one. The purpose of a neat line is to explicitly separate elements to provide an organized look. Sometimes the same visual relief and separation can be achieved without neat lines by simply utilizing the empty space between elements for this purpose. However, through experimentation with your elements as you place them on the page, you may feel that they need more separation than the empty space provides. For example, a poster-sized layout with three major sections in the architectural margin element box (which is itself a form of a neat line) may benefit from the use of a short vertical bar between each section. The reason a short vertical bar would be used instead of, say, a box around each section is to reduce visual clutter but still provide the required separation (see Figure 3.13).

Placement
One neat line placement illustration is in the Legend section of this chapter (see Figure 3.7), which shows a neat line placed above and below a legend in order to separate it from other elements on the layout. Experimenting with different places to put neat lines on your own layout as well as getting ideas from existing layouts will instantly increase the quality of your finished product. In fact, even though neat lines are on the lowest end of the information spectrum for map elements, they are on the high end of the scale of the design spectrum for layouts. It is these little touches that can make a map look like a professional with years of experience created it. Although be warned that it can also take years (slight exaggeration) to place, re-place, and tweak these so that they look just right.

Style
Neat lines are almost always black or dark gray. The thickness of each line needs to be commensurate with the importance of the information it is enclosing or separating as well as the total layout size. Neat lines are drawn as boxes or simple lines. If using lines, and they are intended to meet up with other lines, ensure that they join together neatly by using a snapping feature and by zooming in to the largest extent to double-check the results. Sometimes what looks like a snapped line winds up printing out as an offshoot like the top example in Figure 3.14 instead of properly snapped like the bottom example in Figure 3.14. Conversely, ensure that any neat line that is not purposefully intended to meet up with another line is far enough away from all other lines so that it does not look as if it was supposed to be connected.
Another symptom of neat lines not ending up quite so “neat” as intended is when they show up as jagged lines on the printed page. The cause of the zigzag is due to the software’s habit of starting and ending a line at exactly the start and end-points that were clicked when the user created the line so that if those points are not on the same axis a jagged line is created. Use guidelines and rulers when possible along with snapping functionality to avoid this often undetected issue.

Christopher Walter, the GIS manager at the Cascade Land Conservancy, came up with a unique twist on the typical neat line. Instead of using a line to separate blocks of text in his map’s margin box, he used words. The words were written in a horizontal fashion, reading from bottom to top. For example, between the page border and the legend he wrote “Map Legend” and between the legend and the data sources he wrote “Data Sources.” In this way he titled the separate parts of the margin and separated them all at the same time.

Graticules

Graticules are latitude and longitude lines that run along the surface of the map element and enable the viewer to visualize how the flat map surface relates to the real-world 3D surface in the map’s projection. Although this is an arguable convention, graticules are almost never present on GIS map elements that are not for navigational purposes. Even so, you may consider including them on your non-navigational maps as an additional location- and scale-related metadata element.

Best Practices

Layouts showcasing analytical-results maps do not need to include graticules and, indeed, if they are included, they may provide too much clutter for the map audience to decipher the analytical results easily.

Style

Navigational maps will require easy-to-read, prominent labels at the top and bottom of the graticule lines. If you want to include graticules on a non-navigational map,
you will likely want to make them unobtrusive on the map surface by using gray or dashed lines, fewer divisions, and small labels (that are visible if the viewer looks but do not intrude on the other important aspects of the map). An additional technique to minimize their interference is to run the graticules behind certain portions of the map, usually the land portions of a worldwide map (see Figure 3.15).

NETWORK PATH

The network path (e.g., `\ProjectResults\AnalysisB\ConferencePoster`) can be included on the layout as part of the metadata textbox or as its own entity tucked away somewhere even less conspicuous. Its purpose is to alert the viewer to the location of the layout and data files should the map need to be updated or the data used for a future project. This is one of those items that is hardly ever seen on a layout although it should be included on most internal layouts and ought to at least be considered for external layouts. When an author leaves a project, a successor may pick up the old documents and use these network paths to find the digital files. In fact, the original author may also need this memory boost to find the files at some later date. As far as layouts destined for the external audience are concerned, though you may consider this type of data irrelevant for the viewer you have in mind, do not forget that these types of presentation maps are often kept around and cited much longer than originally anticipated. In the case of an enduring presentation map, the network path can be of vital importance for anyone picking up that project in the future.
Best Practices
Depending on the complexity and number of projects in your GIS work group, you may want to consider making the inclusion of network paths a standard practice for your work group.

Style
A technique sometimes used for nonessential but informative data such as the network path (and sometimes authorship, date, and so on) is to put the information in a corner of a map either just above or just below the page border. Thus, it would look something like Figure 3.16.

DISCLAIMER
The GIS map disclaimer is used by most public agencies and many private companies to protect themselves from lawsuits arising from the map being used for unintended purposes and to inform the reader as to the potential limitations of the map product. For example, disclaimers often contain text such as: “The agency provides this data as is, it is the user’s responsibility to determine proper uses for the data; the agency is not responsible for any adverse outcomes associated with such use; and the features are not at a survey scale and are not complete.” If you are tasked with creating a disclaimer, then it is wise to look at the myriad examples that exist on the Web under the search term “map disclaimer” as well as to get input from your legal counsel. Those who work in agencies where the disclaimer is already written need only figure out how to best place it on the map and style it appropriately.

Best Practices
Whether to use the word “Disclaimer,” or some other title, at the beginning of the disclaimer text block should be considered. Does it really need to be there? Could a term like, “Note” or nothing at all work instead? On the flip side you may want to add a term like “Standard Disclaimer” or “Disclaimer of Liability” in order to alert the viewer that this is not a special block of text that is only used on this one layout. In any case, you may be constrained by what your legal department requires.

Style
The common practice of printing the disclaimer in small but legible text on the layout with the other metadata elements is pretty much the only way to go. Unfortunately, the disclaimer can be quite long, resulting in a huge text box relative to the other elements, and it is left to the layout designer to figure out how to print such a large block of text in an unobtrusive fashion. Using a gray font color or less than single spacing
between lines may help. Also, pushing it to the edge of a layout as opposed to placing it between two other margin elements may help minimize it.

Data Sources

Originating agencies for the data used in the map or maps are reported in the data sources section of the layout. It provides the agency and company names for each dataset used in the map or maps, the name or a short description of the data, and the date of the data. This is a classic metadata element.

Best Practices

The data sources element is very common and indeed is extremely useful for both the intended audience as well as for the future reference of the layout originator or project successor. Care needs to be taken that no abbreviations are used. For example, the layout designer may place something like this on the layout: “Data are from USGS EROS and NAIP 2006,” which is scarcely better than not putting anything on there at all. While those may be common acronyms in the designer’s office, the external map audience will certainly not understand them, the designer may forget what was meant a year from the printing, and the designer’s successor on the project may not be acquainted with them. Furthermore, it is a common assumption that people who work in your close work group understand what the acronyms mean as well, and it would probably surprise most of us to learn that those we work closely with still have not deciphered these things. A better way of stating the above example is shown in Figure 3.17.

Style

The style guidelines for the data sources element are similar to all the other metadata text elements: keep it unobtrusive and minimal. However, the data sources may have an edge over the disclaimer and network path metadata elements as far as level of importance is concerned. Items to consider including about each dataset are

- Data dates
- Agency names
- Web site
- A short description of how the data were used
- Potential limitations

High altitude aerial photo courtesy of the U.S. Geological Survey’s Earth Resources Observation and Science data center

Elevation courtesy of the National Agriculture Imagery Program; 2006 imagery

FIGURE 3.17 An example of correct data source text: all acronyms except “U.S.” are spelled out and no other abbreviations are used. This ensures that your map viewer (or even you several months down the line) can understand it.
DATA CITATIONS

Data that are contained on the map may require citations by the source agencies and authors of the data. Many times this is stated in a “Creative Commons” licensing agreement that goes something like, “You may use the data for any purpose as long as the source of the data is cited as follows:” Therefore, your publication of the map, whether for in-house use or external use, needs to contain the citation in the manner specified. Sometimes, the exact string of text to be used is specified in the licensing agreement. Because this string of text may not be in a format that matches the surrounding text or appealing to the layout designer, the designer may have reason to be somewhat redundant in this case by citing the data source in the data sources element as well as citing it in a data citations element. An alternative is to ask the source author if your alternate wording is acceptable and to get the permission in writing. Because the data citation is the originating author’s way of receiving due credit for work that is being made freely available, it is important from an ethical as well as a legal standpoint to include it.

Best Practices

If data with a citation clause is one of the major elements of your map or analysis, then you might consider making the data citation less of a fine-print metadata element and instead move it up in the element hierarchy of your layout. In other words, you will want to duly acknowledge the source of any data, without which you would not have been able to complete your work.

LOGOS

The ability to throw the kitchen sink at one’s output tempts many of us to clutter our maps. At the same time, we need not be constrained from employing capabilities not available to traditional cartographers.

— Walker Willingham, GIS Analyst, Earth Walker GIS

A logo is a graphical way of signifying a company name or brand and is used to enable rapid identification of what it is representing. Logos proclaiming authoring or sponsoring agencies are often displayed prominently on presentation maps. I am honestly not sure why logos are so ubiquitous on GIS layouts. Whatever the reason they are used, you can be sure that the logos will clash with the colors and style of the map product and that they will either float unconvincingly in the margins or worse, in some prominent place on the map. Occasionally we can get away with it if we balance the logo out with some other feature or tuck one black-and-white rectangular-shaped logo at the bottom or corner of the layout. The much preferred alternative to using a logo is to simply credit the authoring agency or agencies in a textbox within the other margin elements. Often, though, the mapmaker does not have a choice and is directed by the higher-ups to have the logo placed on the product. In such a case, a gentle nudge toward the less intrusive method mentioned above, for the sake of design cohesiveness, is advised. Of course, people used to draw dragons on their maps, so …
Best Practices
If you are forced to include a company or agency logo on a layout where the brand is not of primary emphasis, then see if a black-and-white version of the logo can be used, as this may interfere less with the overall color scheme of the layout as well as keep the eye from being drawn toward it. Also, sometimes a version of a logo that is a rectangle, square, or circle, rather than irregular, is available. If so, use that. As I alluded to earlier, a logo can sometimes be used to balance out another element of the layout. For example, a circular logo can be placed opposite a circular north arrow for balance or a square logo can be placed directly under a square descriptive textbox.

Placement
The best place to put a logo, if it must be on the layout, is in the least obtrusive part of the layout, wherever that may be. Often this means the lower right-hand corner. Putting logos on either side of the title, or just at the beginning of a title, adds to a cluttered feeling and leaves the eyes dancing around wondering where the most important piece of information is (hint: it should be the title or the map not the logo.) Okay, so as with any rule of thumb, there are some exceptions. One is if the map is being made for commercial use and the logo represents a brand as opposed to a company or agency. There may be a case for making this type of logo the primary element of the layout with the map element retaining only secondary emphasis. A skateboarding company, for example, that prints free maps for customers of great places to skate in town, might make its brand logo the most prominent part of the map since its purpose is primarily for marketing. However, for the analysts among us, we ought to keep the focus on the title and the map and forget the logo (see Figure 3.18).

Graphs
A graph shows the values of your data in diagram or chart form. Graphs can be any of several types such as scatterplot, bar graph, pie chart, histogram, or bar chart. Many times an analysis map or even an informational map can benefit from the use of graphs to help highlight trends in the data. For example, a layout with a gradient map showing dark colors for areas with high crime and light colors for areas with low crime might also contain a scatterplot with matching color schema showing crime rates on the x-axis and proximity to police stations on the y-axis.

Graphs can also provide ancillary data that, although not shown on the map, help to further the viewer’s understanding of the material. For example, a layout with a map of population density by region might also contain several bar graphs illustrating the age distribution in each region.

Best Practices
Graphs ought to match the data shown in the map in terms of color and hue, if they display the same data. As far as the type of graph goes, choose the type that depicts the trend or trends as simply as possible, and if you need to, insert a text box, arrow, or other highlighting mechanism that explicitly shows the viewer why that graph is important. Another method to achieve this is to provide a caption or headline for the
Pie charts, in particular, are often too showy due to distracting color choices and wind up hiding the ultimate trend rather than highlighting it. Indeed, this type of graph is often misleading if the pie slices number more than four because it becomes too difficult to determine what the individual values are without the aid of labels. A series of pie charts can be particularly egregious as they often don’t contain the same categories or have them in different parts of each pie, making them difficult to compare.

Placement

Many possibilities exist for graph placement on a layout. A graph can float on top of the map element or it can be placed outside of the map element along with the margin elements. Much of this will be determined by how much white space (empty space) is
contained on your layout, where the white space is, and how intimately tied the graph is to the map. If the graph has the same color scheme as the map element, you may consider placing it next to the legend or close to the map so the viewer can glance from the graph to the map or legend easily and thereby make comparisons on the fly. When the graph relates specifically to a single feature on the map, then it ought to have a leader line connecting it to that feature or some other appropriate means of letting the viewer know to which feature it is related. If you have a set of small, simple graphs that show additional details about discreet areas on the map (such as polygons), they can be positioned on top of the polygons, perhaps with connecting lines if needed.

Photographs

Digital photographs are used to enable the map viewer to “see” portions of the map in its real-world likeness. In some cases the photographs are tied to a very specific location via coordinates and placed near where the corresponding location is on the map element.

Potential photograph types for GIS layouts include the following:

- Pictures of the data collection process for presentation layouts such as a picture of a crew on a boat.
- Pictures that exemplify the data such as pictures of representative habitat types for each habitat depicted on the map.
- Pictures that enhance the map’s usefulness such as pictures of store fronts featured in a map of all the downtown coffee shops so the map viewer can easily find them when on the street.
- Pictures of conditions such as drainpipe pictures for each drainpipe in a quarter-mile area.

Best Practices

The photograph should not be the focus of your layout. The best defense for including photographs on your layout at all is if they greatly enhance the viewer’s understanding of the subject matter. For example, if you are mapping the distribution of squirrels across the United States, you may find adequate reason to include a photograph (or sketch, for that matter) of a representative squirrel for each of the ranges in order to help the viewer understand the difference in squirrel size across the mapped area. The photograph should be professionally composed and contain only relevant information in the foreground, if possible. The viewer should be able to look at the photo and immediately recognize the subject of the picture, rather than, say, wondering if the squirrel or the trees or the sky is the focus.

Placement

The photograph can be nestled anywhere it seems appropriate. An inappropriate location would be anywhere that it distracts from the title or map element. For example, if two photographs flank a title (i.e., photograph, TITLE, photograph) it causes confusion as to which element the audience ought to read first — the title or the photos?
Style

If the photo is tied to a particular location on the map, then this needs to be identified in some way either by leader line(s) or with a matching label on the map and photo. Always include a caption with the photograph unless it is tied to the map with a leader line. For example, an overview picture could be captioned, “A view of Boulder County, Colorado, from the air.” In most cases, strive to write the caption in a professionally worded, complete sentence format and remember to describe the photograph’s relevance to the map subject. Do not, for example, caption a photograph of a boat crew with something that sounds like it comes from your high school yearbook such as, “Sammy and the crew hitting the waves.”

Graphics

Graphics can include sketches, drawings, cartoons, illustrations, clip art, and other similar illustrative items. Whether displayed on a layout to provide information or whether they serve a purely decorative function, they are usually used sparingly or not at all on modern GIS layouts. Historic maps are distinguished by their sketches of dragons, gods, sea serpents, scrolls, dueling captains, and other superfluous graphics. In some special instances these could be employed on modern cartographic outputs as well, especially if the map’s purpose is more for entertainment than for research or reference.

Research or reference maps of particular genres may also provide supplementary graphics in certain circumstances. For example, maps of archeological sites, burial grounds, and landscape designs are some modern map varieties for which these kinds of graphics could enhance, rather than detract from, the overall map goal. In fact, if you can recognize that your subject matter is sufficiently unique, you can use graphics to create a commensurately unique-looking map product. Putting that level of thinking into a map product rather than simply making a map that looks exactly like all the other GIS layouts you’ve seen puts you into the professional range of cartographic skills that you want to have. If, however, your work genre is of the standard GIS analysis or informative nature then the professional will generally steer very clear from any ornamentation, as our modern mode dictates.

Best Practices

Do not use ornamental graphics unless your subject matter warrants it or you want to confront the modern fashion of information-only outputs.

Placement

Graphics can basically be placed anywhere and everywhere on the map layout from a light background image to hundreds of sketches placed around the edges to one illustration in the margin.

Style

Graphics can have any style and level of importance the designer deems appropriate. There is much leeway here and a lot of opportunities to make your map unique.
Map Number

A map number refers to the page number of a map that is contained within a series. Map numbers are usually accompanied by a number signifying the total number of maps in the series. If your layout is part of a series, then it will be imperative that you include this information.

Placement

The map number element can be seen as similar in importance to the scale, author, and data source elements. It is usually placed in the margin along with those elements but could also conceivably be placed higher up in the element hierarchy if you wish to put it in large type in the upper-right or lower-left corner of the page. Adhering to the convention of placing it in one of those locations allows a researcher to flip through the series until the correct map number is located. Series-type maps usually also include a locator map. The map number and locator map are well suited for placement next to one another.

Style

Some examples of the way the map numbers are written include:

- 1 of 10 or 1 of 10
- First in a series of ten
- Map number 1 of 10
- Series #1:10
- Map 1 of 10

Tables

A table is a series of data arranged in rows and columns, often with column headings. Because a GIS is composed of both the visualization of the features in their geographic space and the attributes of those features, the map output of the GIS can lose value when it shows only the visualization of the features and perhaps one attribute (such as the road lines and the road names) but not the other applicable attributes (such as road length, width, or condition). When the other attributes are lengthy or numerous, a layout designer may wish to include a table corresponding to the mapped features as part of the layout. This enables the viewer to connect the features with their attributes without needing complicated and sometimes impossibly numerous colors, symbols, and labels on top of the features themselves.

In some cases, we are faced with trying to decide between summarizing the attributes so that they can all fit onto the map or including the full data table on the layout. If we are showing the distribution of cancer patients and cancer patient treatment costs across all counties in a state, you may be tempted to group the percentiles into four or five categories and color the counties with a corresponding gradient color scheme. However, the map could provide much more information if it is accompanied by a table showing the actual percentages for both attributes by county in descending order. There seems to be a misperception about the amount of detail
that people can understand on a poster-sized presentation. For example, I have seen the advice, “Don’t insert long tables of numerical data or text” on conference poster guidelines. I think this advice comes from underestimating the human brain’s ability to discern patterns in large amounts of data. If we format the table properly we can, indeed, present long tables, and we should if they further the message that we are trying to get across. This also increases your map’s credibility.

Best Practices

If you have a table showing many attributes for the same features, you could alternatively choose to create a series of maps with each one showing the features and one particular attribute. This is a judgment call based on the space available, the size of the features, and the complexity of the attributes.

Style

There are many table styles. The important guidelines are to ensure that the column and row headings are legible, that the data line up, and that the column and row lines do not detract from the data. Because the map is still likely to be of more importance, the table ought to include as few ornamental lines and borders as possible to ensure that it has less visual weight than the map. In fact, delineating every cell in a table with a border usually adds unnecessary clutter, and you may also consider doing away with any lines at all and instead using white space as the main separator, with perhaps one or two simple neat lines separating the table from the elements above and below it.

To further enhance the table, you can add visual weight to certain elements. Anomalies in the data that may be too hard to detect on the map can be highlighted in the table with a circle or bold text. These enhancements need to highlight only the pertinent data cell, not the whole table row. The conservative use of color — to differentiate assets (black) from debt (red), for example — can also add to a viewer’s understanding of the data. Another trick is to change the locations of numbers based on some characteristic of the numbers. For example, a table of acres of impervious surface per watershed could show the impervious acreages at a distance from the watershed name in proportion to the watershed’s size. This would be a great accompaniment to a map of watershed-level impervious surface normalized by watershed area because it would be presenting the viewer with the unnormalized numbers in the table but generalized percentages in the map (see Figure 3.19).

<table>
<thead>
<tr>
<th>Location</th>
<th>Fish Creek</th>
<th>Barberville</th>
<th>Gran ton</th>
<th>Lakeland</th>
<th>Upwater</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>150</td>
<td>[150]</td>
<td>180</td>
<td>50</td>
</tr>
</tbody>
</table>

Figure 3.19 Tables can be formatted to clearly portray patterns in the data. In this example, the distance between the ratios and the place names increases proportionally to the denominators. When the data are presented like this it is easier to see that Barberville’s numerator does not follow the pattern. The circle highlights this anomaly.
COPYRIGHT

A map copyright states the author of the map layout and is sometimes accompanied by the date of copyright declaration. However, in the United States, all maps are automatically protected (except some government documents) and therefore explicitly stating the copyright is not an absolute necessity. A newer method of licensing a creative work like a map layout that acts in addition to a copyright, whereby some rights are explicitly given to the licensee, is called Creative Commons licensing.

Placement

The copyright information is usually left as an inconspicuous metadata-type element and is given the least emphasis possible while still remaining legible.

Style

Usually, the text of the copyright includes the word “copyright” and the author’s name or the copyright symbol (©) and author’s name. The phrase “All Rights Reserved” and the copyright date(s) are optionally included as well. If using a Creative Commons license, the abbreviation (CC) plus the appropriate icon or text would need to be stated as advised by that license and your attorney.

Copyright Traps: A “copyright trap” or a “hook” is an error placed purposefully on a map so that if the same misinformation were to turn up on a rival’s map, the original map owner would supposedly have definitive proof that the rival’s map was directly copied from the original owner and simply resold for the rival’s profit. Without this kind of misinformation, the rival could claim that it was simply coincidence that both maps display the same data. For example, the San Francisco Municipal Railway Map reportedly contained at least two fake streets (“Geek Street,” and “Moe Street”) for this purpose. However, whether these traps actually serve their purpose is unclear. With the traps used as evidence, a few allegations of copyright infringement have surfaced in the United States and other country’s courts in recent years. In one such U.S. case a U.S. federal court found, “To treat ‘false’ facts interspersed among actual facts and represented as actual facts as fiction would mean that no one could ever reproduce or copy actual facts without risk of reproducing a false fact and thereby violating a copyright.” This statement reflects the concept that factual information cannot be copyrighted. Still, these traps may at least alert the author of a copyrighted map that their work was copied.

PROJECTION

The projection of the main map element is sometimes reported in the layout margin as part of the metadata for the layout. One purpose for providing projection information is as a means of alerting the viewer to the potential benefits and limitations of the
map product. For example, the Lambert Conformal Conic projection would inform a knowledgeable viewer that the map is great for discerning the real-world shape of mapped features but that using it for measuring the area of those features may yield erroneous results. However, if the viewer is not knowledgeable about projections, the same information could be described on the map in a more direct way by simply stating the limitations of the map (e.g., “Not for use as an area measuring tool”).

Best Practices

If your map audience is comprised of geographers or cartographers and possibly GISers, the projection information will be appreciated, depending on the subject of the map. However, even if the audience is comprised of only GIS professionals, you may still want to consider laying out clearly what the projection consequences are as not all GIS professionals are up to speed on projection nuances. By including both forms of text, the projection and its limitations, you can ensure that everyone is adequately informed.

Placement

The map projection information is placed in the margin along with the other metadata elements that are similar such as the disclaimer, data sources, data citations, and copyright.

Inset Map

An inset map is a small map relative to the primary map, generally with a ratio of about one eighth to one sixteenth the size of the primary map element. The inset map has two potential functions. One is to show an area of the primary map in more detail by zooming in to a portion of the primary map and the other is to give an overview of the primary map’s location by zooming out from the primary map. This latter type of inset is variously referred to as an “inset,” “overview,” or “locator map.” An example of the zoomed-in type would be large-scale maps of particularly densely populated portions of a county in order to allow all of the mapped features to be viewed adequately. An example of the zoomed-out type would be a watershed map that shows a stream in relation to the mainstem and other tributaries, shown in conjunction with a main map showing just the stream and detailed stream survey attributes.

Best Practices

The same features and feature styles in the primary map element need to be duplicated in the inset map element. The orientation, or north position, should also be the same as in the primary map. Additionally, it is usually necessary to highlight the position of the inset’s features on the primary map using a box, shaded area, or other such technique if it is of the zoomed-in variety. Lines coming out from the primary map’s box and connecting with the inset map, sometimes called “rays,” visually connect the inset with the corresponding inset box on the main map (see Figure 3.20).
FIGURE 3.20 Inset maps that enlarge an area of the main map are tied to the main map in various ways. In this example the inset map is connected to its corresponding portion of the main map via a bounding box and rays.

Style
The inset map element should include its own scale bar, especially if it is a detail map. The overview style insets do not necessarily require a scale bar if enough spatial context is provided for the audience to orient themselves.

DESCRIPTIVE TEXT
Descriptive text refers to any text that furthers the map’s purpose that does not fit into any of the above categories. Often, the specific nature of your map will require unique descriptive elements. A confident and skilled GIS professional will recognize when and where a unique text element will enhance the viewer’s understanding of the map and include it even though it is not referred to in any textbook on cartography or, indeed, on any other maps the professional has seen. For example, a handout map of ski trails might list Web sites to go to for current slope conditions.

Style
On a large poster-sized layout please remember to ensure the readability of all large blocks of text. This means that the font size must be large enough to read (14 point or 16 point at least) at a distance of 1 or 2 feet (see Chapter 4, “Fonts,” for more text size guidelines). You should also double-space the lines to make it even easier to read, look less dense, and be therefore less off-putting. Headings for large blocks of text should avoid the use of common terms like “introduction” or “study area” and instead use a description that is pertinent to the material such as “Tide Levels” or “The Great Lakes.” This ensures that you do not waste one ounce of space on a
word that is not specific to your subject. Consider a drop-cap for the first letter of the text block to draw the eye to that spot or perhaps a special leading graphic like a simple icon.

STYLE

Once you have scrutinized the layout checklist and read through the *Element Details and Examples* section in this chapter, you will have a good idea as to what you will be putting on the layout. What should the overall style of the layout be, though? While the *Element Details and Examples* section did describe some style guidelines for each element, this section focuses on the general style of the overall layout.

To begin with, this section advises seeking inspiration from other maps or artwork to get an idea of what overall composition and style you like and would fit the subject matter of the map. Note that I say “seeking inspiration,” not “copying.” Your data will lend your map a certain level of uniqueness but, as you start to add elements to the layout page, you will find yourself moving them around in order to better fit your own style and the unique considerations that your subject matter requires. While inspiration may be sought initially, the final map product ought to avoid being similar to the original inspirational work. In its final form, the layout will be in harmony with the data it is comprised of, its audience’s expectations, and the most current cartographic styling.

Some things to take note of when perusing other people’s maps and art work are

- Overall feel: simple, complicated, scientific, humorous, medical, historical
- Colors: light or dark, patterns, color distribution around the page, background versus foreground hue, chart colors
- Element configurations
- Element separators such as neat lines, boxes, other graphics
- Font choices and styles
- Metadata text, style, and location on the layout

Choosing favorite parts of various types of maps and creating an amalgam of them in your layout is another way to go. Yet another place to find inspiration for the overall design is to consider the context and audience where the map will be displayed. The following introduction to context explores this concept further.

CONTEXT

Where will your printed map be viewed? Who will be viewing it? These two basic questions are the basis for most of the contextual considerations a mapmaker faces. Stemming from these are the secondary questions of how many people will be viewing the map, at what distance, with what surroundings, and so on. In the examples that follow, the contextual question of where a poster-sized map will be located forms the main design consideration.

Will your map be viewed as part of a poster gallery at a conference? A light-colored map with just the right “pop” in the important elements can provide soothing
relief for bleary-eyed conference goers. Add a graph or two and your audience will enjoy at least pretending that they are scrutinizing the graph so that they may appear to be intellectual. If they happen to actually walk away having absorbed the simple message you were trying to convey with the map or graph, then you have served your purpose (see Figure 3.21).

Will this map be on a wall in the company hallway that happens to be painted a striking white color? Perhaps the opposite strategy could attract attention to your masterpiece. A great way to make a statement in this location is to use very dark, saturated colors to provide a pleasing contrast. Blues and grays are perfect for this, give a modern out-of-this-world feel, and are soothing all at the same time (see Figure 3.22).

How about creating a map for your work group that will be put on a gray cubicle wall within eyeshot of everyone walking by (including your boss)? Using candy-shop colors would brighten the gray cube wall and provide visual relief for those passing by (see Figure 3.23). Of course, an actual jar of candy sitting nearby could also serve your cause well.

Finally, consider your subject. Who is your audience? Tailoring the style to the audience’s expectations can lead to a successfully received layout. For example, although you may not be in the medical field yourself, perhaps you are tasked with creating a poster of some health data for an upcoming medical conference. Instead of creating the layout in the same style as you have for other types of presentations, you can research the style that people in the medical field are accustomed to seeing. This might lead you to add in trend reports along the margins in the form of graphs and statistics tables. Another example is making a map for a business audience. If you aren’t familiar with business style, then check out some of the leading business books and study their graphics. One of the things you would find is that the graphics are
Layout Design

Figure 3.22 Dark colors provide drama for otherwise boring office walls.

Figure 3.23 This map is designed with vibrant purple, green, and pink foreground features as a means of livening up a gray cubicle wall.

generally black-and-white line drawings with boxes, diagrams, and graphs. If you can get your layout to conform to a similar style you might buy yourself some credibility from the get-go.

If you have a particular style in mind that is different from what your audience is used to seeing, it is still okay to use it if you have some good reasons for it. Some good reasons might include that you want to “update” the field with a more modern-looking design, you found a better way, or you feel that your audience is tired of the old way. When introducing a drastically new design style to an audience you need to preface your presentation with an explicit acknowledgment that what they are seeing is different from the norm, why you went ahead and designed it that way, and what

© 2009 by Taylor & Francis Group, LLC
the audience will gain from seeing it in the new way. This prevents your audience from simply concluding that you have no idea what you are doing.

The subject matter of your map may also influence its design. Consider archeology maps, which present some very interesting design options. Perhaps you are managing the GIS data for a site dig. When the overall site map is displayed on a large-format layout, you could take a cue from historical maps (after all, the site is historical) and place supporting information like graphics around the main map. The graphics can fade out toward the main map in order to provide visual separation as well as to further the old-world look. The graphics can consist of pen-and-ink drawings like artist’s renditions of what various parts of the site may have looked like in the past and drawings of what the site looks like now.

ARRANGEMENT

Once the layout style is chosen and the context for the layout considered, the placement, design, and arrangement of the layout elements should be easier. The first step in arrangement is to think in very general terms of what you want the viewer to see first on the layout by creating an emphasis map. The next step is to consider the arrangement of the elements more specifically as well as the level of detail you will be providing in each element. The last step is to build the layout, ask for feedback, and revise, repeating these steps until a satisfactory layout is produced.

Before explaining the ins and outs of an emphasis map, we need a short introduction to types of layouts, some typical compositions, and a warning. First, the type of layout that you are creating will greatly constrain your attempts at arrangement. For example, static report maps located in-line or full-page, Web site maps, and slide maps do not typically have a layout at all. At the most, they will include a map, title, legend, and scale bar floating over the map, all potentially bound within a framing box. At the least they consist of the map itself with no supporting information, except as might be written in the accompanying text or caption or as might be referenced in a verbal presentation.

Reports with Maps: If a map designed for an 8.5-inch by 11-inch report is not large enough to fill the entire space between the left and right margin of the report, consider using two maps side by side to avoid having too much white space on either side. Another trick is to create the map so that its size is half the width of the page minus the margin area and then place it in-line so that the text wraps around it. The result is more of a newspaper or magazine style layout and is more pleasing to the eye (see Figure 3.24). For example, if the page was divided into a table of six squares, two columns, and three rows, a map would ideally fit directly into one of the six squares. On an 8.5-inch by 11-inch page with 1.25-inch margins on the left and right, this would translate to a map approximately the size of a 3-inch by 3-inch square. Because of the small size, of course, the map should show only a large-scale view of the subject, or only a few features, or both.
Arrangement considerations are mostly applicable to larger format layouts beginning with a letter-size sheet (8.5 inch by 11 inch) and moving up to large poster-sized sheets. Some typical poster-sized map layout compositions are

- One map comprising two thirds of a layout; extensive margin elements
- Multiple maps in a time series; bounding boxes that group items; time labeled clearly
- Multiple maps of related data layers within the same geographic boundaries
- Working map with one large-scale map comprising the entire layout; specifications and legend information are placed in blank or nonessential spaces
- Conference poster with a small map relative to the poster size used for supporting information

And finally, a warning: while many concrete examples and guidelines are presented here (and other examples and guidelines can be found in other cartography texts) that will be useful to study for creative inspiration, the map designer ultimately needs to rely on a mixture of these guidelines, intuition, and previous experience to produce a layout appropriate to the map’s unique data, subject, and shape.

Emphasis Map

“Emphasis map” is a term borrowed from the world of Web design. It consists of an initial sketch-up of what your product will look like with specific attention to where the eye needs to be directed on an initial perusal of the document. In the case of a map document in which the mapmaker wants the viewer to read the title first and then look at the map, the sketch-up would show a title in large bold characters and then a map frame with lighter outline and color scheme. All other elements would be sketched in a light and cursory fashion.

Make it a standard practice to put pen to paper and create a sketch-up, taking perhaps ten minutes of your time, prior to embarking on any major map endeavor. It will force you to consider the main goals of your mapping from a design standpoint before your mind gets overwhelmed with the details. As always, do not avoid taking the time to rework the emphasis map as you reconsider where the title will be and how much emphasis the map will be given. As an aside, the time you take up front...
to consider the layout will probably not decrease as you continue in this profession. Remember that there is a positive correlation between the quality of your layout products and the quality of your planning.

Figure 3.25 illustrates what an emphasis map might look like with the title as the primary element, map as the secondary element, and margin elements as tertiary elements in the visual hierarchy.

While it is common for a title to be created with the highest visual weight, it is conceivable that the mapmaker would want the primary map element to be the first element in the visual hierarchy, with the title being read only after a quick glance at the map. Other combinations are also possible but less common.

You can see that in the emphasis map in Figure 3.25 the designer has already taken some preliminary steps toward laying out the elements, albeit in a generalized fashion. If even this level of detail is too much to begin with, the designer could start by writing out the emphasis map in word form like this: title=first, map=second, margin=third.

When a final emphasis map is drafted, the planning stage is complete and the process of placing elements onto the layout can officially begin. As you start to place the various elements onto the page, keep in mind how the overall feel of the layout is taking shape. If the layout is starting to look too cluttered, reassess whether the offending element is necessary and, if it is, try to find a way to minimize its visual impact. Although useless clutter is obviously not desirable, do not confuse that principle with the more insidious principle of keeping the map simple or “dumbed down.” This is explained in the next section.

Simplicity versus Complexity

To begin with, the two output media types where simplicity is always okay are slides and in-line report graphics. For these, aim for color continuity on all slides and report graphics for a polished look. If your map is not of either type, though,
a certain amount of complexity is needed in order to justify the larger format. As long as your main data are appropriately highlighted, complex background data can add contextual understanding for the viewer that allows the map to be a rich resource for information. This leads to the following principle: do not be afraid to present extremely complex information as long as it is pertinent to your map’s purpose. If it is presented in a coherent and unified manner, a complex map may even become your best printed work.

Many times we confuse “readable” with “simple.” A map does not necessarily need to be simple to be readable as long as the appropriate highlighting of important information and organization of background elements are executed. An oft-cited reason for simplifying is the dumbing down of information for busy superiors and the non-expert public. However, if you keep in mind the example of a standard U.S. Geological Survey topographic map, which contains many details on trails, roads, rivers, towns, schools, and so on in addition to innumerable contour lines, you can realize that most people with a high-school education are able to gain some understanding from them and feel a sense of knowledge gained as a result. That said, if your background data are both cluttering up the map and have no real utility, then by all means consider getting rid of them. Examples of background data that may, in some contexts, offer no additional value to the viewer while adding mindless clutter to the map are hillshade layers and small-scale aerial photos.

Inset maps of the overview type, which give the viewer an overview of the general location for the main map, are an element that does require simplicity simply due to the lack of space allowed within their smaller map frames (this is a similar case to the in-line report maps mentioned earlier). When using an overview inset map it is important to remember not to simply create a large-scale replica from the same exact data and symbology used in your main map. Detailed data presented in this manner need to be generalized first. For example, if development zoning data are presented in the main map, the zones will probably be too small in the inset map for the viewer to distinguish between them and, furthermore, they are probably not even necessary. The inset map for a development map might just show a simple box or single polygon that outlines the extent of the development zones with relation to nearby regional boundaries (that themselves should be generalized).

Those exceptions aside, the main point of keeping the complexity in your map is to empower your map reader. Let’s say your boss asks you to create a customized map to be handed out to employees showing how to get from the office to the company picnic site. A typical dumbed-down approach would be to show the office, the picnic spot, and only the roads in between that the driver will take to get there. What if the driver takes a wrong turn? In that case, the driver is out of luck and needs to get a detailed road map to get back on track. If you want to avoid disempowering the map reader but preserve the quick readability that comes from the original approach you could, instead, use a detailed road map as the main map and use a smaller inset showing the simplified map. Since the product would now resemble an old-fashioned road map, you could even fold it into twenty sections and hold a contest to see if anyone can refold it.

The last two principles to keep in mind as you start to add elements to the page are the design of the margin, if any, and the overall balance of the elements.
The convention in traditional architectural drawing is to place the margin elements, especially the key metadata, at the bottom or right-hand side of the map in a white rectangular area that spans the width or height of the page (see Figure 3.26). This ensures that flipping through a flat file drawer to find a particular map will produce the desired result instead of a heap of crumpled papers on the floor.

The margin can be further split up into discreet parts that focus on particular details of the map. For example, the layout in Figure 3.27 contains an architectural box on the bottom of the page, split into three segments, with the middle segment being the largest.

You might wonder why I don’t tell you to float the margin elements over the map. While I do think that this is acceptable practice for some of the margin elements, such as scale bars and north arrows, which are intimately tied to the map, it doesn’t make for a very nice looking map when there are a bunch of graphic elements floating all over the place. Much more professional and polished looking are the maps where the designer has placed those elements outside of the map element in their own nice and neat margin section.

Balance is more than avoiding a lopsided layout, although this is certainly a priority. Balance entails harmony in color, line weight, and content that ensures the layout is read as a cohesive whole rather than a sum of disparate parts. Practical application of the concept includes unifying fonts, counterweighting a peninsular geographic feature with a logo or graph, and correctly utilizing empty space. (Remember your grade-school art teacher’s advice to make your drawing fit the whole page? Risking a stern reprimand from said teacher, some white space can be defensible on a printed map.)

White space used as a visual separator between elements needs to be balanced throughout the layout in terms of spacing and alignment. This is best explained via the example in Figure 3.28, which is a close-up of the lower right-hand portion of the map in Figure 3.27 of the Margins section.
An architect’s box at the bottom of the layout is elegantly split into three segments. The segments can be physical (straight lines or boxes) or elegantly implied (white space).

All white space needs to be carefully aligned so that it is in equal proportion around the layout elements. This is accomplished via on-screen rulers or guides and a lot of patience. Always check to make sure the elements are aligned properly at a 1:1 scale before printing.
Content balance in terms of style is also a consideration. As the style of your finished map ought to be chosen at this point, you can choose appropriate fonts, color choices, and element arrangements that will conform to that style. For example, different fonts can portray different styles such as the examples in Figure 3.29. See Chapter 4, “Fonts,” for more information on choosing the right fonts.

Balancing out graphics by shape and color is also advisable. For example, counter-weight a large circular north arrow with a logo by placing it on the opposite side of the page. Taking this one step further, the logo could be displayed in a black-and-white color scheme to match the black-and-white north arrow, with the added benefit of deemphasizing the logo.

Modern map layouts should contain elements of both symmetry and asymmetry. The main parts of the layout may be asymmetrical along the horizontal axis, for example, while the subsections remain symmetrical around an imaginary vertical axis. Conversely, the asymmetry may be around the vertical axis while the symmetry is present around the horizontal axis (see Figure 3.30).

How will you decide what kind of symmetry is best for your map? As with all of the other aspects of the arrangement phase of the mapping method, experimentation, coupled with inspiration with an eye toward standard practices, is all that is necessary to achieve a balanced design. As the Staples button says, “That was easy.”

SUGGESTIONS FOR FURTHER READING

END NOTES

3. See Title 17 United States Code Section 101, et seq. This information is provided for informational purposes only and does not constitute legal advice.
7. Map products are protected under copyright laws in the United States.
Some of the most important aspects of cartography are those which are most subtle like colors and fonts.

— Matthew Gilmore, IT Specialist, District of Columbia Department of Consumer and Regulatory Affairs

While many of us concede that learning about and choosing fonts for our layouts and maps is not the most exciting aspect of our daily mapmaking endeavors, we must nevertheless think seriously about them and their effects on our work. Sure, in the early years of professional work, a GISer designing a map is most concerned with presenting data with appropriate symbology and may be satisfied with placing text on the map and layout in its default form or at most choosing between Times New Roman and Arial.

However, making your maps and layouts into professional and one-of-a-kind products requires the study of font theory and the techniques for modifying fonts. Yes, without formal education in font theory, you may still be able to pick up some font knowledge here and there as time goes by. With this learning-by-osmosis method, your printed products could slowly start to look nice. And that is fine if you want to remain mediocre, but that is not you, oh reader of this book. You want a primer on all the specifics of fonts as they relate to GIS in particular, so that you can rise above nascent professional mediocrity.

No, you do not need to read an entire book on the subject of fonts, you just need to read this one chapter and you will be well on your way. The focus here is on those aspects of font theory that affect the GIS mapmaker’s craft directly so you can be sure not to waste your time wading through minutiae.

The first things to learn are the various font categories, what each is useful for, and some basics on the most common fonts available. Second, you will learn about various options to modify the font that you choose in order achieve certain effects like emphasis, deemphasis, visual continuity, and so on. Once you choose a font and modify it as needed, the third concept introduces you to text placement strategies. Lastly, a list of resources is included for those who want to dabble in nonstandard fonts and perhaps even create their own.

CHOOSING THE RIGHT FONT

I must note here that when I use the word “font” I mean a particular design of letters with a name like Futura or Arial. Although font is rapidly becoming the word that everyone uses to identify such letter styles, the more correct term is actually “typeface.” The typeface is traditionally considered the name of the
letter style group such as Futura, and the font is traditionally considered to be a particular version of the typeface like Futura 12-point italics. More specifically, the font is supposed to be the directions that the computer uses to define the way the letters look on-screen or on a printout. However, these days most people do not refer to it in that way.

The font you choose for various elements of your layout, including map element feature labels, is influenced by the style of the layout, the feature that is being labeled, the function of the text, and several other parameters. Fonts are differentiated by their style, which is comprised of the character of the font along with its intrinsic letter height, width, and line thickness. The style of each font, even within the same category, can vary enormously and therefore it will be beneficial to keep in mind what each of the major fonts looks like as you go about designing your layout and map. Your font choice is an aspect of the map that can easily add a touch of differentiation between your map or layout and those of other mapmakers, thus adding to your image as a professional rather than looking as if you simply pick all the defaults.

The font categories discussed in this chapter are serif, sans serif, decorative, and script. While it is true that decorative and script fonts can be put into serif and sans serif categories, they are in their own sections here because they are aesthetically very different from the more common serif and sans serif fonts.

Serif versus Sans Serif

You will want to know the difference between serif fonts and sans serif fonts because your understanding of them will affect your choice of font for different map purposes. (There is some debate over whether the differences between these two font groups actually affect the reader in the ways discussed here, but more on that later.) First, let’s just figure out what a serif font is and what a sans serif font is. Simply put, a serif font contains what I flippantly refer to as “doohickeys” while a sans serif font does not (see Figure 4.1). If you prefer a more scholarly explanation, sans comes from the Latin term “sine” (without); and serif, which means “short lines,” originates most likely from

![Figure 4.1](image)

FIGURE 4.1 The presence or absence of “doohickeys” is the differentiating factor between serif fonts and sans serif fonts.
the Dutch word *schreef* (stroke), or from Middle Dutch *schriven* (write), or from Latin *scribere* (write). Fonts will usually fall into either of these two categories.

Keep in mind that even within the same category, the fonts can still vary quite a bit. It can be useful to keep a sample of the lettering for each of the major fonts in front of you while you are choosing the font for your map and layouts. The example in Figure 4.2 can get you started and also illustrate the many varying intrinsic characteristics (explained in the next section) of each font (Figure 4.2). The fonts are shown in 12 point so you can see that there is a difference in line weight, height of the letters, and style of lettering in each. The list contains Windows fonts but when a Macintosh equivalent is available it is listed in parentheses. Many more fonts are available on your operating system; you can also purchase fonts and download shareware and freeware fonts.

FIGURE 4.2 A few common fonts are listed here with the font name on the left and the word “Mapping” on the right, printed in the font named. Use this as a resource when deciding which font to use or make one of your own.
The presence or absence of the doohickeys relates to the readability of text under certain conditions like distance and resolution. In terms of legibility, where legibility refers to the level of distinction between characters in a font, the serif fonts do a better job at close distances on high-resolution outputs such as a paper printout. This difference in legibility is best illustrated by example.

In Figure 4.3, the first three letters all look the same in the sans serif version of the word “Illustration.” This would lead you to the correct conclusion that a serif font is the appropriate choice for blocks of text containing more than one sentence that are intended to be read at close range. Traditionally, fonts used on computer monitors (such as those used on Web maps) are the common sans serifs. It seems as though with the advent of higher-resolution monitors, however, more and more Web site designers are choosing to go with serif fonts. If you are creating a Web map, you can choose which you like best.

For shorter text blocks, like say a title on a poster, you should consider using a sans serif font because it truly is more readable at a distance despite the handicap mentioned above. I have to admit that when I first learned this “rule,” I didn’t buy the argument and wondered if choosing a sans serif font for long-range viewing optimization would really make much of a difference. So I tested it by printing out the same word at 100 point, one in Times New Roman and the other in Arial. Sure enough, at a distance of six feet I thought the Arial was much more readable than the Times New Roman. Try it yourself.

The Georgia font (a serif) and the Verdana font (a sans serif) were specifically created for digital display. They were designed by Matthew Carter of Carter & Cone Type, Inc., for Microsoft in 1993 and 1996, respectively. Most fonts are used on computer monitors without regard to the fact that they were designed for printing on paper and not designed for the limitations that monitors pose. Because monitors display images by way of small squares of light, or pixels, most fonts can appear jagged. Georgia and Verdana, however, don’t have these issues so they are particularly well suited for any Web maps that you might create.

Verdana, which got its name from a combination of the company’s verdant (green) surroundings and the daughter (Ana) of the project manager, is highly readable on a computer screen even at small sizes.1 Wide letters and letter spacing and tall lowercase letters help increase its legibility. Individual letters were designed so that they would be different enough to tell apart. In particular, the capital I is differentiated adequately from the lower case l, unlike many other sans serif fonts, by the use of horizontal bars running perpendicular to...
the vertical bar, just like in most serif fonts. Other letters are designed with the same letter-pairing limitations in mind. Letter pairs such as \textit{ff} and \textit{fi}, for example, do not overlap.

Georgia has become an enormously popular font over the last decade because it is elegant and very easy to read. Interestingly, it got its name from a tabloid headline that suggested that aliens had landed in Georgia. Similar to Verdana, it is legible at small sizes and has tall lowercase letters. It edges out Times New Roman for onscreen readability and has attractive italics. One caveat with the Georgia font, however, is that its numerals don’t always look nice on map labels because they are offset from one another and therefore don’t “sit” on the same plane (see Figure 4.4).

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure4_4.png}
\caption{Numerals written in the Georgia font are staggered.}
\end{figure}

The numerals are considered “old-style” because they read more like regular text — that is, some of the numbers are higher and some are lower. Because of that, some consider them easier to read than numbers that are all the same height (this is a similar argument to the one that says lowercase letters are easier to read than words in all uppercase). As I mentioned before, map labels may not look their most attractive in this font if the labels consist entirely of numbers. If you are labeling spot heights on a Web map, for example, you may want to use Verdana, as its numerals are all of equal height. If you just have a number here and there inside a large text block, however, Georgia numerals can be perfectly appropriate.

DECORATIVE

While the serif and sans serif fonts are going to be the major tools in the GISer’s arsenal, there are a couple of other font types that you may want to be aware of. The decorative font type (also called a “display font”) is a style that is reminiscent of a particular time in history, a place, a people, or some other style category. Decorative fonts might allude to such things as medieval knights, Celtic history, space, science fiction, and so on. In a GIS map or layout they are reserved for use when the feelings they evoke directly match the subject of the map, which is to say not often for the majority of us in the analytical field. Analytical maps call for the standard font choices in either serif or sans serif. Decorative fonts seem to convey the opposite of the analytical approach we want with those types of maps.

Perhaps, though (stay with me here), you will someday decide to create a map showing all of the real towns that a fictional cowboy movie character visited in some old Western movies. This, obviously, is not your typical analytical GIS map. Here’s
the perfect place to use that Wild West font you downloaded from a freeware site long ago but never had occasion to use. It might be perfect for the title and subtitle of the map. However, be warned that your use of the font needs to be limited to those short, main features — like the title and subtitle — because decorative fonts in long blocks of text tend to overwhelm a map viewer. In fact, a font that is not immediately familiar to a reader will significantly slow that reader’s comprehension rate.2 Fonts that are decorative in nature such as those shown in Figure 4.5 can often be found for purchase, shareware, or freeware online; see the Resources section for details.

Script

Script fonts (also called “handwriting fonts”) are also somewhat decorative in style and, as with the decorative fonts, are hard to read in large quantity, so these should be reserved for small bits of text and only when appropriate. Script fonts contain extra flourishes such as curls at the ends of letters or mimic calligraphy or handwritten cursive and generally lend a more elegant, formal feeling to the text than a simple serif or sans serif font.

Script fonts are somewhat more useful than decorative fonts for the GIS practitioner in that they are commonly used for labeling bodies of water such as bays, oceans, straits, and rivers. They could also be employed as a label font for maps with a lot of feature labels requiring differentiation. And, as in the Wild West example previously discussed, there could be other circumstances that would warrant a script font in the title or small textboxes of a layout design. Although this is an equally far-fetched example for a typical GIS analyst, I could imagine a case where a GISer is asked to plot all of the public marriage ceremony locations in a city (such as parks, beaches, and so on). Such a map would be an ideal candidate for the use of a script font on the point labels as well as the title and subtitle considering that script is a traditional font choice for wedding ceremony correspondence.

You may discover several script fonts on your operating system already, and you can also find them online.3 Some examples are shown in Figure 4.6.

FIGURE 4.5 These are three examples of decorative-type fonts.

FIGURE 4.6 These are three examples of script-type fonts.4
The intrinsic letter height, width, and line thickness is built in to the font that you choose. For example, the Bookman Old Style font has taller, wider, and thicker letters than the Garamond font. This holds true for uppercase letters, tall letters with ascenders (like h and k), short letters (like a and e), and below-line letters with descenders (like g and j). See Figure 4.7.

Similarly, the Arial font and the Times New Roman font differ in their letter heights to such a degree that a 100-point Times New Roman font is roughly equal to a 96-point Arial font. For this reason, always consider your font choice when deciding on a point size and especially when revising a map. Changing the font may require a subsequent change in font size to achieve the same readability as before. For example, if you have city labels in Arial 8-point and you change them to Times New Roman but keep the same 8-point size you may find that the labels are just too small to read. If you want to keep the Times New Roman font, you will have to increase the point size to 9 or 10 point to achieve the same readability.

In terms of font width, most fonts contain letters with proportional widths but a few do contain fixed-width letters. These are referred to as monotypes and they can be either serif or sans serif types. The Courier font is one such monotype in a serif style (see Figure 4.8).

Although Courier is often thought of as boring and perhaps a bit ugly, maybe because it reminds one of an old typewriter-written document, it can be useful to the GISer when tables of numbers are displayed on a layout. Because its numerals are all the same width and have a nice amount of white space between them, it is much more readable than many other font number sets (see Figure 4.9).

The weight of the characters is another variable to consider when choosing a font. Line weight, or the thickness of the letters, varies by font and will create a different level of impact on your reader depending on which you choose. One example of this is in Figure 4.9 where you can see that Times New Roman has a much heavier weight than Courier New.

Figure 4.8 The Courier New font, shown here next to the more common Times New Roman font, is a monotype font — meaning that all the letters are fixed width.
So you’ve seen how the height, width, and weight of fonts can vary somewhat substantially between fonts without any manipulation on your part. However, starting with those base characteristics, you will then need to increase or decrease the font’s readability and impact yourself to fit your map’s unique circumstances. The first, most obvious way to accomplish that is to change the point size. After that, there are several other techniques, such as character spacing, italicizing, and color modification that you may decide to use. First, let’s talk about point size, and then we’ll take a quick look at the other options.

Point Size

Though we’ve already seen that some intrinsic variation in the font sizes exists, we also need to be aware of general point size guidelines in relation to the amount of emphasis needed for a particular block of text and the viewing distance. For example, a letter-sized printout intended for close-range reading would be best served with 10-point to 14-point font for normal text and 14-point to 20-point font for emphasis text like a title. Remember that 1 inch, or 25.4 mm, is roughly equal to 72 points, where point refers to the desktop publishing point (DTP) system of measurement.

1 inch = 25.4 mm = 72 points

Furthermore, the 1 inch we refer to is the total distance between the height of the tallest letter (like and H or I) and the lowest point of the below-line letters (like g or y); see Figure 4.10. This conversion depends somewhat on the font you have chosen, of course.

Since viewing distance is a major variable in determining point size, let’s focus on two major viewing distances. The first, as in the previous example, is a close-range viewing distance of about half a meter. Note that we are talking about point size in relation to viewing distance, not the layout size. Why do this? Perhaps it is best explained with this simple example: a small map in a report should have the same font sizes as a large map in a report because both will be read from the same distance. Now, for this viewing distance we’ll eliminate the possibility of using a font size of
less than 6 point because it would not be readable at any distance. Optimally, a font size between 12 point and 14 point for main text and 16 point to 20 point for title text should be used. Some variation around these is also acceptable given certain conditions or depending on your font choice.

Poster-sized printouts for a conference poster session or for display on an office bulletin board are another matter because they are typically viewed from afar. But how far will this viewing distance actually be? If you were to search on the Internet for typical poster-viewing distances you would find most people are recommending that the poster be readable from a “typical” viewing distance of two to three meters. Have you ever seen pictures of people looking at posters in a poster session? Or have you observed poster session attendees actually reading posters? Well I have, and my conclusion is that most people are going to read your poster from an arms-length distance, or no more than one meter away. Now, either these people are viewing posters at a much closer distance than people realize because the poster presenters did not follow the text size guidelines and make their text large enough to read or it is simply a more natural distance at which to read. Perhaps it is a more natural distance because if you stand too far away from a poster you feel as if you are hogging the aisle space or people start to walk in between you and the poster or, worse, someone comes up and stands in front of you to read the poster herself.

So, do I think this means you should use a smaller point size for your poster text than what everyone recommends? Yes and no. It means that if you want to, you probably can use a smaller font size for the body text than what is normally recommended. But another consideration is at play here, and it specifically has to do with posters, and that is the issue of time. Considering that a large-format poster usually displays a brief overview of a topic, people will not want to linger over it, and a larger text size can suit that need for a speed-read. Whatever font size you use for the poster’s body text and labels, you do want to be mindful of using larger text sizes for the title and subtitle to accommodate a viewing distance of more than one meter. That’s because those titles are what draw people in closer to your poster.

Completely the opposite of a conference poster, a large-format technical map is meant to be read at close range and at long length. It is large simply because all of the information that is needed by the technical crew is impossible to display all at once on a smaller sheet. The body text, which on a technical poster will be confined to labels, legends, and other explanatory information, can be as small as what you might find on a letter-sized sheet. The title and subtitle information can also be as
small as titles on letter-sized sheets because these maps are meant to be deciphered and examined in minute detail, not quickly glanced over at a one-meter distance.

So what are some specific guidelines for point sizes at specific viewing distances, you might ask. I wondered this too and while I did find many recommendations for various font sizes, I found that they all varied somewhat and I wasn’t sure if they had ever been adequately tested. So, after countless hours printing out different fonts at different point sizes, taping up the fonts on a wall and standing at measured intervals back from the wall, I came up with some guidelines that, I believe, are more realistic for our GIS maps and layouts.

By testing the readability of various fonts at various sizes and distances, I have formulated charts to help guide you when designing your layout text. Two of the most common fonts, a serif and sans serif, Times New Roman and Arial, are represented in these charts along with viewing distances and a few text types. My research shows that the difference in intrinsic font size is not going to make much of a difference in terms of which point size you choose until you get to at least a viewing distance of three meters. At that distance, the smaller font, Times New Roman, will need to have a slightly larger point size to get the same readability as Arial. Figure 4.11, Figure 4.12, and Figure 4.13 show the results of the testing that I conducted on readability. You can use these as a guide for your own work but keep in mind that these

![Figure 4.11](image-url)
Fonts

are subjective, which is why I provide such large ranges in point size recommendations. If you are unsure of which point size to use, just print out several options in your chosen font, tape them to the wall, and stand back at your anticipated viewing distance.

Using these graphs, the guidelines for a poster that is truly meant for long-range viewing would be 18 point minimum for body text, 90 to 120 point for title text, and somewhere between those two for labels and captions. Metadata-type text elements such as network paths, disclaimers, and other text that doesn’t need to be seen by the general audience can be at a close-range text size like 12 or 14 point.

FIGURE 4.12 Approximate point sizes to use for map titles depending on the expected viewing distance. A map intended to be read at a distance of three meters, then, should have a title in the range of 90 point to 120 point if using the Times New Roman font.

are subjective, which is why I provide such large ranges in point size recommendations. If you are unsure of which point size to use, just print out several options in your chosen font, tape them to the wall, and stand back at your anticipated viewing distance.

Using these graphs, the guidelines for a poster that is truly meant for long-range viewing would be 18 point minimum for body text, 90 to 120 point for title text, and somewhere between those two for labels and captions. Metadata-type text elements such as network paths, disclaimers, and other text that doesn’t need to be seen by the general audience can be at a close-range text size like 12 or 14 point.

Other Modifications

Now that you have a good idea of how your chosen font and font size will impact the readability of your maps and layouts, its time to focus on the other ways you can modify the text. Whether you are designing a layout, creating labels on a map, or modifying a default legend, options for changing the font so that it becomes an intentional part of the design are available. To start with, there are many ways to provide your text with emphasis. One easy way to achieve it, especially useful for titles and, incidentally, feature labels, is the use of expanded spacing between letters
(sometimes called “character spacing”). This achieves somewhat the same effect as using a wider font (like Courier), but you can use any font and simply increase the white space between letters (see Figure 4.14 and Figure 4.15).

Italicized text is yet another way to differentiate your labels, titles, and other text. The italic font variant was originally developed as a means of creating a slightly
smaller sized letter, or in other words they were intended to be a more compact way of writing without changing fonts. For map labels, italics are reserved for certain features such as streams and oceans. They can help differentiate a title from a subtitle and can also serve as a deemphasizing mechanism for margin text (see Figure 4.16 and Figure 4.17). Conversely, they can provide emphasis on one word in a text block.

Bold text is commonly used for titles and certain map labels such as city names or other major geographic features. When there are multiple levels of importance for features on the map, the bold text can further emphasize the most important features. One common example of this practice is to label all major cities in a bold font while minor cities are in regular font and towns in a lesser point size. A bold font does not increase legibility for small font sizes. A 22-point bold font will be just as unreadable at four meters as a 22-point regular font. Underlining of text is seen much less in GIS,
rarely on map labels and other layout text except perhaps the title. A title and subtitle pair can be underlined, although we usually see other techniques for titles rather than just a simple underline, such as shadow boxes or white space.

In normal body text situations, like in a disclaimer or a listing of data sources, you may find yourself using a word that is composed of more than one capital letter such as an acronym or the word “DISCLAIMER.” These words wind up demanding too much emphasis due to their capital letters, so the easy fix is to slightly decrease their font size. For body text that is in a 16-point font size, try changing the uppercase word to 14-point size. Smaller text would require a commensurately smaller point-size differential (e.g., try a 1-point reduction if the regular text is only 10 or 12 point). Some examples with the main text in 16 point and the uppercase word in 14 point are shown in Figure 4.18.

Standards: Several conventions are generally adhered to when it comes to map element text labels. As with the other mapping conventions discussed in this book, if you decide to veer away from them you at least ought to do so deliberately and with justification. So take a moment to read up on what they are before making such a decision.

Hydrographic feature labels like the names of rivers, streams, oceans, and lakes require the use of a script font or a regular, but italicized, font. Initial capitals are always used except sometimes for ocean names, which can be completely in uppercase. These feature labels are often shown in the same or darker blue hue as the feature itself, or in the case of a polygonal water feature like a lake, the font hue is sometimes white. Use white only if it is pronounced enough from the surrounding blue. In many cases that will mean the use of a bold font and a dark blue feature color to provide enough contrast.

The color red is generally reserved for feature labels that are relatively bad, poor, or very important compared to other features labels. Conversely, green is generally used for feature labels that connote a feeling of goodness, natural, or not important. Browns and greens are normally reserved for area labels like national parks, forestlands, and mountain ranges, though other colors like gray or black are often seen for those features as well. Additionally, elevation labels such as spot heights and contour labels are typically brown.
Mountain ranges are labeled with non-italic and non-script font types, are labeled in uppercase, and utilize spacing rules so that the label runs along the entirety of the range. Town and city names can be in uppercase or initial capitals, with the uppercase lettering usually reserved for very important cities, those with the largest populations, or both. They are not italicized.

In terms of spacing, the distance between a label and its symbol on either a legend or the map itself should be about half the size of the lettering (see Figure 4.19).

![Figure 4.19](image)

FIGURE 4.19 In this example the label is in 20-point font and the space between the label and its symbol is exactly 10 point or half the label size. This rule of thumb applies to labels on the map as well as legend items.

Also, if you are labeling a large area (such as “Pacific Ocean”) take care to limit your character spacing to no more than four times the letter height so that the letters do not wind up looking unrelated to one another. Another handy rule to follow is that serif fonts are easier to read on text with expanded space. The serifs tend to draw the eye toward the next letter.

PLACING THE TEXT

Correctly placing labels next to or on your features in the map element is difficult although somewhat helped by automation within the GIS. Although great strides have been made in auto text placement tools recently, it will still be a part of our job for years to come to ensure that the auto placement has indeed placed text where we had expected, not deleted text that we didn’t want it to delete, and various other problematic issues. Unfortunately, many hours will still be spent manually moving each individual label around in order to avoid such things as overlapping with other labels or important features, labels that get cut off at the edge of the page, and labels that are extraneous. Thankfully, the work of placing text on a layout such as titles, text boxes, and disclaimers is much easier. The simple rules to follow concerning that kind of text are

- Ensure that all text is aligned with the surrounding elements including other text, maps, and lines.
- Do not use justified text in poster layouts. (Justified text aligns the left and right parts of the text block to the left and right margins and thereby creates a lot of extra space between words.) Use left-justified text instead. (Left-justified text is aligned with the left margin but jagged at the right
margin, keeping the spacing between words constant.) Justified text is just too difficult to read quickly.

- Double-space body text on larger layouts to prevent “conference squint” (see inset). Having more space between lines of text makes it easier to read.
- Group text elements together. Use the landscaper’s Law of Three (three of any plant looks better than two or four): do not separate text out all over the page, but also do not group it all into one single text area. Odd numbers of items in a group look better than even numbers of items in a group. For example, create three short paragraphs of text that are each separated by a headline or an extra amount of white space and place these paragraphs together on the right-hand side of the page.

The Three Levels of Conference Squint:

Level 1) The text on this poster is so close together that the words are blurring together (or is that due to the free drinks?).
Level 2) I can’t follow the text; it makes no sense to me.
Level 3) I am squinting so that it looks like I am intelligently analyzing this poster when really I am here for the free drinks.

As a conference poster designer it is within your power to prevent Level 1 from occurring, it might be possible to prevent Level 2 from occurring, but you do not have much power over preventing Level 3 from occurring.

TEXT DIRECTION

When it comes to placing labels on a map or any other text element on the map there will be times when the most obvious text direction — horizontal — isn’t feasible. Perhaps you need to place a margin element on the layout like a network path (e.g., …\cartography\conference_poster) and you don’t have any space for it unless you squeeze it vertically along the side of the page. Or perhaps you are labeling a stream that flows upward in your map. For these types of cases, use the diagram in Figure 4.20 as a guide to help determine how the text can be placed in the most readable manner. The preferred directions in terms of readability are shown in darker text and the less readable (and therefore less desirable) text directions are shown in progressively lighter text.

Another text direction consideration is the following rule of thumb: try to align text that falls on the outskirts of the map element so that it faces inward toward the center of the map instead of outward. So, for example, let’s say you have a river that runs north–south in the upper right-hand side of the map. You then have a conflict whereby the rules of readability conflict with the rule that says that text should face inward. The best thing to do in a situation like this, again, is to be aware of the rules and make sure you at least try both options. Choose the direction that looks the best in the context of your unique data and layout.
With this knowledge of fonts, font emphasis techniques, point size, and text direction, you are well equipped to produce a fine map where the words both communicate and look superb. You will find that the quality of your text style will enable your map viewers to read your maps and layouts better than they would if you simply stuck with the GIS defaults. In fact, according to some recent research, aesthetically pleasing things actually work better than unattractive things. So keep that in mind the next time you design.

RESOURCES

Dafont.com is another user community site that allows free downloads of unique fonts. http://www.dafont.com
Font List allows you to see font samples from a clickable list of fonts. http://www.fonts.com/fontlist/
Fonts in Cyberspace is an international font look-up site. http://www.sil.org/computing/fonts/
FontStruct is a user community site that allows you to build your own font and download other users’ fonts. http://www.fontstruct.com
Linotype is a site that contains original, proprietary fonts for purchase. http://www.linotype.com
END NOTES

1. There is a tradition of naming a font (typeface) after a daughter and it is also not uncommon to name a daughter after a typeface. Thank you to Matthew Carter for confirming this detail (Carter, Matthew, “Re: Georgia name.” E-mail to Gretchen Peterson. 29 June 2008).

5. Special thanks to my husband for being a second pair of eyes and confirming the results.

5 Color

The color on a map layout is like frosting on a cake. Sure, the frosting is the best part of a cake, but a lump of pure frosting without a nice, well-made cake under it has no reason for being. The same goes for a map layout decorated with great colors but with no clear underlying message. That’s why good color choices are nice to have but aren’t the most important aspect of your maps and layouts. By telling you that, my main motive is to take away the fear that sometimes gets hold of us analytical types when we have to do something artsy. If color can be proved to be of secondary importance, then perhaps it will not be so intimidating. Of course, this doesn’t mean you can ignore color altogether. No, we need both color and the underlying substance. To continue with the analogy, a cake without frosting is no fun at all.

Let’s start the argument about color not being that important with this question: Is color what you remember about the most famous maps you’ve seen? No? What is it about those maps that you remember most, then? Was it the underlying message, the really well-organized features, the immaculate presentation of the information, the dragons in the ocean? Some of the most ubiquitous and well-regarded maps in the United States are the U.S. Geological Survey’s topographic maps. Yes, I can recall off the top of my head that those maps have brown contour lines and maybe a green background for certain features, but I do not recall any of the other colors on those maps. I also probably couldn’t tell you what colors are on Google Map’s interface, but I use it all the time.

So color provides only supporting information to well-made maps and layouts. Certainly if those Google Maps were made with garish colors they would not be as popular as they are. The purpose of color on a map is to help a map viewer decipher the symbols in order to make meaningful inferences. Color is not, by itself, the purpose of a GIS map. Even when color is used to display a variable, it is still only offering only a means toward the visualization of that variable. For example, a map of watersheds could show some watersheds in green and some in black depending on the amount of intact forestland in each. Even though color is important in a map like this as it serves more than a purely decorative purpose, the meaning of the map is still centered around how much forest cover is in each watershed, not around the nice colors.

Because color is supporting information, we can conclude that poor color choice does not always affect the map in terrible ways. Those of us who haven’t an ounce of color theory in our background or a firm knowledge of color connotations may still produce a map that somewhat conveys its point, albeit perhaps in an ugly way. So we may produce a map that effectively communicates but is not necessarily aesthetic. However, we need to aim higher than this by rounding out our GIS skills in the area of color. Then we can perhaps achieve the most professional and compelling map product of all: one that both communicates well and stands on its artistic legs.
So lack of color knowledge doesn’t necessarily inhibit the communication value of a map. Perhaps you hit on a good color scheme without thinking about it or did a just good enough job. Perhaps the bar is set so low that nobody expects a professional-looking product. That said, there are, in fact, many ways in which a lack of color knowledge could wind up costing the map more than just pleasing visuals. For example, the Five Shades Are Enough Already section of this chapter deals with the problem of maps that have too many shades of the same color. This can leave a map viewer completely unable to match the colors used in the map to the colors in the legend.

Although it may be of secondary importance in communication, color is of primary importance when it comes to aesthetics. The problem here is that creating an attractive map is an art, and as such, it is inherently subjective. You will see this exemplified time and again in your career. Let’s say you’ve just spent two hours picking out colors via online tools, inspiration pieces, looking through your GIS color defaults, and so on. You then take your extremely well-thought-out map to your colleagues or bosses and two thirds of their feedback focuses on how they wouldn’t have used pink for such and such feature or how your red isn’t quite the right shade. Everyone is a critic when it comes to the subjective art of color-picking. That’s because it is one of the easiest things for a non-GISer to focus on when asked to critique a map. While you may never be able to completely satisfy everyone with your color schemes, you might, through some time spent learning about the basics of color, and a lot of time spent applying these concepts to your map, and a smidgen of luck, be able to get the color critiques down to about one third of the overall discussion. And that would be an improvement.

How to Present Your Draft Map to the Boss or Client

When you have to submit a map for review, feedback, or final approval, you need to be confident and able to explain the exact reasons why you made the map the way you did. First of all, you will want to explain any modern styling that you used because anything that is new and different from the old approach will cause initial uneasiness. People who aren’t involved in mapmaking on a daily basis will assume that map styles from ten years ago still work today. They don’t realize that the art of making maps is constantly evolving as technology changes and color fashions change.

Therefore, explain your reasoning up front. If, for example, you had created a dot map instead of the gradient-color scheme they are used to, you can explain that dot maps are actually a better representation of the features for your particular map and why. Another example would be if you used a non-typical color for some text (like pink). You would want to point out that you tried many colors and it turned out that pink was the only one that would create enough contrast to make the text visible from a distance, or whatever your particular reasoning was.
Now, while you are definitely on your own when trying to respond to those color comments, this section can help with your first two goals: learning about color theory and figuring out how to apply it to your GIS map. This chapter is organized into the three aspects of map color that are the most important: theory, rules, and inspiration. No real hierarchy exists among the three concepts. That is, they are all equally important. These concepts are illustrated in the “Circle of Color Love” diagram in Figure 5.1.

COLOR THEORY

Color theory centers first and foremost on the color wheel invented by Sir Isaac Newton way back in 1666. You surely have seen the classic color wheel, or one of its derivatives, before. Whichever color wheel you have used or seen probably shows the three primary colors, the three secondary colors, and the six tertiary colors, with twelve in all. The static color wheel in Figure 5.2 illustrates this. You can find many interactive color wheels on the Web that will be very useful for you when it comes time to choose your colors. See the Resources section at the end of this chapter for references to several interactive color wheel options.

You can apply the color wheel to the work of picking out colors for a map in several ways. First, you could choose colors that are analogous to one another, meaning they are close to each other on the wheel. These colors will create a subdued, quiet effect on the design. Second, you could choose colors that are complementary to one another, meaning they are opposite to each other on the wheel. These colors will create a vivid color scheme that demands attention but is at risk of being overly ostentatious. Many fast-food signs contain complementary colors to attract attention, for example. A polychrome design will include many colors from all over the color wheel. These need to be carefully chosen via trial and error, past experience, or an inspiration piece (more on this last concept later in the chapter) in order to insure that they don’t clash. A neutral color scheme contains black, gray, and white. I think
we will see more of these as mapmakers become more sophisticated in their design capabilities. The reasons for this are many, not the least of which is that neutral is becoming fashionable after years of overly colorful maps made simply because we could. Neutral color schemes are discussed more in the Black and White and Modern section at the end of this chapter.

Whichever color scheme you choose, your next step is to translate those colors into the GIS. Most GIS software will give you multiple options for defining any custom colors you use. Some of the options that your GIS (or graphic design software) may give you are RGB, hexadecimal, HSV, HSL, CMYK, and CIELAB. The following paragraphs present brief descriptions of each of these models so you can decide which would be best suited for your projects.

RGB

The RGB system stands for Red, Green, Blue and was created for electronics like cathode ray tube computer screens and color TVs, where a monitor emits differing amounts of red, green, and blue to produce a desired color. Think of RGB as a means of describing a particular color in terms of the amount of each primary color you would need to put onto a black surface in order to produce the color. Because the initial surface is black and you are adding primary colors to it, the system is described as an “additive” color system. The color is managed by specifying a number between zero and 255 for each of the three primary colors. So if you were to put a full amount of red onto the black surface but no green or blue, you would wind up with an RGB of: 255 0 0 (red). As the number decreases, the brightness of the color decreases. So an RGB of: 150 0 0 will still be red, but a darker red than 255 0 0. These numbers are referred to as “RGB triplets” throughout the book. More RGB triplet examples are shown in Figure 5.3.
Color

With most GIS software, the map export function produces files with colors specified in RGB. This is important to know about your software if the quality of print output is important to you because most printers will need to convert the RGB to a different, but related, system (CMYK) prior to printing. That conversion process can change some of the colors that don’t convert well from one system to the other. Remember: the RGB system is for screens, and CMYK is for printers. More discussion of CMYK appears after the HSV and HSL discussions.

HEXADECIMAL

The hexadecimal (hex) system is a general term describing a numerical system with base 16. In it, the numbers zero to nine are paired with the letters A through F to provide 16 total characters. Hex is used for many purposes other than color coding, but if your work involves displaying maps on the Web via HTML, you will need a good understanding of hex color system, which is a derivative of the RGB color model. Whereas the RGB colors are specified by means of three numbers, the hex system uses three pairs of letters and numbers. Hex is specifically used for hard-coding colors for display on a monitor.

In HTML, the hex letter–number pairs are preceded by a “#” sign, and written like #83F52C (greenish). There are 256 potential brightness values for red, 256 for green, and 256 for blue. So, if you want to specify a brightness value when you are displaying color on a monitor, you need three brightness numbers paired with three color numbers. The hex system allows this. The zeros in hex represent a no color value, and the Fs can be thought of as full color values. So if you want pure green, the hex notation is #00FF00, which means that the entire green component is displayed and none of the other components are displayed. The brightest colors are represented in pairs of Fs: FF, while the darkest colors (or absence of colors since this is an additive system) are represented with pairs of zeros: 00. The whole range goes: 00, 33, 66, 99, CC, FF. See Figure 5.4 for more hex examples. These are just the basics. To read more on the very exciting world of hex colors, please see the Resources section.

![RGB triplets](image)

FIGURE 5.3 RGB triplets are shown here for yellow, light gray, and blue.

![Hexadecimal examples](image)

FIGURE 5.4 These are examples of the colors light green, maroon, and dark gray, as written in hex notation.
The hue, saturation, value (HSV) color system is similar to RGB in that you specify a set of three numbers for each color. Each number represents a principal component: hue, saturation, or value. The hue (color) is a number between one and 360, the saturation (amount of gray in the hue) is a number between one and 100, and value (amount of white in the hue) is a number between one and 100. For the saturation, the number represents a percentage of pure color where 100 is 100 percent pure color and zero percent is gray. For the value, the number represents a percentage of brightness where 100 is 100 percent white and zero percent is black (Figure 5.5 shows a few examples). This is a handy system to use when you want to keep the basic hue while tweaking the saturation and value.

HSL

The HSL color model is the same as HSV in the hue component but differs in the last two components. The saturation part is defined differently than in HSV and of course the last component is entirely different, with the L standing for “lightness.” In either case, these are the color models you want to use if the brightness and saturation of a color are important to you. For example, if you want to change the brightness or saturation in RGB or CMYK, you would have to change the numbers for all the values, which can also cause the hue to change, whereas with HSV you need to adjust just one number for either the saturation or the value, which keeps the hue constant. These models are also slightly more useful than RGB in that they actually contain a more complete set of colors that are visible to humans than RGB, which is slightly restricted.

CMYK

The CMYK (cyan, magenta, yellow, black) model is sometimes presented as another option in your GIS for defining colors. The K stands for “key,” a term that is a relic from the printing press days when the three colors would be aligned or “keyed” with the black ink in order to save on ink costs. The K is not always included in the acronym. You can think of this model as being a white sheet of paper (which reflects light back at you) that becomes a color once you add color pigments to it. Because...
each pigment you add to the white paper is actually taking away wavelengths of the reflected light to produce the desired color, it is called “subtractive.”

The numbers associated with each of the principal components of CMYK are in percentage format. That is, if you specified 100 percent for C, M, Y, and K, you would wind up with black, and if you specified zero percent for C, M, Y, and K, you would have white. Some other examples of CMYK combinations are shown in Figure 5.6.

When CMYK is an option in your GIS, you may want to use it if you are concerned about matching the look of the color on the screen with the color on a printer. However, you have to be cognizant of how your GIS exports color. Just because you defined a color in CMYK does not necessarily mean it will be exported in CMYK. In fact, some software will convert your color definitions to RGB when you export. This is mainly a concern only for those people who are sending their file off for offset (commercial) printing. If your software exports in RGB, a way around it is to export to graphics software like Adobe Illustrator or Adobe Acrobat, change any colors that changed, and then export to a printing file format from there, specifying CMYK mode. Another option is to print out a conversion sheet that shows what a color looks like on-screen with what it will look like on a printout.

CIELAB

Another color model, variously referred to as CIELAB, Lab, or CIE (L*, a*, b*), is distinguished from RGB and CMYK in that it describes all of the colors that are visible to us, as opposed to a slightly restricted set. Not only that, but it contains colors that aren’t visible to us as well (imaginary colors, if you can believe it). It is a 3D-based model where the xyz coordinates are defined by the components L, a, and b, where L refers to the amount of lightening applied to the color.

You won’t often find the CIELAB color model in the GIS realm but it is good to have at least a cursory understanding of it. Some examples of the values and the colors they create are shown in Figure 5.7.

The Rules

So what do we need to learn about color other than color wheel combinations and the various color models used in our software? Color rules. It may seem strange to think of there being rules that can be applied to color since choosing and combining colors is highly subjective. However, there actually are some rules that are particularly
In the term “figure-ground,” the word “figure” refers to the foreground, or focus, of the map, and the term “ground” refers to the background. For a map of topography of the Galapagos Islands, for example, the islands are the figure and the surrounding water is the ground. If the map is of the bathymetry surrounding the Galapagos Islands however, the focus would be switched and the water would be the figure and the islands would be the ground.

“Gestalt” is a general term that describes a group of objects (physical, biological, or even psychological phenomena) that have a definition as a group that is different from their definitions when they are apart. This concept, borne of German psychologists in the early 1900s, when applied to graphic design, encompasses many concepts including image continuity, closure, similarity, and figure-ground. For the purposes of this discussion, we are interested primarily in the gestalt concept of figure-ground of course, which refers to the differentiation between an object and its background. GIS maps usually include objects that need to be emphasized and separated from the other objects on the map even though the other objects are also important for geographic context. This applies to feature pairings such as land and water, city points and land, or watersheds and forest stands.

There are many ways to emphasize certain objects on a map. One of the easiest is to highlight the borders between the two objects. The classic example of this technique is the application of a dark blue color to the edge where water features meet up with land features. The dark blue color would necessarily be a darker blue than the water feature itself in order to create the contrast. Other examples include differentiating the subject from the background via halos (white rings) or even color fade-outs along the shared feature edges. A halo, for example, around black text labels is a common technique for making the text appear to pop out from the background of the map. A faded color around the edge of a feature can accomplish the differentiation in a more subtle manner. The goal of these techniques is always to provide the needed

FIGURE 5.7 These CIELAB examples illustrate the lightness value as it goes from high to medium (white to gray) and then how the gray will change to a color as soon as you add values for a and b.

<table>
<thead>
<tr>
<th>L</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>69</td>
<td>39</td>
<td>66</td>
</tr>
</tbody>
</table>
differentiation between objects so that the map viewer can accurately distinguish what is what (see Figure 5.8).

A more extreme method of differentiating objects is applying 3D effects, or extrusions, to single objects on the map. When this is applied to a 2D map, however, it is important to remember that the map is no longer a “true” map since at least part of the data has been arbitrarily removed from coordinate space. For example, an overview map of a study area in southwestern Colorado might show Colorado and the surrounding states but with the state of Colorado offset from the others in order to emphasize it. It is an effective technique in that example because, even though the extruded state of Colorado obscures the state(s) behind it, it still can provide a reasonable overview of where the study area is. This technique can be effectively employed in many media, including reference map graphics, report covers, and icons. Additionally, Web map graphics can utilize the technique in order to emphasize certain clickable parts such that when a user hovers over a particular region, the region “pops out” at the user to make it easier to click on. Obviously the use of this technique results in strictly graphics-type maps instead of analytical-type maps since they can obscure important data.

Five Shades Are Enough Already

If your map viewer cannot interpret your map at all or interprets it incorrectly, then you have failed in your pursuit to communicate. In order to avoid this catastrophe, the very first rule to learn in the Viewer’s Perception category of color rules is the Five Shade Rule. It goes like this: the human eye can only distinguish between five shades of the same color (hue). The correct application of this rule is as follows: if you are emphasizing change in a variable over space with a commensurate change in saturation of a color (i.e., choropleth mapping as explained in the next section), you need to group your data into five or fewer categories. You must also take care not to use any shade of that same color to denote any of the other features on the map unless they are a completely different shape.
You can see in Figure 5.9 that the first map contains difficult-to-distinguish shades of peach. If you were trying to match a color on the map to a color on the legend in order to, say, figure out the population category for a particular region of Spain, the map on the left would not be much help. The map on the right, with only five shades of peach, is much better. Of course, applying this rule means that you frequently must generalize your data by grouping them into fewer categories, resulting in some loss of detail. Therefore, if it is essential that you have more than five categories, you must use a color scheme that includes multiple hues or even other textures such as shading or hashing to further distinguish the colors (more on this in the next section). Also note that in the above example you would not use the peach color for any other map element features such as labels or town points because, again, they would be too difficult to differentiate from the background.

However, that’s not to say that you can’t repeat the same shades of peach in a layout containing this map element. Indeed, it would be very nice to bring the peach color into some of the surrounding elements such as the title, border, or layout background in order to further emphasize your color scheme. This is sometimes called “color echoing,” meaning that you are echoing the color from one part of your map into a part of the layout to provide a cohesive visual look. This discussion about the five color rule leads us right into a description and best practices of choropleth mapping, a type of map that uses color as its main form of communication.

CHOROPLETH MAPPING

Many of the examples elsewhere in this color chapter are choropleth maps, so this section is written to define the term, lay out some tips, and caution against common pitfalls. Everybody has seen a choropleth map before but many people have never heard the word. Choropleth maps are those that illustrate the value of a variable across the landscape with color that changes across the landscape. For example, a map of crime rates across the country could be shown via a choropleth map by using a yellow to red color scheme where yellow is used in counties with low crime rates, light red in counties with medium crime rates, and dark red in counties with high...
crime rates. By showing the variable with these three different colors we can quickly scan the map to answer such questions as: Is crime higher in coastal areas versus inland areas? Where are the hotspots, or concentrations, of crime? Is my hometown one of them?

In the case of choropleth maps, the intensity of color, either through saturation percentage or through the hue, denotes intensity of a variable. One of the things you can do to make your choice of colors easier is to think about the variable you are trying to map and whether there might be a literal or metaphorical color to complement it. For example, is your variable household wealth? Maybe you would want to use a light green to dark green color ramp since green is often associated with money.

A simple example of a choropleth map that uses multiple colors is a map of college swimming programs. Areas with the most college swimming programs might be shown in a dark blue color, areas with fewer college swimming programs could be in a lighter blue color, and then perhaps areas with no college swimming programs at all would be shown in white or black.

Your choice of color for choropleth maps becomes complicated when there are a lot of data values for the variable that is to be mapped. Elevation maps are typically shown as choropleths, and they are a great example of how complex the color scheme can get (see Figure 5.10). The change in the variable’s intensity (elevation height) is in this case characterized by changes in both hue and the saturation of those hues. The reasoning for this is because there is such a great range of elevation values in this particular map (recall from the rule of five discussed previously that no more than five shades of a single color should be used). You will note that the colors are also somewhat tied to our expectations of colors at particular elevations. The white at the highest elevations evokes ice caps and the green in lowland areas evokes meadows or lush farmland.

One of the traps that can occur with this type of map is that you can easily misrepresent the underlying data. If you want to show how a variable changes across an area but that variable is grouped into features that themselves have variable extents (think countries as opposed to a regular grid), it is important to normalize the variable with respect to the area it is representing. For example, displaying the numbers

![Elevation (feet)](image)

FIGURE 5.10 Because there are so many elevation categories to display on this map, they are shown with both changes in color (hue) and saturation of color. So for low-lying areas we have lighter shades of green that get darker as elevation increases, and for medium-elevation areas we have lighter shades of orange that get darker as elevation increases, and so on.6
of flu cases in each county across the United States would be completely different if you first divided the flu case numbers by the county areas than if you just displayed the raw data. We must make an important distinction between maps that display the variable as given and choropleths that display the variable as normalized by some pertinent factor (commonly area). You need to carefully consider what your map is trying to show. For example, if you want to show number of houses by province, use the unnormalized numbers. But if density of houses by province is really want you are getting at, then normalize the number of households by area. In most cases the appropriate choropleth method is to normalize your data.

Dot Density Mapping and Symbol Gradients: Dot density maps can be a good alternative to choropleth maps because you can show the raw variable without normalizing it but the map viewer still gets an idea of how it is distributed. For example, a population map can show a dot for every 10,000 people in each county, with the dot(s) being placed somewhere inside the county polygons. In this way the map viewer need only look at the differences in the numbers of dots in each county to compare them as opposed to using a legend to help interpret a color gradient. Of course, a legend would still be needed to provide the ratio of dots to people, but it would still wind up being less work for the map viewer to glance at that ratio once as opposed to going back and forth between colors on the map and the legend. See the soils section of Chapter 6, “Features,” for another application of dot density mapping.

Another way of displaying variation in feature values is to create a gradient of symbol sizes corresponding to the variable. This works mostly for point layers but is also sometimes applied to line layers under certain circumstances. A classic point feature example is city points where the largest cities are symbolized with big squares and small towns are small squares and other towns are in between. A line feature such as roads can be displayed with different thicknesses based on traffic counts. This is different from the dot map method because the size of the symbol is changed, whereas in the dot map method the dots stay the same size and only the number of dots changes. One caution to be aware of when creating a graduated-symbol map is to avoid the use of circles as your symbol if you have more than three or so categories since small changes in circle size may be difficult for the human eye to detect.1 The alternative is to use squares, triangles, or some other shape instead.

WHAT COLOR ARE YOU TODAY? COLOR CONNOTATIONS

Another color rule to become familiar with is that colors often carry with them certain connotations relating to feelings (sad, happy), conditions (good, poor), and things (trees, sky). Color connotations are not uniform across all cultures but there still are some common map-related color connotations that do cross cultural boundaries. These are listed in Figure 5.11. Keep these in mind when creating your map because you do not want to send the wrong message by, for example, trying to highlight...
wildlife corridors with a dark red hue — which in the United States is usually associated with danger or poor conditions — when what you really want to convey is that they represent good conditions for wildlife. Another bad example would be the use of blue as a fill color for wildlife habitat polygons. The map viewer can easily interpret those as bodies of water, even if you have a map key that states otherwise. Interestingly, color connotations are not very consistent across time periods either, even relatively short time periods. For example, as recently as the early twentieth century, pink was a color associated with boys while blue was a color associated with girls. Obviously the opposite is very much the mode now.

Please note that my purpose in discussing color connotations and in giving some examples of the common ones is to keep you from blindly disregarding conventions. However, these are subjective interpretations, not hard-and-fast rules, so if you can make a strong case for using them in an unconventional fashion, then by all means, give it a go. We ought not to feel constrained by convention but rather be guided by it. Going along with that rebellious idea, let’s say you want to change the color connotations around a bit to keep your audience on its toes. An interesting approach could be to change your colors from what might be a typical scheme to something a bit “off.” An off-color scheme can bring a science fiction feel to your work as in Figure 5.12, which is a rehash of Figure 5.10.

As I hinted earlier with the red wildlife corridor example, color connotations are not consistent across cultures. When you are designing for an international audience, if you aren’t already familiar with the culture of the audience, you would do well to

FIGURE 5.11 These are some color connotations that are applicable to mapped variables.

FIGURE 5.12 This elevation color scheme does not follow any of the usual low to high color ramping schemes. Because we are not used to seeing elevation depicted in this way, it has a surreal quality to it. To see these same data depicted with a typical low to high color ramp see Figure 5.10.
vet your color scheme with someone native to that culture. One example of a color faux pas that could occur involves the use of the relatively common green to red color scheme that is usually used on a map to depict the low to high values of a variable, where the “bad” amount of the variable is colored red and the “good” amount of the variable is colored green. One example of this might be a business map showing the good places to increase business operations as green and the poor places to increase business operations as red. In many European and American cultures green evokes such things as likeability, spring, or environmental correctness, whereas red evokes such things as danger or poor environmental conditions. That seems to fit the data and the intended interpretations of the colors pretty well. But, in China, red is the color of good luck and celebrations. The green to red color scheme may not, therefore, be a good fit for a business operation map that is intended for a Chinese audience. In this example and others, these differences in meaning could cause quite a communication mishap if your maps are color-cued to the wrong cultural audience.

COLOR BLENDING (OR MY EYES ARE PLAYING TRICKS ON ME)

As I mentioned in the Legend section of Chapter 3, “Layout Design,” colors can be perceived differently depending on how they are combined with other colors. Therefore, I advise looking at many colors, in combination with those you have already chosen, before deciding on one for a particular part of the map or a particular feature. It can be very helpful to use a software tool to do this or you can create a series of color combination boxes yourself from which to base your feature choices on. You could use something like the color boxes I put together in Figure 5.13, or you could simply change the colors within your GIS many times while looking at the end result. References boxes — these might be part of a style guide you put together — are often an easier way to go. The color boxes in Figure 5.13 show some color combinations that work well together. Perhaps you could create your own color combination boxes like these even when you don’t have a particular project in the works and keep them around for when you need them.

FIGURE 5.13 These boxes show a series of color combinations that I found by looking at various book covers and spines on children’s books. These color blends were already vetted by the graphic artists at the publishing houses, giving the blends some credibility. Look around you and you will likely find many sources for color inspiration.

© 2009 by Taylor & Francis Group, LLC
a boost of color inspiration. My inspiration for this particular color set came from the spines of children’s books that my kids had on their bookshelf.

Now, another reason to make color boxes like these is to get a feel for not just whether the colors clash but also to figure out if they play any eye-tricks on you when they are put on top of one another. Some colors, when they are superimposed, will have certain visual effects that aren’t desired on your map. When it comes to GIS maps, these effects are not as noticeable as they are to those in other graphic design fields, but it is still important to have a cursory understanding of what they are and what causes them.

First of all, there are cool colors and warm colors. Go back to the color wheel in Figure 5.2 and look at all the colors on the left-hand side: blue, green, and purple. Those are cool colors. The colors on the right-hand side are the warm colors: red, yellow, and orange. When warm colors are placed on top of a cool background, they will jump out at you, creating a stereoscopic effect and perhaps making you dizzy. If your layout has a blue background, for example, you won’t want to print your title text in red. Conversely, when cool colors are placed on a warm color background they can look as if they are receding away from you (see Figure 5.14).

Secondly, there is the situation where the same exact color can look different depending on the color saturation of the background color. If the background is dark, then the foreground color will look more vibrant; if the background is light, then the foreground color will look less vibrant (see Figure 5.15).

Contrast

Another visual perception concept that is of significance to GIS is color contrast. High contrast between features on the map element especially is important because without it you risk obscuring the salient points of the map. The purpose of contrast is to present features so the map viewer can easily distinguish them from one another and, more importantly, from the background. For example, a typical subway map shows the main subway line features in highly saturated colors like blue and red, and the background terrain is in light tan, and the background water is in light blue. The viewer’s attention is focused squarely on the subway lines, as it should be, because they are the main purpose of the map. The high contrast enables the small subway

![Figure 5.14](image)
line features to be clearly seen. Another example is a map of hospitals and emergency clinics that shows those locations as red squares on a pale base map so they are clearly visible to those who may very well be in a rush.

A novice cartographer might make the mistake of creating a map with too many saturated colors or not enough saturated colors. Some people are afraid to put too much color on a map for fear that it will stand out, and, conversely, some seem to try and mask a deficiency such as lack of design skill or lack of confidence in the map’s purpose by blanketing the map and layout in bright colors.

While the subway map example and emergency services maps illustrate good contrast by means of a few dark colors on an otherwise subdued background, it is also possible to create a nice map with the opposite type of contrast: a dark background with lighter focal features. For example, let’s take a look at the Spain maps shown earlier in this section (Figure 5.9). My point with those was to the rule of five, so I didn’t include any of the surrounding geography as it was unnecessary for the discussion. But if we retooled the map for a different purpose, such as a Web site graphic or a report, we may want to add background information such as the surrounding country boundaries and water features to provide more geographic context. In doing so, we could make the added background features very dark, with colors such as olive green and navy blue. The resulting map (see Figure 5.16) shows how the dark background actually provides a high level of contrast with the light peach color of the main features (Spain and Portugal) and additionally creates a bold, eye-catching graphic.

In summary, if you take care to provide adequate contrast in your color choices, whether it is a dark background with lighter main features or a light background with darker main features, you can be sure that your most important data are brought to the viewer’s attention.

COLOR EVERYWHERE IS TIRING

We’ve previously focused a lot on color rules for the map element of a layout. Now I want to turn your attention to some of the margin elements of a layout that can
themselves become quite colorful: charts, graphs, north arrows, and icons of any sort. The thing to remember for these margin elements is that while it is tempting to “decorate” them with many colors, it is often unnecessary to do so and can instead grab attention away from the map element. The following excerpt from an article by Stephen Few illustrates this point: “… conferences dedicated to color and its use for information displays, exhibit great restraint in their use of color during presentations. For example, their PowerPoint slides tend to include grays far more often than you’ll typically see elsewhere. These experts realize that color should be used meaningfully, not arbitrarily or gratuitously.”

Now, if you are still keen to use color in your layout margins, it is imperative that you put as much thought into those colors as you did for the map colors. For example, I mentioned earlier that you can borrow a color used in the map by coordinating the title or layout background with the same color used to highlight features in the map. This is called “color echoing.” It is analogous to the poster finishing technique where the framer chooses frame colors by identifying important but sparse colors in the artwork. Similarly to the framer’s goal, we choose a color that will complement the map but not compete with it. In closing, if you are unsure whether the color is distracting and superfluous or complementary and meaningful, you would be wise to leave it out.

FIGURE 5.16 The map shown here exhibits a type of contrast (dark background, light foreground) that is the opposite of most people’s idea of good map contrast (light background, dark foreground), but the bold colors make it a great graphic for a report cover or Web site graphic.
Export Files and Color: Exporting to compression-based file types like JPEGs and GIFs can cause your colors to change. In some cases the change is just to a similar color but in other instances the color can change dramatically. The compression algorithms themselves are to blame for these color changes because in order to make the file smaller (i.e., compressed) they lose some of their color specificity. With GIF file types we generally have more control over these potential color shifts because, depending on which software you are exporting from, some settings can be changed to deal with the issue. However, with JPEGs you cannot minimize the color-shifting yourself unless you change the compression (sometimes called “quality”) of the file. Sometimes this is an option and sometimes it is not, depending on your software.

Ensuring Readability for Color Vision Deficiency

At the risk of sounding like a broken record: you must consider your audience when you design. One of the biggest audience-related design issues that map-makers continue to neglect is designing for those who have a color vision deficiency (this is more colloquially called color-blindness). What a waste of time it is for everyone when you come up with a glorious color scheme only to later find out that your boss, who asked for the map, can’t tell the difference between the red counties and the green counties. Taking this a step further, let’s say you designed a map of park trails for the public but then you find out that 10 percent of the public can’t tell the difference between the colors for the horse trails and the colors for the hiking trails. Not only have you wasted many people’s time but you have also created a communications disaster.

If you create a map for your work group, and your work group consists of three Caucasian men, the chance that one of them is red–green color deficient is about 22 percent.

It is in every GISer’s best interest to have an understanding of what color deficiency is, how to design around it, and how to check a map to make sure it is readable. So first let’s focus on what color deficiency is. The term describes a whole range of deficiencies that range from mild inability to distinguish a few colors to the very rare inability to see any colors except black and white. The most common deficiency is red–green, which causes both red and green colors to appear brown. Red–green deficiency is (usually) a genetic condition that affects about 8 percent of men and 0.5 percent of women of Northern European descent. The rates are much lower in other populations: about 5 percent of Asian males and about 4 percent of African males, for example. A rarer deficiency is the inability to distinguish between blue and yellow. The blue–yellow deficiency appears in the same proportion of men as women but affects only about 0.01 percent of all people. The rarest deficiency is black–white, which affects only about 0.003 percent of all people.
How do we design our maps to accommodate color-deficient individuals? It is important to note that with red–green and blue–yellow deficiencies, the colors can still be seen but not as the colors we intend. One of the biggest problems with GIS design when it comes to this issue is when a viewer can’t distinguish between the colors on a color gradient, or choropleth, map. Indeed, a very common color ramp is the green to red ramp, and this, in particular, can be useless for those with red–green deficiency.

This is especially true when the polygons, points, or lines are numerous and close together. In some cases, maps with only a few large red polygons and a few large green polygons, for example, are still distinguishable by red–green color-deficient individuals. Perhaps these test subjects only have a mild form of the deficiency, but there is also a size issue here. In fact, if you are familiar with the usual testing method for color-blindness (Ishihara plates), which is to look at a picture that contains many very small, multicolored dots while trying to find a number within the dots, it makes you wonder why the dots had to be so small to determine the color-blindness.

When designing, be wary of using colors that are low in saturation because they are hard to tell apart. A common map technique, for example, is to use a pale blue for water features and pale yellow for land features. These two colors are a lot harder for blue–yellow color deficient individuals to tell apart than high-saturation colors. Another situation to be on the alert for when designing for red–green color deficient individuals is using two colors that are the same for all components except green and red. A blue and a purple, for example, which differ only in their red component, may appear the same (see Figure 5.17).

Additionally, reds and greens that are pure red and pure green are the biggest problem-makers. When a red is tinted somewhat with, say, a little blue, and a green is tinted somewhat with a little yellow, they become easier to distinguish from one another. Therefore, if you take care to provide sufficient contrast in your colors, you might be able to circumvent the color-deficiency issue. This can also be accomplished by adding differences in brightness between the colors. Although the color-deficient individuals will not see the colors the same way other people do, they will at least

Avoid These Color Pairs

<table>
<thead>
<tr>
<th>R</th>
<th>G</th>
<th>B</th>
<th>AND</th>
<th>R</th>
<th>G</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>255</td>
<td>AND</td>
<td>190</td>
<td>0</td>
<td>255</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>0</td>
<td>AND</td>
<td>0</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>255</td>
<td>0</td>
<td>AND</td>
<td>255</td>
<td>90</td>
<td>0</td>
</tr>
</tbody>
</table>

FIGURE 5.17 When choosing colors for map features that will be near one another and need to be distinguishable by red–green color-deficient individuals, avoid color pairs that are only different in their red and green values.
be able to tell the difference between the map features, find them on the legend, and correctly interpret the map.

When do you need to pay attention to color-deficiency issues? If you ever design a map for anyone other than yourself (supposing that you are not color-deficient) or your immediate work group, it would be wise to design it as if someone with a color-deficiency were going to view your map. Certainly on maps that will be widely distributed or shown at a conference, you will want to ensure that the colors are visible to all audiences, including the color-blind, by running it through a color-deficiency simulation algorithm, such as Vischeck. This is a type of Web site where you can upload a map and have it transform it into a graphic that shows you what your map would look like to a color-deficient person. Another option is to begin with a color palette that is specifically designated as visible to color-deficient individuals. The Color Brewer Web site is a handy reference for such palettes.

INSPIRATION

While the Inspiration section is the last of the three Circle of Color Love concepts to be discussed, it is not least noteworthy. In fact, it is here at the end of the other two sections as a means of giving those other concepts some attention since it could just happen that once you read this section you may not feel a need for the other two. I say that because the shortcut method to figuring out how to make a beautiful map, at least where color is concerned, is to borrow the color scheme from an inspiration piece. This is what I call the “interior design” method of color choice. Have you ever seen a TV design show where the designer reveals that the entire room’s tone, style, and color were chosen based on one measly painting they found in the homeowner’s shed? Well, the inspiration piece and its initial location may vary, but you see the point. Yes, you too can riff off other people’s work, and the big secret is that all designers do this, even map designers.

In practical terms, the “inspiration” method of choosing colors for a map and layout is this: next time you are looking at a nice piece of art online, in a magazine, newspaper, or museum, take a moment to mentally (or physically) record the color scheme in as much detail as possible. What colors are used on the focal point? What colors are used in the background? How do they blend together? What kind of feeling do the colors relate to you? You can then adapt those colors to your map and layout. Yes, what I am saying is let other people do the work of choosing colors that look good together for you.

If classic art isn’t your thing, then look for inspiration in other places. How about fabric? Speaking of, mid- to high-end retail clothing companies often go to great lengths to produce catalogs and Web sites to showcase their wares that can give you hints as to which colors are currently in fashion and how to put them together. As I stated earlier, I have used book covers and spines for color pair ideas. Yet another option is to get some painter’s pamphlets (you’ll find many free ones at paint shops) that show colors in groups of three or four coordinated colors. The possibilities are numerous, obviously, and it just takes a little creative thinking and a watchful eye to discover them. Some potential sources are as follows:
• Nature (photographs or real-life excursions)
• Fabric swatches (from your own furniture or clothing or a fabric store)
• Clothing catalogs (online or print)
• Book covers and spines
• Painter’s leaflets (get online or at a paint store)
• House colors (cruise the neighborhood)
• Paintings (art at museums or online)
• Other people’s maps
• Flower arrangements (look at florist’s examples on the Web)

Once a general color palette is chosen based on an inspiration piece, you will have to adapt it to your map’s purpose. That’s where your knowledge of color theory and rules comes in. In some cases you may wind up using the exact colors from your inspiration piece, but usually you will find that as you build the map and take its particular nuances into account it will veer away from a literal translation of the inspiration piece and wind up standing out on its own. And then, for the ultimate compliment, perhaps your map will serve as an inspiration piece for other designers.

Black and White and Modern

Now that the color basics have been laid out, it is time to retreat a little and say something about black-and-white maps. When GIS first started, black and white was the norm for most maps. It was simply too laborious and expensive to create color maps, with user interfaces being either nonexistent or very simplistic and color printers hard to come by. Now, of course, color is ubiquitous because we have easy tools in our GIS to modify colors in myriad ways and because they are easy to display on our modern monitors and cheap to print on our office’s color printers and plotters. So because of this near universal use of color it is actually difficult to come by a map that only contains black and white (and shades of gray). The only exception to this might be a map published in the interior pages of a newspaper. So why might someone consider using grayscale in a modern map?

First, a resurgence of black-and-white maps might be in the making as people start to backlash against the use of too many colors — particularly the use of colors that aren't even effectively communicating anything. Black and white forces you to communicate elegantly and succinctly. Use color when it is necessary but always at least consider black and white when you are designing for a map that does not contain a lot of variables to differentiate.

One example of this is right here in this book. In Appendix A: Layout Sketches, you will find a lot of graphics that are intended to give you some inspiration when it comes to designing your own layouts. I could have used different colors to differentiate things like the page borders or reference map boxes. I could have used different colors to emphasize certain text items and arrows as well. But would this have obscured the overall intent of these layout sketches, which is to simply provide an overall quick glance of a potential layout schema? I think it would have. As they are, the black and white lends a certain amount of simplicity to the graphics that make them easy to scan and flip through.
Another reason a GISer might turn to the neutral side has to do with confidence. As the GISer becomes more confident in design, he realizes that color is not the absolute necessity that he once thought it was. His skills at placing objects on the page in appealing ways and coordinating line thicknesses and other non-color aspects of the design might make him want to ease up a bit on color in order to allow those other design elements to work effectively. In this way, the color is lessened so as to be less intrusive on the design. And finally, yet another reason for using a neutral scheme is simply that we want to bring variety to our map products, and what better way than to surprise people with an elegant and tasteful black, white, and gray map. In a time when people have access to color at every turn, these maps can be refreshing, surprising, and attention grabbing.

RESOURCES

3Cs: counter-cartographies collective is a neo-cartography group that has posted many of its projects and articles online. http://www.countercartographies.org
Color Scheme Generator 2 is an online tool that allows you to interactively choose a color palette using a clickable color wheel. Analogous, complementary, and polychrome palettes are created based on a single color choice by the user. http://www.wellstyled.com/tools/colorschematic2/index-en.html
Color Wheel Pro, TiGERcolor, and genopal are software that allow the creation of custom colors and palettes. http://www.color-wheel-pro.com; http://www.tigercolor.com; http://www.genopal.com
COLOURlovers is an online community where members post colors (individual or in palettes) and patterns, paired with a ranking system and critical feedback from other members. Informative articles and trend-spotting features are also on there. This is a great place to visit during the stage when you are picking out colors and need specific RGB triplets to go with whatever you find. http://www.colourlovers.com. Also see their article titled “Common Color Names for Easy Reference” found here: http://www.colourlovers.com/blog/2007/07/24/32-common-color-names-for-easy-reference/
Interactive Color Wheel is another online tool for picking colors. It gives you a range of colors on a color wheel to choose from, and once one is chosen you can modify its properties and output an HSB value for the color you create. http://r0k.us/graphics/SIHwheel.html
Kuler, by Adobe, is another community color site that allows you to browse users’ color palettes and view critical feedback. http://kuler.adobe.com/
Perry-Castaneda Library Map Collection provides many maps that can aid in color-picking and inspiration. http://www.lib.utexas.edu/maps
Strange Maps is a widely read blog with a variety of maps and corresponding critiques. These maps are useful to glean ideas on novel approaches and color schemes. http://www.strangemaps.wordpress.com

Transit Maps of the World is a comprehensive collection of transit maps that is a great resource for color, especially if your map is as complex as some

Web Colors Explained presents articles explaining the RGB, CMYK, HSB, and hex color models. http://www.web-colors-explained.com

END NOTES

2. One such tool is Color Brewer developed by Cynthia Brewer, professor and associate head of the Department of Geography, Pennsylvania University. The tool can be found at http://www.colorbrewer.org.

5. ColorBrewer.

6 Features

This section presents mapping standards and techniques for many common GIS features. These feature discussions are also a springboard for mapping techniques that can be used for GIS features that aren't listed here, since many of the techniques are widely applicable. Please note that these are all just suggestions and you must take the responsibility for applying them appropriately to your map, given that it has its own unique purpose, data, and circumstances. For example, in the Bodies of Water section, the color palette shows eight shades of blue as suggestions for water feature colors. While blue is a standard color choice for these features, you might want to make an exception for a particular map. Perhaps you feel that light gray would be good for the lakes on your map because you are required to use shades of blue for a different feature. In this case, bucking convention allows the lakes to be differentiated from the other feature type, a good reason for changing things up. Some of the ideas in this chapter encourage creative solutions by giving examples of what some innovative ideas might be. But do not let those limit your creativity. Come up with your own original solutions too. By learning the conventions you should become confident in determining where there is some room for creativity and where you want to stick with the traditional methods.

ROADS

COLORS

![Color Palette](image)

FIGURE 6.1

Roads, also called arterials, are fussy features (see Figure 6.1 for color suggestions). They can include everything from the major interstate highway to the dirt road behind your house. A map showing all the road types from dirt to autobahn with the same color and line width, at any scale, would simply look ridiculous unless your goal was to produce a jumble of lines (see inset, this section). There are exceptions to every rule but for the most part our roads must be separated into size classes and symbolized accordingly.

Once a symbol is chosen for each road class, with a thinner line for minors and a thicker line for majors, the drawing order must be dealt with. A map will be more comprehensible with the smaller roads drawn underneath the larger. Furthermore, when it comes to major intersections with all kinds of on and off ramps cluttering
up the picture, drawing order should reflect reality. That is, if one ramp goes under another, it should show up as being under the other on the map.

Once thicknesses and drawing order are sorted out, you can focus on style. If the road is symbolized with a line edge, otherwise known as “cased line,” this can be broken at intersections to provide visual continuity. Cased symbols are usually drawn with a light color in the interior of the road line feature and a darker color for the outline of the road line feature. If this rule is reversed, the road will not look as if it has width or dimension and instead will appear as if it were highlighted. Road labels are placed inside a cased symbol. A darker line within the casing can provide center-line realism. Casing is not recommended for scales above 1:100,000 (for these, use a regular thin line for major arterials). Directionals (arrows) can also appear within the line and are usually used for major arterials or one-way city streets.

You will also have to be mindful of generalizing roads depending on the scale of your map. For medium and small-scale maps you will find yourself getting rid of the smaller roads in order to neaten up the finished map. This is easy to do if your data are already separated into road classes either via separate files for each class type or via an attribute that holds the class information. If your road data do not contain this information, a work-around that often does the trick is to calculate the length of the roads and then separate out only the longest roads. The longest roads are often the major roads. You will have to use trial and error to find out if this will work for you. (See Figures 6.2 through 6.5 for examples how to depict this feature in certain situations.)

Out of the Box: If roads are the focus of your map, you could bend the rules. For instance, a small-scale picture illustrating all roads in one symbol type could make a statement about population, interconnectedness, or landscape modification. Another possibility is to create an oblique map of roads overlaid onto topography but toggle the topography layer off to visually compare relative slope.

MapQuest.com is one of the most used online road mapping Web sites. Prior to mid-2006, MapQuest’s online road map showed non-major roads as solid lines of a single color and narrow width. Google Maps came along at about this time with an online road map that used casing as the primary symbology for all of its roads. These maps looked much better and were easier to understand than MapQuest’s and it wasn’t long until MapQuest followed suit by creating cased lines on their maps as well.
FIGURE 6.2 This is an example of a dark background coupled with a highlighter color and is quite effective for maps with fewer features. Note that the casing stops at the intersection to illustrate continuity.

FIGURE 6.3 A classic land background is shown here. It is green with a hint of brown (RGB: 209 224 115). The minor roads are white with gray line edges. Solid red lines form the main arterials.
FIGURE 6.4 Evoking an architect’s plan, this white background with white roads encased in black is suitable for professional-looking black-and-white maps at a neighborhood scale.

FIGURE 6.5 Shown here is a no-nonsense conventional road map with black lines at varying thicknesses according to road type. The white background and black road labels make it an interesting read at both neighborhood and regional scales.
Rivers and streams, also called “hydrography,” can be simple features to display if you adhere to some common conventions such as the almost exclusive use of blue to depict them and the use of lines instead of polygons for most maps. (See Figure 6.6 for color suggestions.) Therefore, you can simply slap on a line-based river dataset, color it blue, and go. No, it can’t be that easy. Here are some additional considerations. To start, in many cases it is wise to match the stream line colors with the same color you are using for other water bodies on your map, including oceans and lakes. Other things to think about are how to show hierarchy, attributes, and labels. These are discussed next.

Showing Hierarchy

Rivers and streams in the natural world participate in a hierarchy determined by the volume of water they contain. The smallest streams in terms of volume, width, and depth are the headwater streams that do not have any tributaries flowing into them. The second smallest is a stream that has only headwater streams flowing into it. At the opposite end of the spectrum are the largest rivers that flow only into large bodies of salt water. These varying degrees of stream size can either be ignored on the map by simply symbolizing them all with the same line width, color, and style, or they can be emphasized via different line widths, colors, and styles.

The display of hierarchy can become as complicated as the number of orders your streams represent. If you only have three stream orders, then a simple gradient from dark blue for the mainstems to light blue for the headwater tributaries may suffice. Furthermore, line widths can be tied to the stream order by using a thicker line for the mainstems and thinner line for the headwater tributaries. The hue gradient and line thickness techniques could be used separately or in tandem. To add yet another level of complexity to the stream symbology, the ephemeral streams can be depicted via dashed or dotted lines to emphasize their transient nature. All of these special cartographic effects are only possible, of course, if your stream dataset contains attributes pertaining to reach levels, hierarchies, or stream orders. If you don’t have such a dataset, the next best thing is to assign the stream orders yourself by hand if there aren’t very many or find and run a stream ordering script (perhaps requiring a flow accumulation raster created from a digital elevation model) for your particular software.

Showing Attributes

Displaying stream attribute data, as opposed to simply the location of the stream (as above), can be extremely difficult depending on the scale of the map and the
nature of the data. For example, a dataset where the stream has been segmented into 100-foot segments might contain an ordinal attribute, such as degree of channelization, which you want to display. A color gradient can be applied, but if the map is at too small of a scale, you won’t be able to see the color differences. So to fix that, you might be tempted to increase the line width of a linear stream feature, but if the segments are short enough and numerous enough, you will wind up with an incomprehensible mess (see Figure 6.7).

Potential solutions for this predicament include generalizing the data so there are fewer segments, creating multiple maps at larger scales, and highlighting only segments that are above or below a certain threshold while keeping the remaining segments a neutral color. With some added effort, a hotspot map could be created by analyzing the data for clusters of high- or low-attribute values, delineating a circle around those values using the statistical results, then displaying the hotspots around the otherwise neutrally colored stream data. In this way you are essentially doing the viewer’s work for them. Of course, if your data do not show true cluster trends, then this will not be the approach for you.

Labels

Stream labels are usually formatted in spline text, meaning the label follows the curve of the stream (see Figure 6.8).
Spline texts present all kinds of problems for the computer and therefore we often run into issues fine-tuning the stream labels at map output time. Because spline texts are based on the curve of the stream, you won't want to create them until you know for sure at what scale the stream will be displayed; otherwise, you run the risk of having super-curvy text paired with straighter line segments or super-straight text paired with very curvy line segments. If the spline text is dynamically linked to the feature scale, then your problems may be solved. But in some cases, the spline text automatically generated is way too curvy due to the high number of vertices inherent in stream features. The resulting text can be difficult to read when every other letter is at a different angle. To ameliorate this, try simplifying the stream lines using your GIS and then basing the labels on the simplified stream lines. The labels can then be displayed with the nongeneralized data but will look somewhat better.

In addition to the splined text, another convention for stream labels is to use a script or italicized font in a blue hue (usually cyan, light blue) either slightly darker than or the same color as the stream feature itself. Depending on the scale of your map, you may need to increase the character spacing so that the label does not look squished in relation to the length of its associated stream. On the flip side, do not increase the character spacing to such an extent that you cannot easily see that all the letters belong to the same word. Also, not all of the streams and tributaries on your map need to have labels, even if your database contains all of the names. Consider it a type of map generalization when you pare down the stream labels to the number that are really necessary for the map viewer. Perhaps only the mainstreams need to be labeled, or only the streams that are salmon-bearing, or only the ones in the central study area, for example. One additional note is to always include the stream name suffix (e.g., River or Creek) with the label. Be sure to use initial capitals (also called mixed case). See Figures 6.9 through 6.12 for examples how to depict this feature in certain situations.
FIGURE 6.9 This is a basic stream map. All streams, regardless of stream order (hierarchy), are the same line thickness and color. The color of the stream lines matches the color of the outlet water.

FIGURE 6.10 These stream lines have two different colors and two different styles according to their stream order. Both the ephemeral streams and major tributaries are the same color as the outlet water, but the ephemeral streams have a slight dashed pattern. The mainstem is a darker blue. The label text is splined and italicized, character spacing is wider than the default, space between “Rendsland” and “Creek” is also wider than normal. The label text color is the same as the outlet water color.
FIGURE 6.11 This stream map shows a few hot-spots for a particular attribute (in this case it is large, woody debris). The attribute is not depicted on all of the stream segments as that would have resulted in a cluttered and perhaps unreadable map.

FIGURE 6.12 The rivers shown here are buffered to add emphasis and width to the stream lines. A two-tone effect is achieved by means of a slightly thicker river buffer (a light blue matching the Gulf of Mexico color) layered underneath a thinner, darker river buffer. Political boundaries that coincide with the rivers are layered on top of the rivers.
BODIES OF WATER

COLORS

![Color Swatches](image)

FIGURE 6.13

In much the same way as discussed previously for streams and rivers, it is tempting to think that bodies of water such as oceans, lakes, and ponds, are easy to style (you just make them blue right?). Yes, conforming to convention means that you will use blue for the features. Going a little further, convention would also dictate that you differentiate the land–water interface with a darker shade of blue or some other highlighting technique such as a halo (described in Chapter 5, “Color”) or stipple. (See Figure 6.13 for color suggestions.) However, what are some additional considerations that you might want to think about before going with the obvious? For one thing, you might not be simply trying to show the locations of your bodies of water, you might be trying to illustrate a variable associated with them instead. For example, you could use varying shades of blue and red to indicate temperature in a lakes dataset.

If you do go with blue for bodies of water data, let’s discuss the shade of blue that you use. Is water an important part of the map’s purpose? If so, perhaps a dark shade of blue would look nice. What shade of blue goes well with your other features and background? For example, some maps show lakes and oceans as being so blue as to almost be black and some do so far as to display them as black features, in mimicry of aerial photography hues. Conversely, when water is an ancillary feature that will easily get in the way of the larger purpose of the map, the lightest color of blue is often the way to go.

You might also consider the texture of the water body. In many landscape architecture drawings you will see changes in features highlighted with texture along the shared boundaries. In many cases the highlighting is created by simply making random dots along the boundary. In some historic maps you will see the texture repeated about the entire water body as opposed to just the boundary. In this case, the dots or splotches evoke breaking waves at the surface. This is akin to displaying mountains with little upside down Vs or triangles. While these are nonconventional approaches in the current GIS world, they may have their place in your design.

Do you want to show the bathymetry (depth) variations? These can add a lot of interest to a map even if they are not central to the main point (see Figure 6.14). Why would this be? For one thing, the presentation of unessential information (if visually appealing) gives the viewer a sense that this map is something important, something to be reckoned with. For another, the realism gives added contextual information that can actually make the map easier to understand and more quickly decipherable (see Chapter 3, “Layout Design,” Simplicity versus Complexity section).

LABELS

Water body labels, like stream labels, are often (but not always) written in a script font or italicized. Also, like stream labels, they are often (but not always) written in a
darker blue color than the underlying water body feature. If your water body is a particularly dark shade of blue, then you may want to use a bold white text for the label.

Now that we have the generalities out of the way, let’s move on to the more complicated aspects of labeling. You may find yourself, as I do frequently, since much of my work involves Pacific Northwest data, mapping a region that has a particularly large amount of water to label. You don’t just have an ocean and a bay, for example, you have an ocean, a strait, ten bays, ten inlets, a gulf, and an iceberg (well, maybe that’s a stretch in the Pacific Northwest). You can either label just the major water bodies or label them all but with different styles for each depending on the type. To get a grasp of how many different styles you could use, look at a U.S. Geological Survey (USGS) topographic map. A light blue (cyan) hue is generally preferred and initial capitals are almost always used except in the case of oceans, which can be uppercase. Swirly script fonts for bays and wide letter spacing on straits and other linear water features are just a few examples of the USGS styles.

Some of the special features of larger water body maps can be everything from current arrows, buoy locations, temperature extremes, bathymetry (depth), and shoal locations, to name a few. (See Figures 6.15 through 6.19 for examples how to depict these features in certain situations.) Strict nautical maps, of course, focus primarily on one or more bodies of water and conform to strict standards in order to aid sailors.¹

FIGURE 6.14 This map illustrates the visual appeal of bathymetric maps. The depth, displayed in varying shades of blue, adds a fluid richness to large water features.

FIGURE 6.15 This is a straightforward bathymetric map primarily for use as a recreational boating and fishing aid. There are no extraneous details here and it is a very utilitarian map.
FIGURE 6.16 Here we have a modern map with an old-fashioned twist: wave crest graphics in the deeper parts of the water. They have no other meaning other than to further differentiate the water from the land (old-time cartography is notorious for superfluous graphics), but they are a nice cartographic effect when used in the right context.

FIGURE 6.17 This is a map inspired by a landscape architecture–type drawing where stippling at the boundaries of two distinct features serves to accentuate the boundary and give some faux depth to the overall picture. The stippling could be a lighter or darker color than the background, whichever you prefer. Texture can be hard to come by on a typical GIS map, but this remedies that nicely.
FIGURE 6.18 In this example the lakes are kept a very light shade in order to keep them from overwhelming the map’s larger purpose, which is to show the distribution of hospitals across the state of Michigan.

FIGURE 6.19 This dark blue results in real eye-popping emphasis and is much like what you might see in a satellite photo.
CITIES AND TOWNS

COLORS

![Color examples](image)

FIGURE 6.20

Cities and towns, otherwise known as population centers, are stored as GIS data in either polygon or point form. (See Figure 6.20 for color suggestions.) The discussion begins with an examination of cities and towns in a point-data format.

POINTS

Our standard image of a city layer is of points corresponding to the location of the center of the cities, displayed as dots with city name labels near their associated dots. The points themselves, of course, can be graphically communicated in one or several of many different formats. Some of the most common point graphics for cities and towns include stars, dots, circles, squares, or some combination therein. If the map shows a great many cities and towns, you will want to distinguish between the smaller and larger population centers by using multiple point sizes, multiple symbols, or both. An example of an effective combination (this concept is also referred to as “symbol levels”) would be a map that shows the major state capitols as stars, the smaller cities as medium-sized dots, and the large towns as small dots. This symbol level technique would be achieved in the GIS by means of a selection for population size and ensuing assignment of symbology for that particular population size (for example, greater than 500,000) or by simply splitting the layer into multiple layers so that each may be rendered separately. The cartographic sophistication of your software will determine your methods in this case.

Colors are usually confined to primary or secondary colors (but not blue), with black being the most popular, followed closely by white with a black border. A few examples of dot types and colors are shown in Figure 6.21.

SPECIAL EFFECTS

When you have attributes associated with city and town point data that you want to display in some meaningful manner, a great trick to do this is via extruded graphics,

![Special effects examples](image)

FIGURE 6.21 City and town points are depicted like the points shown here.
especially when your display attribute is in ordinal format. For example, let’s say you have some data on housing starts within a state. Each city and town within the state can be shown as a bar that comes out at the viewer via a 3D effect at different heights depending on the number of housing starts recorded for that place in the past year. With enough data the map can almost start to take on a continuous surface look and feel, like an elevation model of housing starts. A more typical example would be something like using the population of major U.S. cities as the field for extrusion (see Figure 6.22).

Labels

Just as the points of a city’s layer can be shown via different sizes and shapes of symbols depending on the size of the city, the labels can be varied for the same reason. State and country capitols, for example, are often labeled in uppercase lettering and the minor cities are left as mixed-case lettering. The use of bold fonts for the larger cities and regular fonts for the smaller cities can be used in addition to the case changes or independent of them. Yet another technique to further the distinction between city sizes is increased character spacing for select cities. Labels are conventionally written in a sans serif font, such as Arial, on modern-style maps. Label colors for cities and towns are almost always black, though a dark gray would also be appropriate. The color of the labels might also be associated with some sort of attribute. For example, a map of drinking water contamination might use the color red for the five cities with the highest contamination levels. An additional item of note when it comes to city labels is that occasionally you might find yourself wondering why you need the point at all. If your audience only needs a general indication of where the city is or if the point would obscure some underlying data, you might choose to not display a point and, instead, simply use the label as the geographic locator by placing the label directly over where the point would have been. This is acceptable as well.
POLYGONS

Polygon city and town boundaries (also called community boundaries), while not a common map feature, are perhaps harder to show in a meaningful manner on a map than are points. With city polygons, you can easily obscure the other data you are trying to display by actually covering it up or by creating too much visual clutter. To fix this issue, you’ll need to use a simple translucent fill or only show the boundaries. The caveat for maps showing just the city and town boundaries without a fill is that then the particular feature becomes less important to the overall map and, indeed, could simply be too hard to distinguish from roads, county boundaries, and other linear features. So your presentation of this feature will depend on how important the boundary is to the map’s purpose, while being mindful to avoid too much clutter or the opposite, too little emphasis on the feature. (See Figures 6.23 through 6.26 for examples how to depict these features in certain situations.) Some options for these cases are as follows:

- Symbolize the polygons with a fill that is slightly darker than the surrounding land color while leaving the outline either minimal or absent (for maps without adjacent towns).
- For maps with adjacent towns, the fill color can be varied so that adjacent towns are distinct.
- Symbolize the polygons with a stippled, striped, or gradient fill to emphasize the areas while not completely obscuring the underlying details.
- Simply outline the boundary and do not use a fill color.
- Create a transparent fill color.

FIGURE 6.23 A very common and effective way to show city points is as white circles with black borders. The roads connecting the cities are also shown here, creating a central “hub” effect, with the roads looking like spokes coming off the hubs.
FIGURE 6.24 Town boundaries are shown here with a gradient fill, whereby the gradient gets darker as it approaches the edges of each town.

FIGURE 6.25 To emphasize just one of the towns without actually drawing a line around the boundary, this fill effect works well. To do this I simply lowered the values for each color component on the RGB scale by fifteen (if you recall from Chapter 5, “Color,” lowering an RGB number brings that color component closer to black). The background color is 215 215 158 and the Waterbury Township is 200 200 143.
FIGURE 6.26 The city points in this example are differentiated by their symbol type and size, which correspond to their population. Stars are usually reserved for state or country capitols, and this holds true in this example for Atlanta, the capital of Georgia. The medium population cities are medium-sized squares and the smaller cities are smaller circles.

POLITICAL BOUNDARIES

COLORS

FIGURE 6.27

Many of the ideas proposed in the polygon part of the Cities and Towns section just prior to this are also applicable to the political boundary section. Political boundaries such as county, township, or country boundaries are polygons since they all show containment of land for political or administrative purposes. (See Figure 6.27 for color suggestions.) Despite this, sometimes the dataset you have to work with will be a simple or complex line that only delineates the boundaries and not the interiors. Obviously if that is the case, your options for display are narrowed since using fill color will not be an option.

CONVENTIONS

Always look up conventional styles for political boundaries since they are a good starting point. For example, county boundaries are often depicted as dashed or dot-dashed black lines over a gray bar. They are also often depicted with a simple black line, especially if the map is at a medium to small scale, showing many counties, for example. A map with just one or maybe up to three counties would be ideal for the dashed line technique.
Dashed Line Patterns: If you decide to put your political boundaries in a dashed-line format, be sure to convert them to line format prior to symbolizing. If you try to use a dashed-line format on a polygon outline, the dashes will be shown at varying intervals along the overlapping polygon outlines. So if you were using a dot-dash-dot-dash pattern on a polygon, you could wind up with a dash-dash-dot-dash pattern or something else entirely due to the overlapping effect.

Double-line boundaries are sometimes used to provide extra emphasis or differentiation from other boundaries. For example, if you have a nested ZIP code map you can use single lines for the inside polygons that show the ZIP+5 boundaries and use double lines for the larger ZIP code polygons. Thinner lines denote a subset of a larger feature when the larger feature is depicted with thick lines. Political boundaries, when they coincide with natural features, should be layered on top of the natural feature when possible. For example, country and state borders often follow major river courses, so the optimal overlap solution would be a thicker river course line underneath the thinner border line (see the Rivers and Streams section for an example). (See Figures 6.28 through 6.31 for examples how to depict this feature in certain situations.)

Another hierarchical feature of political boundaries is the border between countries, between continents, and between countries and surrounding oceans. Which should come first? The ocean–land boundary (usually a darker blue line than the ocean itself) ought to take precedence over the country boundary where they overlap.

![Figure 6.28](image-url)

FIGURE 6.28 A very common way of separating political boundaries is to use different fill colors for each adjacent feature — making sure that no two adjacent features share the same color while also making sure that the colors all relate somewhat. In this map all of the colors are subdued cool tones. These kinds of political boundary maps make great background maps.
FIGURE 6.29 Along with different fill colors for each state, this map uses a dot-dash line for the state boundary lines.

FIGURE 6.30 A nested hierarchy of political boundary types allows the viewer to easily pinpoint the major boundaries while still being able to see the minor ones. In this map the red dashed line represents a state boundary line. The red dashed line could also be used on the outer boundary lines of a group of states to depict a marketing area, for example.
Features

Fuzzy Features

Colors

A fuzzy feature is any feature that does not have an exact boundary or location in reality, but in your GIS database, it does. (See Figure 6.32 for color suggestions.) Sometimes a feature does not have an exact boundary for political reasons, and sometimes the exact boundary is simply unknown. Our problem with fuzzy features, as mapmakers, is that we have to store the locations in exact terms but we ought to display them in such a way so that their lack of exactitude is readily apparent. This, for example, will assuage the fears of potentially affected people when overlaying certain data onto tax parcel data.

Let’s take the example of a flood-prone zone analysis. You’ve spent weeks developing and computing flood-prone zones in a particular area to aid decisions concerning where potential environmental impacts might occur. Perhaps this analysis is all about pinpointing homes that should receive government assistance to update their septic tank systems for the good of the overall watershed. In this fictitious example, the people living in a flood-prone zone need to update their septic systems. You show your map, which is based on 30-meter resolution raster data overlaid on surveyor-accuracy...
parcel data, to a group of citizens and everyone is trying to locate their house on the map to see if they are affected, when in reality, your map’s purpose is just to show the general location of these flood-prone zones, not their absolute locations with respect to individual homes. When it comes down to deciding which homes will be affected, the flood-prone zone overlay will be used as a preliminary selection device to decide which homes will require onsite evaluations. One obvious way to avoid a rush of needlessly concerned landowners is to avoid putting the parcel data on the map in the first place. Another is to point out the “fuzziness” of the data in the title, and yet another is to use some of the cartographic techniques mentioned here.

TECHNIQUE

Fade-outs, squiggly lines, and dashed lines all convey a sense of transience that would best suit the purpose rather than a solid line for the outer edge of the feature. Halos of decreasing prominence along the outer edges also fit the bill nicely. If a fill is in order, hash marks or stipples, paired with invisible outer edges, are good options since the outer edge of the feature will therefore contain a lot of white space and also convey some feeling of an unknown edge.

Of course it should go without saying that whenever features with unknown boundaries like these are displayed on a map, especially if they are combined with high-resolution personal data such as parcel boundaries, a caveat needs to be made to such effect in the title, subtitle, or some other prominent location. (See Figures 6.33 through 6.36 for examples.) If the graphics cannot convey the message, then the words can (and vice versa), but try for both.

FIGURE 6.33 A random-looking dot pattern (which is really just a graphic fill) for the flood-prone zones in this map is helpful for conveying the imprecise nature of the boundaries.
Figure 6.34 Stream buffers can be contentious and are not always to be taken as exact boundaries to determine on-the-ground activities. To show this 600-foot stream buffer’s inherent fuzziness, a multi-ring buffer was created at 200-foot, 400-foot, and 600-foot intervals. The 200-foot interval is medium green, the 400-foot is light green, and the 600-foot is a lighter green. With no outlines and a transparent effect, the buffer shows its general location without appearing set in stone.

Figure 6.35 To get rid of any hints of boundaries, you can always transform polygon data into dot maps where dots represent a number based on a variable. In this case the polygons aren’t needed anymore.
Elevation can be displayed in many different ways, with one particularly popular derivation being the hillshade (also called “relief representation”). Other options for displaying elevation include contouring with or without hypsometric tinting, spot height labels, and, of course, the 3D oblique effect (which is really 2.5D if you want to get picky about it). (See Figures 6.37 and 6.38 for color suggestions.)

Hillshade

The hillshade map is the one we are most familiar with when we think of a relief map that shows shadows on the sides of slopes to give an almost true-to-life feeling
of height. A hillshade map is calculated from an elevation dataset using an algorithm that determines the amount of shadow to apply to each raster cell depending on the elevation value of that cell and the location of the light source (usually the northwest corner of the map). Slope and aspect values are also taken into account. The great thing about a hillshade map, when it comes to the printed map, is that when you put it under some transparent layers, you can really get a sense of where those layers’ features are in relation to the topography of an area. So if you had a layer classified into different types of trees and put that over a hillshade map, you can start to see definite differences in tree type depending on the underlying elevation. You can also see landforms on the hillshade that act as landmarks so that you can more easily relate the attributes of the top layers with their geographic location.

Contours and Hypsometric Tinting

Contour lines that follow a single elevation value around a grid can be computed and displayed within the GIS and on your map. These are usually brown for above-sea-level elevations (except over glaciers, where they are blue) and blue for below-sea-level elevations. The elevations ought to be labeled for each five or ten contour lines. If there are only a few contours, however, they can all be labeled. The labels are usually placed on the line with white space behind them (see Figure 6.39).

Traditionally, every fifth or tenth contour is symbolized with a thicker line or a different color than the others in between. The thicker lines are the index contours and the thinner lines are the intervals. The difference in line widths and colors allows for quick slope calculations and easy visual interpretation. Contours are harder for the untrained eye to decipher than a hillshade, but they are a more accurate representation of the actual elevation than a hillshade. So your map’s purpose and audience are going to determine which of these methods you wind up using.

If contours are in order for your map, you might consider coupling them with hypsometric tinting (shaded contour map or shaded isoline map), which is really just a way of saying that you could color in between the contour lines to provide additional cues for the non-contour experienced viewer. To explain this further, picture a map with each elevation group (say every 50 meters or 100 meters) having a different color, with the highest elevations like the tops of mountains being white, and the lowest areas, like flatlands at sea level, being dark green. You can continue the fun by using shades of blue for the below-sea-level locations. Hypsometric tinting is also desirable on top of hillshade layers and creates a very data-rich cartographic output.

A lot of times when we use a hillshade map, especially if it also involves hypsometric tinting, we risk distracting the map viewer from the important aspects of the map because there is just so much color and detail all around the map. To overcome this problem, you may want to isolate the most important section of your map for hillshading. However, should you need to provide elevation data outside of the map’s primary focus area in order to provide context, you may want to consider using a

FIGURE 6.39 A contour label placed on the line.
very lightly colored hypsometric tinting layer that covers the entire area while using a darker colored hypsometric tinting layer on the focus area. However, this can significantly increase draw time, load time, and print file size because of the two overlapping datasets. In some cases this can be helped by using GIS software that can use two different symbol sets for two different spatial extents.³

SPOT HEIGHT LABELS

Labeling the important elevations on your map with their elevation values is called “spot height labeling.” Usually you would label elevations that are extremely high, like Longs Peak in Colorado, for example, or super low, like the Rift Valley. But you could also label the heights of buildings if your map is of a smoke-plume simulation, or the heights of hills and trees for a view shed analysis, or whatever special case you might have.

3D ELEVATION

In GIS, the height dimension of a 3D map will most likely be defined by an elevation raster dataset. Now, there could be some exceptions to this (modeling the human eye or the HSV color model, for example),¹ but for the most part when we talk 3D GIS we are talking about how our features look when draped onto the surface of the earth. Sticking to the basics of the use of elevation in 3D maps, the first thing to do is make sure there is enough elevation change at the scale of your study area to make it worthwhile. If the land is relatively flat at your scale, you can create several maps at larger scales or extrude the elevation values to give them the appearance of being larger. The second thing is to be extremely cautious about clutter. If a regular elevation layer can distract from other data, then think about what a 3D elevation layer can do. (See Figures 6.40 through 6.43 for examples how to depict these features in certain situations.)

![Figure 6.40](image)

FIGURE 6.40 Hypsometric tinting, shown here draped over a hillshade, allows the overall height category and the underlying hills and valleys to be seen.
Figure 6.41 A hillshade for just the underwater portions of the elevation map makes for an interesting twist from the more typical map where the on-land portions are hillshaded while the underwater portions appear flat.

Figure 6.42 The color scheme for an elevation dataset can vary depending on the purpose of your map. In this map an uncommon purple and green color scheme makes the map appear more art-like than life-like.
Figure 6.44

A parcel by any other name would be just as boring: Other words that have similar meanings as parcel are

1. Tax plat
2. Lot line
3. Property boundary
4. Cadastral map

Parcels, or whatever you want to call them (see inset), when stored in a geographic database, delineate the aerial extent of property as well as store all kinds of related attributes such as tax ID number, tax status, and ownership information. These parcel boundaries can be very precise due to on-the-ground surveying or very imprecise if the boundaries are instead digitized from historic, hand-drawn, plat maps. Sometimes both types of boundaries exist within the same parcel database, as in the case where
in-town parcels have been surveyed on the ground and rural areas have not. This presents a certain amount of difficulty for the designer since it is likely that both types will need to be presented on the same map. A distinction could be made between the precise boundaries and imprecise boundaries by changing the boundary line from, say, a solid for precisely located parcels, to a dashed line for nonsurveyed parcels. In other cases the designer may want to merely note the limitations of the data in a disclaimer or other such section containing caveats. (See Figure 6.44 for color suggestions.)

Scale must be a big part of the discussion on the subject of adequately portraying parcels on a map. Parcels are really only visible as discrete entities at large scales since parcels can be as small as, say thirty meters by thirty meters, although they can be much larger. Also, your study area will most likely include a mix of very small and somewhat larger parcels (representing farm land or parks or golf courses, for example). So what do you do if you want to show parcels on the map but have a broad study area that will effectively obscure the individual parcel boundaries? The first thing to do is figure out what it is you are trying to convey to the map viewer by means of parcel boundaries. If the intent of the parcel data is to merely show a background map to provide context for other data, then a few options are available. The first is to consider only showing the landmark-type features from a parcel map, such as the roads, parks, and water areas. The second is to show all of the parcels but only in outline form (i.e., no fill color) and with a very light gray and very thin line symbology. This second method will not work with very broad study areas combined with small output sizes.

If categorical parcel data are being rendered in a color scheme such as red for commercial and industrial parcels, green for parks, and brown for residential parcels, and your map is at a smallish scale, you will not want to cause undue clutter by outlining the parcels with colored outlines and may need to get rid of them, especially if it is the overall effect of the land uses that is the main take-away from your map as opposed to what individual parcels are categorized as. If there are a lot of categories and the scale is smallish, you may need to create one or more inset boxes that enlarge the more dense regions of the map in order to allow your viewer to see the smaller parcels within those dense sections.

Above all, always ask yourself if these data could be summarized in such a way that would assist the viewer in interpreting the results more swiftly. For example, the commercial and industrial, park, residential map could be displayed as a park map where the ratio of park to township is shown rather than the actual land uses. In this way you’ve done the interpretation for the viewer as opposed to counting on them to interpret it themselves. Some other options are to include both the “data” map and the “derived” map on the same sheet so that the viewer understands where your analysis came from. In other cases, however, you will not be able to summarize the data, particularly if you are using the map as a means of gathering corrected information from a large group of people. (See Figures 6.45 through 6.48 for examples how to depict this feature in certain situations.) For example, you may need to vet your commercial and industrial, park, and residential categories with planners and local citizens who have firsthand knowledge of the study area to make sure you have categorized things appropriately. The solution for this is to increase the page size or use multiple pages.
FIGURE 6.45 In this example, the parcels are dotted around the outskirts of town to convey the impreciseness of their boundaries, and the in-town parcels are depicted with solid lines to convey precision. The legend would indicate that the solid lines are surveyed parcels and the dotted lines are hand-drawn parcels.

FIGURE 6.46 This large-scale map uses a highlighting color to emphasize a few parcels. The surrounding parcels are noticeable but not obtrusive.
FIGURE 6.47 Just the outlines of parcels, color-coded to denote regulatory zones, are shown here overlaid with a high-resolution aerial photograph. Bright parcel outline colors are needed in order to allow the parcels to be seen above the aerial photograph. Labels indicate land use codes.

FIGURE 6.48 A patchwork of parcels can indicate general trends in land use or any other variable tied to the parcels. In this case oranges and reds indicate residential properties by housing density, greens indicate forested parcels, and tans indicate public open space.
CURRENTS

COLORS

![Color Swatches](image)

FIGURE 6.49

Ocean currents (and other water currents as well) are usually shown on maps to aid in naval navigation but can also be a neat way to visualize how water currents shape the environment for other purposes. (See Figure 6.49 for color suggestions.) Usually a current map will consist of text and symbols that convey the velocity and direction of currents on a given body of water (ocean or lake, primarily, but also applicable to rivers and streams if such data are available). Current direction is typically shown as arrows pointing in the dominant flow direction while velocity can be shown with symbol levels. Symbol levels can be made up of color gradients, line thickness gradients, and symbol gradients. For example, a darker blue and thicker line arrow could represent high velocity, whereas a lighter blue and thinner line arrow could represent low velocity. Another great way to show velocity is to create a map where more arrows are in the higher velocity areas than in the lower velocity areas. That sort of density-dependent symbology could take some time to symbolize properly but could be very appealing in its intuitiveness to the untrained viewer. On a smaller scale map, perhaps all you need are a few, longer arrows, showing average current direction for various known currents along a shore or in an entire ocean.

As far as the arrow graphics themselves, sometimes the arrows are solid lines and sometimes they are merely outlines of arrows. Conventionally, the colors of the arrows are red, blue, or black. Red and blue current arrows represent warm and cool currents, respectively. Display techniques depend largely on the scale of your map. A map of the world would show the major ocean currents and current name labels. A large-scale map showing just one beach along a shoreline, though, or one bay, could have a great number of arrows to show every little current that exists. Current velocity can be shown with symbol levels by using longer arrows (or whatever symbol you are using) for the high-velocity currents and shorter arrows for the low-velocity currents. (See Figures 6.50 through 6.53 for examples how to depict this feature in certain situations.)
FIGURE 6.50 In this current map of a portion of San Francisco Bay, three graduated symbol sizes are used to provide a visualization of current velocity. More than three symbol sizes would overwhelm this map due to its size and scale. The symbols are rotated to depict direction. Simple symbols do not portray direction (such as triangles, circles, squares); you must use a symbol with a tail like an arrow or elongated triangle.

FIGURE 6.51 In this smaller scale view of the previous map, the number of gradients was kept the same but the symbols were made significantly smaller.
FIGURE 6.52 To show the major ocean currents at a small scale, use elongated arrows as in this example or some other symbol with a definite direction. Streaklets, symbols that look like comets, would also work nicely and have a more fluid appearance. In this map, the arrow is red to denote warm temperature and is labeled with the name of this major current.

FIGURE 6.53 Ocean currents are often shown along with sea surface temperature. When using blues, purples, yellows, and reds to denote temperature, the currents need to pop out sufficiently from the dark background by using whites, yellows, or bright greens. Alternatively, the background can be lightened with a masking layer or transparency affect.
Who knew there could be so much to learn about the cartography of wind? This is one particular area of mapping that must have made those old-time cartographers jump out of their seats with joy. I can just picture them saying, “I love putting wind currents on maps because in doing so it gives me good excuse to draw a picture of a wind god in some of the white space.” And just what wind god might they have picked? Perhaps Aeolus, from the tempestuous story of “How Odysseus and His Crew Were Idiots” (or something like that): Consider poor Odysseus who, upon having been rescued by the King of the Winds — Aeolus — and given a whole month to rest up on Aeolus’s home land of Aeoli, is subsequently given some bags of the wind as a gift by the Wind King himself. After the wind gift is bestowed, Odysseus is sent nicely on his way home with a strong breeze from Aeolus, headed in the right direction. Just when Odysseus and his crew are almost home-sweet-home, the sneaky crew can’t help but open those gift bags of wind that Aeolus had given them, expressly against Aeolus’s instructions and Odysseus’s command. And blast it, they open up winds that send them straight back to Aeolus, who wisely decides that he will not help the unfortunate crew anymore (Figure 6.55).

Certainly, sailors like Odysseus must be familiar with the wind currents that they sail through. And certainly we GISers will sometimes be called upon to show these currents on maps for those sailors, but more frequently than not, we will be displaying wind on our maps for other sound reasons such as displaying an analysis of wind currents versus offshore drift or the connection between wind velocity and the tempering effects of eelgrass. Whatever the purpose for showing wind on our maps, much of the same cartographic techniques discussed in the Currents section are also applicable for wind data.
For one thing, wind, like currents, has direction and velocity, and both can be shown with arrows and symbol levels, respectively. So, you can use different colors and different symbol sizes for different wind speeds just as with currents. (See Figure 6.54 for color suggestions.) However, you can also use wind-specific symbols, called “wind barbs,” especially if you have wind station data tied to a particular station or point on the map. A wind barb always points in the direction that the wind is coming from and contains barbs that indicate how fast the wind is blowing, thus showing direction and speed all in one without changing the color of the symbol. You can’t read these if they are too small since being able to discern the barbs is crucial to interpreting them. Therefore, they are really only useful for large-scale maps unless you make really large barbs. They can also be accompanied by labels showing another variable.

The only thing the wind barb map in Figure 6.56 is effectively communicating is general wind direction. The wind barbs are barely discernable due to the small scale and large quantity of barbs.

So how do wind barbs work? For starters, they consist of lines that are oriented in the same direction as the wind along with short lines coming off the ends of the direction lines that indicate velocity. Shorter barbs indicate five knots and the longer ones indicate ten knots. There can be some variation in where these velocity indicators are placed when there is more than one on the barb. For example, a fifteen-knot wind would be represented with two lines coming off of the main directional line, one short and one longer. The short line could be placed at the end of the directional line with the longer one underneath or vice versa. Another variation you might see is a dot, or small circle, at the end of the direction line. Sometimes the dot indicates a third variable such as cloud cover. A simple wind barb example is shown in Figure 6.57, showing wind from the northeast.
What else can be used to visualize wind on a map aside from arrows and barbs? You might sometime come across a very interesting method of showing wind using isolines. Essentially, wind direction and velocity can be depicted with isolines connecting points of equal value. The direction isolines are called “isogons” and the velocity isolines are called “isotachs.” The term “isogon,” which actually refers to any line that depicts the angle of something, not just wind. When a map has many isolines, a hierarchy of symbols can be used in order to more clearly delineate the information by means of a thicker line for every fifth or tenth isoline and labeled with the appropriate value. For smaller scale maps you can show just the major intervals — all of which should be labeled — in order to avoid cluttering the map. These lines are typically black or blue, though gray might be a nice choice as well.

Hypsometric tinting can be used for these maps just as with any isoline maps by way of using different colors for each interstitial space between the isolines. If you use this technique you do not necessarily need labels on the isolines because you will furnish the layout with a legend that relates the colors to the associated variable. (See Figures 6.58 through 6.60 for examples.)

FIGURE 6.57 Wind barbs show the direction of the wind (from the northeast, here) and the speed of the wind. The angle of the main line is rotated relative to the stationary dot depending on the wind direction. The flags change in number, style, and position depending on the wind speed.

Other Weather Features: Wind, of course, is not the only weather variable that is frequently mapped in GIS. Other features like frontal locations, pressure, and precipitation, to name a few, are common inputs to GIS. The same principles would apply to these other features as they do to wind:

1. Reduce clutter by resampling or zooming in when needed.
2. Make sure you check out industry-standard symbols before attempting to use your own.
3. Simplify the symbols if needed.
4. Investigate alternative ways of displaying point data (by isolines, or hypsometric tinting, for example).
5. Experiment with color symbol levels and styles to illustrate intensity of a variable.

FIGURE 6.58 In this map the wind direction is shown by means of a simple arrow rotated according to a direction field in the database. The wind speed is shown through two simultaneous cartographic effects: darker gray and longer arrows represent a fast wind, whereas lighter gray and shorter arrows represent a slow wind.
FIGURE 6.59 These wind data have been resampled in order to reduce visual clutter. The general wind directions and wind speeds are readily apparent.

FIGURE 6.60 These wind data have not been resampled but the map extent has been enlarged so that all of the barbs are visible and readable.
Traditional air temperature mapping interests me because of the blue-to-red color scheme that is frequently used. Essentially, the level of heat on a temperature map is denoted by making all cool zones blue and all hot zones red. With the addition of in-between temperature zones, the color scheme winds up being something like this: blue, yellow, orange, red. (See Figure 6.61 for color suggestions.) However, if you think about it, this color scheme is directly the opposite of the colors that a flame takes on at varying temperatures. A flame, such as a candle flame, can take on the colors blue, yellow, orange, or red, but the blue color indicates the hottest part of a flame, whereas the red color indicates the coolest part of the flame (incandescence). Similarly, a look at the field of astronomy does not help either as we wind up with the same issue as with the candle flame: the hot stars are actually blue and the cool stars are actually red. So where did our map temperature color scheme come from? In contrast to the color properties of natural phenomena, the color properties of emotions are quite different. The emotional connotation for red, yellow, and orange is hot, whereas the emotional connotation for blue and purple is cool. So, while it would seem to be a better fit for mapping natural phenomena in their “natural” hue, we continue to use the traditional color scheme based on emotional connotations for temperature maps.

Temperature can be symbolized in a variety of ways:

- Points where temperature readings were measured
- Lines connecting measurement points of equal value: isotherms
- Polygons with hypsometric tinting: the area between isotherms

All of these geometry types could be shown in color or in black and white. If color is used, it would be wise to use the traditional blue to red color scheme just discussed, tying the color to the temperature of the individual point, line, or polygon. Grayscales can be used to denote temperature as well, with the darker grays denoting higher temperatures than the lighter grays. Grayscales are fine for use in any of the three geometry types. Black-and-white maps can easily be constructed with temperature isotherm (line) data since the isotherms themselves can be black and simply be labeled with the appropriate temperature. While the examples in this section focus on air temperature features, maps of sea surface temperature, or any water temperatures for that matter, are mapped in exactly the same way. (See Figures 6.62 through 6.65 for examples on how to depict this feature in certain situations.)
FIGURE 6.62 These temperature isolines represent varying degrees of Fahrenheit throughout Minnesota. If a general overview is in order, then this map does the trick, especially when paired with a key to the colors.

FIGURE 6.63 The areas between the isolines are shaded in this map to produce more of a continuous surface effect. This map looks great but potentially misleads a map viewer into thinking that temperature had been measured continuously across the space, whereas it was only measured at points along the lines between the color changes. Consider your audience when deciding if it is an appropriate trade-off.
FIGURE 6.64 This black-and-white temperature isoline map has labels that show what the temperature is along that line. Although some GIS software can place labels like this automatically, you may need to use halo text for the labels (especially if using graphics software) or use a symbol with text that has a white background (such as a road sign symbol without the outline).

FIGURE 6.65 While not quite the same continuous surface effect as a polygon fill would produce, this map of temperature points achieves a similar effect. It also clearly conveys the message that the data are taken at discrete station points in the study area.
FEATURES

LAND USE AND LAND COVER

COLORS

Figure 6.66

Land use land cover (LULC) data are grids or polygons representing type and extent of terrain for a portion of the earth’s surface. Some confusion occurs concerning what exactly the difference is between the terms “land cover” and “land use.” Land cover technically consists of anything that covers the land, both natural and human-made, with perhaps the exception of open water and bare rock (although, these too, are sometimes included in the definition). Land use is supposed to be solely the activities that humans use the land for, like hunting, fishing, and farming, but arguably also consists of categories such as urban, industrial, and residential that aren’t exactly activities but are definitely human-centric uses of the land. Because of the slightly unclear nature of the terms, many simply concatenate them into one overarching term that groups the two kinds of information together. (See Figure 6.66 for color suggestions.)

Some Land Use Land Cover (LULC) categories:

1. Urban
2. Residential
3. Commercial
4. Cropland
5. Forest
6. Ocean
7. Tundra
8. Ice

LULC data are derived primarily from satellite or aerial sources. Maps of LULC can drill down to the details of a landscape by providing information on the makeup of individual plant communities, for example, or take a wider view and categorize areas into broad swaths such as water, forest, urban, and grassland. Often, specific activities (land uses) that could potentially be included like hunting are not due to the lack of ancillary data needed to define the boundaries of those activities (such as administrative boundaries) as well as their overlap with other categories like forests and grasslands. It is wise to keep these caveats in mind and perhaps call them out in the text portion of your map if the audience is unfamiliar with such data.

You can think of LULC maps as being similar in visual style to any class-type map, except that in many cases they utilize standard classifications with standard color schemes. Should you not have data that use a standard color scheme, then the convention for deriving your own colors is to keep the colors as logical and close to reality as
possible, whereas with other class map types you might just assign colors based on how nice they look together. For your LULC data, forests could be varying shades of green depending on the forest type, whereas glaciers would be white and bare ground would be brown, for example. To repeat, there is a higher degree of matching map colors to real colors that goes on with these maps than with other class-type maps.

As far as standardized class schemas and colors go, one of the most familiar schemas for vegetation classification of remote sensing data is the Anderson Classification system, developed by a whole crew of agencies including the U.S. Geological Survey (USGS), National Aeronautics and Space Administration, Natural Resource Conservation Service, Association of American Geographers, and the International Geographical Union. With so many agencies working on this thing it is a wonder it came out as splendidly as it did.

In this hierarchical schema, landscape features are grouped into varying levels of detail. In the Anderson nomenclature, each hierarchy step is called a level. For example, level II Anderson, unit 10, is urban land. This unit is broken down into eight constituent parts: low-, medium-, and high-density residential; commercial, industrial, and institutional; extractive; and open urban land. The fact that these classifications remain constant over a wide variety of analyses strengthens their usefulness in, for example, trend mapping over time (where the necessity of similar methods of classification is a given).

If your data are in an Anderson classification, then you are in luck as far as picking colors is concerned, because the USGS has done the job of picking the colors you should use, at least for the level I categories. The official colors are reported in Munsell color format, but I have converted them to GIS-friendly RGB triplets, shown in Figure 6.67.

<table>
<thead>
<tr>
<th>Land Cover Category Name</th>
<th>No.</th>
<th>RGB Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban or Built-up Land</td>
<td>1</td>
<td>235 109 105</td>
</tr>
<tr>
<td>Agricultural Land</td>
<td>2</td>
<td>206 166 138</td>
</tr>
<tr>
<td>Rangeland</td>
<td>3</td>
<td>255 224 174</td>
</tr>
<tr>
<td>Forest Land</td>
<td>4</td>
<td>166 213 158</td>
</tr>
<tr>
<td>Water</td>
<td>5</td>
<td>117 181 220</td>
</tr>
<tr>
<td>Wetland</td>
<td>6</td>
<td>188 219 232</td>
</tr>
<tr>
<td>Barren</td>
<td>7</td>
<td>200 200 200</td>
</tr>
<tr>
<td>Tundra</td>
<td>8</td>
<td>189 221 209</td>
</tr>
<tr>
<td>Perennial Snow or Ice</td>
<td>9</td>
<td>255 255 255</td>
</tr>
</tbody>
</table>

FIGURE 6.67 These are the categories that make up the level I Anderson classification along with the colors originally assigned by the U.S. Geological Survey. The U.S. Geological Survey colors are in the Munsell color model. Since GIS software does not typically utilize that color system I have converted the colors into RGB triplets. Conversion between color systems is never exact, so this is an approximation of the Munsell colors.
An LULC dataset, the National Land Cover Database (NLCD), has standard categories and colors as well. While there are four levels of Anderson classification comprising more than 100 LULC categories, there are only two levels and twenty-one categories in the 1992 NLCD dataset and two levels and twenty-nine categories in the 2001 NLCD dataset. In the Anderson schema, levels I and II are land cover–type categories and levels III and IV are land use–type categories. The NLCD (a derivative of the Anderson classification) does not use land use categories, ostensibly because it would be too difficult to obtain land use information on a nationwide scale at thirty-meter intervals (which is the dataset limitation it was based on). The NLCD therefore has fewer levels and categories (see Figure 6.68).

The depiction of these land cover categories gets too complicated if you add too many. So you should use the first level of classification for small-scale maps that are being used for visualization purposes (as opposed to analysis). If you have to, modify the second level into something more manageable by combining categories and thereby generalizing the data.6

FIGURE 6.68 These are the twenty-one categories that comprise the 1992 NLCD (National Land Cover Dataset) along with their assigned colors in both visual and RGB triplet format as defined by the U.S. Geological Survey.

<table>
<thead>
<tr>
<th>Land Cover Category Name</th>
<th>No.</th>
<th>RGB Color</th>
<th>Land Cover Category Name</th>
<th>RGB Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>11</td>
<td>102 140 190</td>
<td>Shrubland</td>
<td>51</td>
</tr>
<tr>
<td>Perennial Ice, Snow</td>
<td>12</td>
<td>255 255 255</td>
<td>Orchards, Vineyards, Other</td>
<td>61</td>
</tr>
<tr>
<td>Low-Intensity Residential</td>
<td>21</td>
<td>253 229 228</td>
<td>Grasslands, Herbaceous</td>
<td>71</td>
</tr>
<tr>
<td>High-Intensity Residential</td>
<td>22</td>
<td>247 178 159</td>
<td>Pasture, Hay</td>
<td>81</td>
</tr>
<tr>
<td>Commercial, Industrial, Transportation</td>
<td>23</td>
<td>231 86 78</td>
<td>Row Crops</td>
<td>82</td>
</tr>
<tr>
<td>Bare Rock, Sand, Clay</td>
<td>31</td>
<td>210 205 192</td>
<td>Small Grains</td>
<td>83</td>
</tr>
<tr>
<td>Quarries, Strip Mines, Gravel Pits</td>
<td>32</td>
<td>175 175 177</td>
<td>Fallow</td>
<td>84</td>
</tr>
<tr>
<td>Transitional</td>
<td>33</td>
<td>83 62 118</td>
<td>Urban, Recreational Grasses</td>
<td>85</td>
</tr>
<tr>
<td>Deciduous Forest</td>
<td>41</td>
<td>134 200 127</td>
<td>Woody Wetlands</td>
<td>91</td>
</tr>
<tr>
<td>Evergreen Forest</td>
<td>42</td>
<td>56 129 78</td>
<td>Emergent Herbaceous Wetlands</td>
<td>92</td>
</tr>
<tr>
<td>Mixed Forest</td>
<td>43</td>
<td>212 231 177</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pixilated Maps: If your data are looking grainy on-screen, don’t forget that algorithmic generalization of the data upon import such as pyramid-building can cause this effect. If that is the case, you will find that the data are smoothed upon export in most cases. Another technique to smooth pixilated data is to use a Gaussian estimation such as the Gaussian blur option in PhotoShop.

Another consideration in the presentation of LULC in map form is to be sure to include enough metadata to allow the map viewer to really understand what
the categories mean. Categories are not always as intuitive as we might think. For example, in Britain a standard forest category may not actually have any trees on it, while in Scandinavia an area with slow-growing trees may not be included in a forest category at all. As another example, if you have a seral-stage breakdown into such categories as mature canopy and immature canopy, you will want to define what these mean on the map in terms of tree diameter or tree age, because any scientist who is using your map for analysis down the line will want to know. It is prudent to include a citation to the appropriate LULC technical report as well so that viewers can look up the specifics like error calculations and processing algorithms that may affect their interpretation of your map. (See Figures 6.69 through 6.73 for examples how to depict this feature in certain situations.)

FIGURE 6.69 This is the 1992 National Land Cover Data (NLCD) for South Carolina. It is displayed here using the standard U.S. Geological Survey NLCD colors (see Figure 6.68.).
FIGURE 6.70 This is the NLCD for Colorado using a modified color scheme rather than the suggested color scheme.

FIGURE 6.71 This is the NLCD for Colorado using the suggested color scheme. It is similar to the previous figure except that it is more on the pastel side of the color spectrum rather than bold and rich. Both maps get the same points across but one is slightly more modern.
Figure 6.72 This is the NLCD Colorado data zoomed in to a 1:500,000 scale using the modified color scheme.

Figure 6.73 This is the NLCD Colorado data zoomed in to a 1:500,000 scale using the suggested color scheme.
Features

TRAILS

COLORS

Trail features are longitudinal areas or lines that people traverse on the ground on foot, bicycle, horse, or any means other than by car. They can be paved or unpaved, in a wilderness area, or in the heart of a city. On a GIS map, they are typically depicted as dotted lines in order to distinguish them from paved roads, which are, in turn, usually solid lines. However, a trail map in an undeveloped area such as a national park may show the trails as solid lines since there are no other solid-lined features to display. (See Figure 6.74 for color suggestions.)

Trails are labeled similarly to rivers and streams, with the labels placed above the trail lines and following the trail curves. If roads are also shown on the map, the trail's label will be differentiated from the road labels by ensuring that the color of the text is different from the color of the road label text (and, in most cases, matching the trail color). Or, if color differentiation is not possible, then a different font can suffice. These trail names are usually found again somewhere in the map's marginal elements, where they are listed along with details about each trail. Alternatively, numbers are used in lieu of trail names and serve the same function. If numbers are used as labels, then it is prudent to place the number at the beginning node and along the trail feature at sufficient intervals to enable rapid trail identification.

Varying shades of black and brown are usually used for trails, with brown being the obvious choice since many trails are indeed brown on the ground. Red and dusty orange, though, are also good choices, especially for maps with many features to differentiate or when the trail needs to be especially highlighted. Trail features are usually accompanied by ancillary features such as trailhead points, parking areas, and campsite points so that the map can be used for navigation. In such maps, photographs of the landscape surrounding a trail at key points, like vistas, lend themselves nicely to the layout margins of a trail map. In terms of line thickness, trail maps used for navigation can show trail lines as thick as and as boldly as typical road features or they can differentiate the trails from roads by utilizing a thinner line style to emphasize the smaller width of a trail in relation to roads. These options depend on the intended focus of the map and the amount of real-world likeness that is needed or wanted.

One of the very interesting problems associated with features like trails that are very narrow, long, and not widely dispersed is how to highlight them without throwing the map's visual balance off. As a counterpoint to this, roads, which are also very narrow and long features, are usually well dispersed across a map surface, enough so that the visual impact is more consistent across the page. A trail map, though, might consist of only two or three bike trails that pass through a city. The ratio of city to trail area for a case like this is very large. You might want to show the entire city area
in order to give the map viewer a good geographic reference and to show the trails in their entirety but still want the trail to be the main focus. If all of the trails are concentrated in one portion of the city, then the visual balance will be off. One approach to minimize that problem is to use a very consistent visual feature as the background layer, such as a lightened aerial photograph or lightened parcel layer, with a very bold trail symbol such as a bright red or yellow. The consistent background will balance the anomalous trail features while still allowing the trails to take center stage. This kind of technique applies to any type of feature that risks getting lost due to its small size and sparseness. (See Figures 6.75 through 6.78 for examples how to depict this feature in certain situations.)

FIGURE 6.75 In this overview of the Appalachian Trail the state outlines are shown in white so that they will not compete with the trail in visual weight. At this scale and size no other features (such as cities) are shown as they, too, would have distracted attention away from the trail.
FIGURE 6.76 The intent of this map was to show the portion of the Appalachian Trail that runs through New York State, in relation to the state as a whole. Since the trail is not centered on the map, a hillshade was used as background data to provide some visual cohesiveness. Originally the state boundaries were in white and the trail was in orange. However, this did not provide enough emphasis on the trail, so the colors were switched, with the effect being that the white trail is highlighted and the state boundaries are ancillary features.

FIGURE 6.77 A common way to illustrate a trail system is with dashed brown lines. When the scale is too small to adequately present the trail name labels, a number can be used to reference the trail name elsewhere on the map. In this case the numbers are circled to provide added visual clarity.
Utilities such as gas and electric, water and wastewater, and telecommunications are routinely used in a variety of GIS applications. Because these are such important components of our daily lives, the accurate portrayal on maps of the infrastructure and analyses associated with these features is of utmost importance. Regular maintenance, emergency repairs, personnel allocations, and potential sites for expansion are all examples of maps that use utilities as their basic building blocks. Symbols for all aspects of utility features management are highly standardized and codified, so always check for standard symbols prior to map production. (See Figure 6.79 for color suggestions.)

Some of the challenges include adequately representing vast amounts of data over a small amount of space, such as multiple overlapping power lines between two poles or many pipelines underneath a single city street. In fact, features like power lines are so thin in real life that depicting them on a map can pose problems. Usually we have it the other way around with maps: the features we are representing graphically are actually much larger in proportion to the landscape than they appear on the map.
However, with power lines, gas lines, wastewater pipes, and the like, we will need to use thicker lines rather than the ultra-thin lines that would result if everything were in proper proportion to reality. Similarly, dots that show the locations of well heads, storm drainage outfalls, or manhole covers will be shown as larger than life in order to make them visible on even the largest scale maps. Even on large-scale maps, however, you may run into the problem where the features wind up overlapping each other if you make the symbol sizes too big. If a happy medium cannot be found between making the symbols large enough to see and making them small enough so that they don’t overlap, you may need a larger scale or transparent symbology; or you may have to split the data into multiple maps based on a feature attribute.

The use of color to differentiate types of features that would otherwise look the same is extensively used for utilities data. For example, fire hydrants might be colored yellow, red, green, and blue to differentiate between the flow volume capabilities of different hydrants. Linear features like pipes could be colored differently depending on direction of flow or outfall. Most linear features like roads, rivers, and streams are shown without their associated nodes. However, the nodes for utility line features are often explicitly drawn on top of the lines to emphasize pipe connections, poles, or manholes. Many utility maps are so complex that a simple road background (or nothing at all) is used for context. Topographic maps, orthophotos, or parcels might also be used depending on the map’s purpose and scale.

FIELD MAPPING

When it comes to utilities, the traditional paper map is not used in the field as much as it used to be. It has been replaced by GIS programs loaded on handheld computers and usually integrated with GPS units. The mapping techniques in this section can, for the most part, also be used for maps that will be loaded onto handhelds. One difference, though, is that the symbols need to be easy to read out in bright sunlight and in a darkened vehicle. This translates to a need for bright colors and large symbols on the utilities features in these maps.

Utilities maps can get so complex with all the lines, dots, crazy symbols, colors, and whatnot that sometimes I wonder why and how people manage to stick even more complicated data like aerial photographs or contours underneath it all. I believe that the use of those basemaps underneath such highly complex and detailed data do nothing to enhance the readability of the map. As always, you must be conscientious of your map audience and your map’s purpose. If you want to show the city council where new fire hydrants will be placed, then do you really need 0.5-meter aerial photographs underneath the hydrant dots? On the flip side, these data could be useful if, for example, a group of experts will be poring over your maps in a meeting to help decide where to locate a new utility line. Remember to always have a reason for doing things. Do not place high-resolution aerial photographs on your map just because. Yes, people can handle the information, but will it be elegant? The best way to know is to actually try the map with and without all the layers. So render it in several iterations with different layers clicked on and off before deciding. (See Figures 6.80 through 6.83 for examples how to depict this feature in specific situations.)
FIGURE 6.80 Transparent manhole symbols make the sewer main connections visible beneath them. The manholes are quite a bit larger in proportion to the rest of the map so that they are visible.

FIGURE 6.81 In this example the storm drains and sewer drains are different colors but the symbol is the same. The manholes are not transparent and are smaller than in the previous example to provide equal focus to the storm and sewer drains.
FIGURE 6.82 Easements can be shown in a dashed-line pattern to differentiate them from parcel lines. In this case, the easements were converted from polygon format to polyline format so that the dashed-line pattern would remain consistent (not overlapping).

FIGURE 6.83 The sewer zones in this map are outlined in thick black and filled with bold colors. These two techniques serve to emphasize the sewer zones, since they are the main focus of the map, while deemphasizing the supporting detail like the parcel polygons.
IMPERVIOUS SURFACE

COLORS

![Color suggestions for impervious surface data](image)

FIGURE 6.84

Impervious surface data are fast becoming popular datasets for analysts to use in all kinds of computations from measuring growth over time to determining hot spots to identifying illegal building activities. Showing them on a map is not a difficult task, although in a highly populated area, you may find that impervious surface pixels or polygons tend to overwhelm the map if there are other details that you wish to highlight as well.

Some impervious data are presented as Boolean pixels: a pixel either is or is not impervious surface. Other impervious data represent a range of imperviousness within the pixel, usually in categories such as zero to 10 percent, 10 to 50 percent, and 50 to 100 percent. Boolean data are displayed as solid color pixels, usually in a dark gray, black, or red. Range data are displayed color ramps of gray or some other color. Ancillary data will help the viewer to understand the data better if the viewer is not immediately familiar with impervious surface data. For example, having a roads layer or parcel layer underneath the impervious pixels allows the viewer to see that the impervious pixels overlap with the roads and rooftops. If the data are at a small scale, then country boundaries and city points will help the viewer see that impervious surfaces are concentrated in cities and highly developed countries. (See Figure 6.84 for color suggestions.)

When displaying a series of impervious surface maps in order to illustrate change over time, my recommendation is to get rid of all superfluous details. Think very carefully about each and every element on the map element to decide whether it can be taken off. All the scales will match, of course, so the scale bar can be placed in the margins of the map page. The north arrow is another element that will be the same regardless, so it can be relegated to the margins as well. Most importantly, see if you can get rid of the map frame. Your map viewer will then focus on the message — that impervious surfaces are increasing in certain areas over time, for example — rather than the graphic elements that only serve to clutter up the page (see Figures 6.85 through 6.89 for examples how to depict this feature in certain situations).
Features

FIGURE 6.85 Impervious surface data are often presented as a series of maps over time. When constructing a map such as this, be sure to evaluate the need for map frames. There usually is no compelling reason to use them and they only serve to distract the viewer’s attention from the main focus of the map.

FIGURE 6.86 The impervious surface data shown in black on this map are laid on top of the highway and road features. The viewer automatically sees the correlation between roads and impervious surface. In this case the map defines the term “impervious surface” much better than words could have.
FIGURE 6.87 The National Land Cover Database (NLCD) 2001 contains impervious surface data in percentage form. This makes it easy to use a color ramp to represent varying degrees of imperviousness. In this case white, gray, red, and dark purple form the color ramp for this densely urbanized area.

FIGURE 6.88 The same impervious surface data and color scheme as in the previous example form the background in this example. They have been lightened significantly in order to accommodate the addition of another dataset: number of households per census block.
Figure 6.90 Basins are areas that are delineated via topography and define an area in which water flows downward toward a common point. Basins are also referred to as “watersheds” and “catchments.” They are a unique feature type that is often shown on natural resources related maps. As with all features, the basin features might be the main focus of the map or just supporting information. When you have created new basins with your GIS and are displaying them in map form for the first time, you need to give them credibility by displaying them with topography as the background layer in the form of a hillshade dataset. With the basin boundaries laid on top of the hillshade, the viewer will immediately see how the basin boundaries line up with the ridges on the hillshade. Additionally, regardless of whether your basins are the central feature of the map, you usually want to include a hydrography layer with the basins. Because basins are tightly coupled conceptually with streams and rivers, your audience will be keen to see them in relation to your basins. (See Figure 6.90 for color suggestions.)
Bold red is a good color for basins since it likely won’t compete with other linear feature colors and is striking enough to bring attention to them. Purple is another good choice since it is close to blue on the color wheel. Blue, of course, is the color for hydrography and basins are closely related to hydrography. Any bright colors would be good as well. It is usually not necessary to use a fill color or pattern on a basin map as that would only obscure the features in the interior of the basin. However, if your map’s focus is solely on the basins themselves, without any detailed background data, you could borrow the fill technique discussed in the Political Boundaries section. For this technique, you use a series of related colors as fills. The colors need to be different enough, especially for adjacent features, to be able to tell where each basin is. When your basins are nested within each other a common practice is to use a thicker outline for the major basins and subsequently thinner lines for each tier of smaller basin size. Only use this technique if it is really called for because it could potentially create useless visual clutter. In many cases simply using the basin outlines without a fill color is plenty. The color of the outlines can be lightened for the nested basins and darkened for the major basins. To minimize confusion, however, make sure to not change the actual color.

Occasionally you will run into an issue with the basin scale and the other map element scales not being entirely coincident. When the basins are of a finer scale than the rest of the map data, they can wind up looking too chunky due to having many more nodes than needed at a small scale. To fix this problem you will have to get
Features

161

rid of the excess nodes by generalizing the data, finding courser scale basin delineation, or creating your own courser scale basin delineation with a course elevation dataset. On the flip side, when the basins are of a courser scale than the rest of the map data they can look jagged due to having many fewer nodes than the surrounding data or, even more egregious, have streams that actually cross them (which is antithetical to the definition of a basin). In this case your options are accept the scale inequalities, call out the discrepancy as a caveat in the text portion of the layout, find a finer scaled basin delineation, or create your own finer scale basin delineation with a high-resolution elevation dataset. (See Figure 6.92 through 6.94 for examples how to depict this feature in certain situations.)

FIGURE 6.92 The basin in this map appears to be floating. The absence of data surrounding the irregular basin outline focuses the viewer’s attention on the basin. This is a great technique to use when you are lining up a series of maps for comparison such as a time series. It is not effective for maps where the viewer needs to have an understanding of the surrounding terrain.
FIGURE 6.93 If you want to achieve a balance between providing the viewer with contextual detail and focusing the viewer’s attention on one particular feature, use this semi-masked technique. To produce this map, I simply selected the basin and hydrology that I wanted to highlight, made them into new layers, and created lighter symbols for the focus area and darker symbols for the outside area. Some GIS programs allow symbol levels, which can be used for this effect as well. You can also create a transparent layer that covers the outside area to mute any of the data under it.

FIGURE 6.94 A hillshade map is a natural accompaniment to the basin delineation shown here. The hillshade is much too dark in its default form to allow other data to be seen on top of it. This hillshade was lightened by about 50 percent and the basin color was changed to yellow, which acts as a highlighter on the dark background.
BUILDING FOOTPRINTS

COLORS

Building footprints are planimetric polygons or polylines that delineate the outer edge of the first floor of buildings. Usually they are digitized from aerial photographs, either by hand or with feature extraction software, but they can also be delineated via GPS or architectural plans. (See Figure 6.95 for color suggestions.) Sometimes the geometry is all that the data contain, but other times the data will include feature attributes such as building type (residential versus commercial, for example), number of floors, construction material, square footage, and so on. Building footprints, while used for a variety of purposes, are especially well suited for emergency management tasks such as color-coding buildings according to which fire hydrant is nearest and locating homes on large parcels.

Maps of building footprints are particularly well coupled with parcel lines, orthophotographs, and LULC data. Parcel lines show where within a parcel the building is located, where vacant parcels are, and typically provide a modicum of spatial context given that road, lake, and other landmark outlines are easily discerned from parcel line data. Orthophotographs provide even more detail concerning landscape features and, consequently, the spatial context for the footprints but do not usually provide any information concerning the land property size and location as parcels do. LULC data are helpful when you want the viewer to self-assess any relationships between landscape feature categories and footprint locations or sizes.

When parcel boundaries are used as the background layer, the footprints need to be shown as solid features in order to differentiate them from the parcel lines. However, when orthophotographs or LULC data are used as the background layer, the footprints are best symbolized as outlines so the complex background data can be seen through the footprints. Another symbolizing technique with this kind of data is to generalize it by eliminating all the features that aren’t necessary. This allows a smaller scale view to be used without the footprint features overwhelming the map due to their large quantity. For example, the residential building footprints could all be eliminated from the view in favor of displaying only the commercial building footprints. Another possibility is to show only building footprints that are within some distance of another feature, such as all the buildings serviced by a particular fire department or all the buildings within a stream buffer. (See Figure 6.96 through 6.99 for examples how to depict this feature in certain situations.)
Figure 6.97 This map of land use and land cover also shows building footprints and parcels. The building footprints are outlined so that the land use land cover data can be seen underneath. A map like this shows you how you have to be careful about scale when there are data like building footprints. The footprints could be off from the underlying data layer, if, for example, the footprint data are derived from eighteen-inch imagery but the land use land cover are derived from thirty-meter imagery.
FIGURE 6.98 A high-resolution orthophotograph is the background for these building footprint data. The footprints are outlined so that the orthophotograph can be seen underneath them. The orthophotograph is slightly lightened and only those buildings within a 150-foot buffer of the stream are visible.

FIGURE 6.99 This simple building footprint map explores the relationship between the shoreline, parcel lot lines, and houses. The reddish color of the buildings allows them to become the focus of the map despite their smaller size in relation to the parcels and water. In this case, the bold color applied to small but well-dispersed features is very effective. If the buildings were larger, the bold color might overwhelm the map unless the other features were similarly bold.
Spatial soil data describe soil properties at certain locations and depths. There are many potential soil properties and they are usually described in one or more fields of the soil data table(s) such as pH, texture, and water-holding capacity, among others. (See Figure 6.100 for color suggestions.) Soil data also include one or more soil type fields that utilize a standard taxonomic system that groups all of the properties into categories. Several taxonomic systems are in use around the world, usually standardized by country or region such as the U.S. Department of Agriculture soil taxonomy and the World Reference Base for Soil Resources. Soils are not standard 2D data. Because soil properties and types change depending on the depth of the soil, soil data will include property and type data not just for the surface polygons but for subsurface polygons as well. These different depth layers are known as “horizons.” This has implications for how the data are visually displayed on a 2D map. Usually vector-based, soil data have a one-to-many relationship between the polygons and the linked horizon attributes.

The unique thing about soils is that soil properties are a continuously changing variable even though the data that capture them are usually a set of discrete polygons stretching across a geographic area. Adjacent polygons with different soil type attributes may, in fact, be quite similar near their common edge despite their disparate categorizations. In other words, while soils are continuously changing in real life, the data that describe them are discrete in the database. Sometimes soil properties and therefore soil types change over a very small distance, like a few centimeters, and sometimes they change over a large distance, like a few kilometers. This is because the mapping units, or polygons, almost always contain a variety of soil types within them. Only when you get to the very large-scale datasets like 1:5,000 or larger do the soil mapping polygons begin to identify single types of soil. For most national and regional datasets, therefore, the soil polygons will contain a one-to-many relationship to soil type. These soil types themselves change in concentration within their soil polygons.
The data are usually obtained via soil sampling at regular intervals, which are then interpolated to create the GIS soil data. The sampling and interpolation can occur over a very small tract of land such as a farm field to aid in precision farming analyses, or they can occur over a regional or nationwide scale in order to facilitate coarse-level correlation analyses or site-suitability analyses, for example. You should definitely become familiar with whatever standard soil taxonomy your data use before attempting to make it into a map. This is important because you may have to manipulate the data via generalization or some other means in order to properly present the data in a readable manner.

Soil Datasets

There are two major soil datasets in the United States. They are both administered by the Natural Resources Conservation Service (NRCS). First, the U.S. General Soil Map (formally State Soil Geographic Database, or STATSGO) is a course-level database of soils that covers the contiguous United States. These data comprise the first comprehensive soil mapping that the United States undertook but have since been updated using finer scale data that have been generalized. The finer scale data are from the second major soil dataset in the United States, called the Soil Survey Geographic Data Base (SSURGO). These data are at a much higher scale — 1:24,000 — and cover most of the United States. There are other national soil datasets in other countries as well as innumerable soil surveys conducted at an individual parcel level (usually farms).

How to Show

Soils can be shown in a categorical color scheme or via choropleth mapping. Categories would, obviously, be keyed to the type of soil present in a particular polygon or cell, while a continuous schema would be applied to, say, the percentage of clay as an average of the horizons or some other particular variable in the soils. Because soil maps could potentially have a huge amount of colors given the vast number of individual soil types, this is another good place to mention generalization techniques. But before I do, let’s remember that doing so is dependent on the scale at which you are mapping. If you are mapping soils at the neighborhood, farm, or individual parcel scale, you will be able to show all of the colors needed and, indeed, you will most likely need to in order to provide your viewer with all the information possible. For these large-scale maps you may need to include spatial context by means of parcel data, building outlines, roads, or other defining features. If only general information is needed or if your scale is at a region or national scale, then it is likely that you will need to generalize these data in some manner.

How Many Categories Is Too Many?

A good guideline for the number of classes to show on one map is ten to twelve, with ten to twelve separate colors. Though we are capable of distinguishing up to
about twenty separate colors, in reality, our eyes become fatigued with that many colors. In order to avoid this fatigue and any errors that might stem from it in terms of your viewer’s interpretation of the map, it is best to keep the number of colors to a smaller amount. Any more than ten to twelve and you should employ some kind of patterning to the excess categories. Patterning can easily overwhelm a map, however, so if you use it, be sure to apply it to those categories that comprise the least map area.

To keep the number of classes low, you will need to generalize the data in one or many of the following ways. First, you can simply use the built-in generalizing schema that is endemic to all soil data. Soil data attributes typically describe a hierarchy of nested soil types. Symbolizing the data on a higher order in the hierarchy can lower the number of classes significantly. Second, the soil horizons need to be accounted for. To do that, you can calculate the average of all depths with regard to an attribute such as permeability, or you can display only the maximum rockiness, minimum electrical conductivity, and so on. Third, you can dissolve soil mapping units to create larger units and perform the same kind of algebra to create aggregated soil units such as average or maximum.

As with many of the other feature types discussed in this chapter, soils data can be depicted via isolines instead of the traditional polygon or grid format. To create one, you need a point layer of the original soil survey locations as opposed to an interpolated layer. The GIS is used to connect these points according to a common property. For example, a map of soil pH could be created by connecting points of equal pH to create a line layer of soil pH. In some cases this type of soil layer could be more helpful than a polygon layer of soil pH if, for example, you want to overlay the soil pH onto another a layer such as an orthophoto, elevation, or LULC.

Another way to display such complicated and fine-level data on a map is to create a dot map. These have the benefit of having less generalization and thereby allowing more of the data to be visualized. Dot maps are increasing in popularity among GISers and it definitely behooves us to have them in our arsenal of skills. A particular kind of dot map for soils was recently developed by Linda Barrett, who is an associate professor of geography and planning at the University of Akron. The great thing about her maps is that they allow the spatial continuum of soils to be more visible on a printed map than the more traditional, single-variable choropleth map. Oftentimes we display a soil map by showing only the dominant soil type within each soil mapping unit even though the data contain information on the percentage of each soil type within each soil mapping unit. To give people an understanding of those percentages and how they vary across the dataset, she created a dot map that shows the percentages of each soil within the unit. This is accomplished by placing points randomly within each mapping unit, color coded by soil type, where each point represents a certain percentage of soil type for that unit.

FROM 2D TO 3D (AND EVERYTHING BETWEEN)

Since soil data contain attributes that vary by depth, the data are better visualized in a 3D environment. However, most soil maps are still 2D due to limitations in hardware
and software and traditional expectations. You can try to create a 2.5D map by draping a transparent soil map over a hillshade and, for example, visually exploring any relationships there might be between average permeability and elevation. Of course, the hillshade draping technique still does not allow any visualization of attribute differences between horizons and can only display averages or surface conditions. Because of that, the 2.5D map only gives off a 3D “effect” as opposed to being truly three dimensional. Exporting your data to 3D software or utilizing 3D GIS software is the only way to obtain a truly 3D map.

Combining your soil data with other data types, such as vegetation, can make an already complicated map much too complex for anything to be seen properly. If this kind of overlay is needed, then one of your best bets is to go ahead and combine the data yourself into a new dataset of combination categories and display those.

By now you’ve realized that soil data are some of the more complicated data to master. Before attempting any kind of mapping, let alone analysis, of these data, you need to read more about them in general and certainly read more about your particular soil data in detail. Things can get complicated pretty quickly and you could inadvertently misrepresent the data. Remember that you hold the power to inform or misinform your map viewer — understanding your soils data is the key to making it the former and not the latter. (See Figures 6.101 through 6.103 for examples how to depict this feature in certain situations.)

FIGURE 6.101 No, it isn’t a groovy T-shirt from the 1970s. This is a soil map underneath hydrology data and parcel boundaries. Since soil is a continuous variable, this map deemphasizes the boundaries between class types by not using outline symbols.
FIGURE 6.102 Because this map displays two overlapping polygon datasets, the soil data are shown as outlines and labels only. If you tried to use a transparent fill symbology for the soils polygons the colors of the orthophoto would mix with the colors of the soils polygons and not create a cacophony of colors, none of which would match the map’s legend colors.

FIGURE 6.103 This soils map uses a dot density technique. Each soil map unit is comprised of several types of soils (shown here are the four main soil orders in this particular taxonomy) that are shown as randomly placed dots in the units depending on the percentage of the unit that each comprises. So if a soil unit is made up of 70 percent Spodosols and 30 percent Entisols, then it will have seven Spodosol dots (brown in this case) and three Entisol dots (blue in this case). These data are from the NRCS STATSGO database map unit polygons and joined with the “comp” table from the same data source. The size of the mapping unit affects the visual outcome of a dot density map as you can see in this example. Both large and small soil units contain ten dots, so the larger units have more blank space. Of course, the dots in the smaller units are squeezed together. You can change the symbol sizes and the number of percentage points each dot represents until an optimal compromise is made.
It is anticipated that digital cartographers will be continually challenged to develop new techniques as software evolves and as geologists and users demand more complex and informative products. (See Figure 6.104 for color suggestions.)

U.S. Geological Survey, National Cooperative Geologic Mapping Program

GIS maps of geologic features illustrate the location of rocks and unconsolidated deposits (structures and materials) at the Earth's surface. These data are often in three or four dimensions, so they include the height of the rocks and the time at which the rocks were formed (measured in eras, periods, and epochs). These data add to our understanding of geologic hazards like volcanic activity and landslides, aid in visualizations of general Earth resources like oil and ore, and contribute to land use planning like site development and construction potential.

The data are presented in various ways, including any of the three vector formats: points, lines, and polygons, with the most typical being polygons that represent map units. Geologic map units are areas of similar rock type and age. Less common but no less important geologic map feature types are points that represent such things as bedding attitudes, fold orientations, and sample locations. Line format data are also included in geologic mapping, representing such things as fault lines and glacial moraines. Another geologic line feature is the isograd, which is the geological equivalent of an isoline. To sum up, a great variety of data items fall into the geology feature category.

As mentioned above, rock height and age are often included in geologic spatial data. These enable GISers to create 3D geologic maps and, indeed, they are increasingly being visualized in 3D because it is much more helpful to the end goals of the scientific audience for this feature type than a simple flat map. If you are, however, displaying the geologic information in traditional 2D you may want to supplement this with one or more cross sections to illustrate subsurface feature trends. These cross sections, which are common on 2D geology maps, are always referenced in the main map via some sort of graphical construct, typically a dashed or solid line.

Symbols for such geologic mapping mainstays as landslide locations, faults, volcanic features, and land subsidence are somewhat standardized. The Federal Geographic Data Committee (FGDC) Digital Cartographic Standard for Geologic Map Symbolization contains a cartographic specification that you can use when you are putting together your geologic map. The standard describes what symbols to use for certain features and contains color charts and other items to get you started. The FGDC standard is known as the American standard. There is also an international standard.
color standard from the International Commission on Stratigraphy that is somewhat similar, though it differs for the Mesozoic (blue) and Paleozoic (green) eras.

However, even given those standards, choosing the right colors for geologic map units can be difficult, especially on maps that contain a large number of different map units. The general rule is that younger map units are assigned light colors and older map units are assigned dark colors. This kind of color scheme can help to illustrate the evolutionary construction of an area by allowing the viewer to see how the age of rocks changes through the landscape at a single glance. The Washington Department of Natural Resources Division of Geology and Earth Resources uses the following general guidelines for rendering map units by age (Figure 6.105).

These colors mostly follow the colors found on the U.S. Geological Society's Rocks of Ages legend, though the Quaternary period colors differ. It is important to note that these colors apply mostly to sedimentary rocks. Igneous and metamorphic rocks — the other rock classes — are traditionally red and orange and brown and olive, respectively. It is also standard for geologic map unit legends to be organized with the youngest map unit at the top of the legend and the oldest map unit at the bottom of the legend.

Though there are definitely traditions and standards as discussed and illustrated above, these are not applied as consistently as those of us who want a simple key would hope. For example, some sources say that plutonic rocks are pink and volcanic rocks are red, while others say that plutonic rocks are red and volcanic rocks are orange. Even the concept of colors getting darker as the age of the rock gets older is not equally applied everywhere. The best thing to do when handling new geologic data then is to first find out if the originating agency has a predefined color scheme. If so, take a look at it and decide if it is adequate for your particular map. Pay particular attention to the differentiation of the colors between adjacent polygons. You may have to tweak colors here and there depending on the geology of the area you are mapping so that differences between map units are easier to detect.

This issue also comes up when you are designing your own color scheme. While you might want to assign a different color for every different type of rock, of which there could be fifty or more types, you may not know until you have assigned all the colors whether two very similar colors will wind up adjacent to one another. When this occurs, you may need to consider an alternate color scheme or utilize patterning for one or more of the rock types.

Assigning a pattern fill to rock types is a common practice for maps when there are simply too many map units for color alone to allow adequate differentiation.
However, as soon as fill patterns are introduced on a map, it will start to look cluttered. Therefore, they need to be reserved for situations where no other possibility exists for differentiation and they should be assigned to the map units with the smallest possible total area. Patterns will also tend to obscure any line features that are overlaid onto the geology map units such as contour lines, labels, and points, so keep that in mind when reviewing the finished map. A pattern guide for lithology is found in the FGDC Digital Cartographic Standard for Geologic Map Symbolization.

A commonly cited peculiarity about geologic maps is that the audience for them is both the lay public and geological scientists. This means that though the maps must be highly detailed they must also be understandable, at least to a certain extent, by a non-scientific audience. One of the things that is being done to improve the dissemination of geologic information to non-geologists is to standardize the maps even more than they already are so that a map viewer does not need to relearn symbols, colors, and labels each time a new geology map is issued.

As far as completing your geologic map goes, you will be keen to know what other information is necessary to show on the map. Because things could get cluttered fairly quickly by adding new map layers, you will naturally want to limit the number of map layers as much as possible while still providing the necessary interpretive information. To that end, you may want to include hydrography, which, since it is a linear feature type, does not threaten to clutter the map very much. The main purpose of adding a hydrography layer is to aid in a viewer’s understanding of geologic features since rivers and streams often follow geologic fracture lines.

Another layer to consider including is elevation. Elevation is relevant to geology for many reasons. One is that it is often a factor in the delineation of ecoregions when combined with geology layers. Another is that it helps to identify areas that are prone to landslides. For example, a steep slope combined with permeable sands and gravels on top of silt and clay could indicate a landslide hazard area. Though it seems to be an important companion to geology, elevation data could easily overwhelm a geology map. If the elevation was itself depicted in varying shades of color, just as the geology map there would obviously be too many colors to decipher. One of the most common solutions for large-scale maps of this type is to use contour lines on top of the geology to denote the elevation. At medium and small scales a transparent geology layer on top of a light hillshade can give the overall idea about how the two are related without intervening on the geology symbology unduly. (See Figures 6.106 through 6.109 for examples on how to depict this feature in certain situations.)

Yet another layer (or set of layers) to include with the underlying geology map units are the accompanying point and line geologic features. When placing these on the map you must ensure that they stand out from each other as well as from the underlying map unit colors and patterns. To that end, faults are traditionally in bright red, dikes in bright pink, and so forth.

If map labels are warranted on your geology map units, you can make the map look even more complex. Labels are typically based on the codes that are used to identify the age and lithology (type of rock) for each map unit. Sometimes an additional part of the code includes an abbreviation of the map unit name or a note. The typical code consists of two Greek alphabet letters to denote the age followed by two small letters to denote the lithology and finally an optional subscript to denote the
name or note. Since subscripts cannot be put into a database field, these will often be put in parentheses or a separate field in the database. You will have to change these to subscripts when it is time to label the map if they are deemed necessary for the map’s purpose. An example geologic map unit code would be

KJm(c):
KJ = Cretaceous-Jurassic age
m = marine sedimentary rock-type
(c) = Constitution Formation, Decatur terrane

![Image](image.png)

FIGURE 6.106 This very simple geology map shows the map units in white, labels in dark gray, and water in gray. If a black-and-white map is your goal, you might be tempted to use gray for the land and white for the water. However, in this case you can see that the white actually pops out more at the viewer than the gray and also gives a lot of contrast to the dark gray soil labels.

![Image](image.png)

FIGURE 6.107 Using a standard color scheme, this Washington State map of geologic age shows where the older rocks (darker colors) are and where the younger rocks are (lighter colors).
FIGURE 6.108 A view of Mount Rainier, Washington, contains a muted geology layer in the background so that the overlying layers — national park boundaries, hydrology, and roads — are highly visible.

FIGURE 6.109 These geologic line features, shown in purple and red, are overlaid onto the geologic map units. The line features are bright since they can easily become lost within the colorful map unit polygons due to their small size. Line features such as the dikes shown here can be differentiated by their vertical location with dots to denote concealment and solid lines to denote surface dikes.
SUGGESTIONS FOR FURTHER READING

The International Commission on Stratigraphy posts their stratigraphic color charts online. http://www.stratigraphy.org

The Utilities Data Content Standard, created by the Federal Geographic Data Committee, is a good resource for looking up the standard attributes of many utility features. http://www.fgdc.gov/standards/projects/FGDC-standards-projects/utilities

END NOTES

2. Bump mapping is an advanced visualization technique related to hillshading, borrowed from the broader world of computer graphics. Essentially it is a way of providing additional realism by shading individual pixels or groups of pixels to represent the elevation of a part of an object or whole objects instead of the typical GIS map bare-ground elevation. A good run-down of the technique using the example of shaded relief for particular modeled forest stands was developed and written by Jeffery S. Nighbert, Department of the Interior, Bureau of Land Management, *Characterizing Landscape for Visualization through “Bump Mapping” and Spatial Analyst*, ESRI User Conference Proceedings, Vol. 3 2003. available at: http://gis.esri.com/library/userconf/proc03/p0137.pdf (accessed August 3, 2008).

7 Media

How will your map be viewed — on a monitor or on paper? What image format would be best for exporting? Will it be printed on a large-format plotter? Saved as a JPEG (Joint Photographic Experts Group) for inserting on a PowerPoint slide? What resolution and other exporting options ought to be considered? The answers to these questions about media and exporting influence map design from the very beginning of design work (e.g., the layout size) to the very end of design work (e.g., the export file format). That’s why this section, which deals with these media types of questions, is good to read through at the beginning of your map design process just to get an idea of what things you will want to look out for in general. With the general concepts safely stowed in your memory, you can then refer back to it for specific design and export tips while you are knee-deep into a map product design.

To begin, your map design and layout design will vary depending on the type of output media that you plan to use. Slides, reports, posters, and Web sites all require slightly different approaches. These differences are discussed in the ensuing sections along with specialized tips for each particular medium. I will not touch on all the differences, nor do I aim to be completely comprehensive with the design tips, especially in the Web section, since that deserves to be a book in itself. Rather, I hope to present enough information to get you started and to pique your interest for further learning and experimentation with regard to customizing your output for maximum effect. Following the media sections is a short primer on a couple of export considerations: the dots-per-inch ratio (dpi) and exporting to graphic illustration software.

As mentioned, different media require different strategies for layout design. Many of those strategies have been explained in the other sections but are compiled and expanded in this section to give you another reference option, rather than forcing you to sift through all the other parts of the book. In many cases the design principles are simple, common-sense concepts, but they are things we don’t always think about explicitly when creating a layout design. In other cases, particularly in the Slides section, you will find some unconventional but highly effective design approaches. Finally, while this book focuses mostly on paper output maps, included here is a concise section on Web layout design considerations that can be reviewed also. Our work is found as much in the online realm as it is on paper these days. Dynamic (and even static) map graphics for use on the Web do require a different approach to design, so be sure to read up on that section.

SLIDES

Most of us will be called upon to give a slide presentation at some point in our careers. If you are an analyst who toils away ceaselessly at the computer, never seeing a presentation — let alone giving one — you will probably be called upon at
some point to add some slides to a presentation deck or to create an entire presenta-
tion for someone else to give. Whatever your circumstances, these slide techniques
will really put some cutting-edge skills into your repertoire. You will not only wow
the usually stupefied presentation audience, but will also communicate your points
effectively. And those are two very good things to try to achieve.

VIEWING DISTANCE AND OBSTRUCTIONS

Slides are interesting because their viewing distance is so much greater than what
we can envision while designing on our desktops. To complicate matters further,
it is not easy to tell what the audience will be able to see ahead of the presentation.
If possible, get an idea of the room layout prior to the presentation and also practice
your talk with the room’s projector first. If the room contains more than ten rows of
chairs and the projection screen is not elevated enough, it is very possible that your
audience will not be able to see the bottom of your slides. If this turns out to be the
case, you can pass around a slide show handout before you speak so that those in the
back can follow along. (If reading the slides is no problem for those in the back, do
not distribute handouts until the end of your presentation because people will flip
through them and not pay attention to your presentation.)

Another option, and one I like much better than the handout idea, is to move as
much of your slide content to the top half of the screen as possible. The main draw
with this method is that everyone, even those out in the audience boonies, will see
your graphics. Be forewarned, though: you will almost never see this approach in
other people’s presentations. Why? Because people have some crazy need to fill up
all the white space on their slides. Perhaps they don’t want to look like the idiots
who forgot to finish their presentations. If you are truly worried about white space
showing at the bottom of a slide, then compromise by filling it up with a simple color,
pattern, or picture that does not change as you advance through the slides.

Now, if you do use the half-slide method, you can call attention to your unorthodox
presentation method at the beginning of the speech so that the audience will know
that you are keeping their interests in mind instead of, well, being an idiot. Sometimes
with these less than ordinary design maneuvers it is necessary to prime the audience
in advance so as not to distract them from paying attention to the content (for more
discussion on how to prime your audience, see Chapter 5, color inset titled “How to
Present Your Draft Map to the Boss or Client”).

PRESENTATION STYLE: FAST OR SLOW, BUSY OR SIMPLE?

Depending on your audience and subject material, you could design a slide presenta-
tion that is fast and simple, slow and simple, or slow and busy. The only combination
I left out was fast and busy (many slides, a lot of information on each slide). In fact,
most typical conference presentations are designed in the fast-and-busy format and
this is probably the worst possible combination. These fast-and-busy presentations are
both boring and hard to follow at the same time. With too many words on each slide
the presenter loses the audience as the group tries to read through all the words, forgets
what the presenter is saying, and still doesn’t understand what the main point is.
Fast and Simple
I like to design slides in the Lawrence Lessig style, which is fast-paced with minimal information on each page. It is kind of like the report style that I introduce in the next section whereby you don’t want to interrupt the text of the report too much with your map so you just keep it simple and let it flow in line with the body text. The same approach can be taken with slides by incorporating your slides seamlessly into the audio portion of your talk. The audience needs to only glance at each slide in order to get whatever visual cue you are aiming for. I encourage you to take a look at, and study, some of these fast and simple types of presentations online. You’ll have to do this because you will be hard-pressed to find one at your local GIS conference currently, but they are catching on in the design world and will likely start to infiltrate our slightly more conservative profession in the coming years. You will find that these presentations take on a movie-like quality that moves the audience through the presentation as if it were a story. The result is a rapt audience that remembers the points you set out to make.

Characteristics of a Fast-and-Simple Slide Show:

- One or two words maximum per slide
- No background graphics
- Minimal color on text slides (try black text on white background or bold white text on a black background)
- About four to six slides per minute
- A lot of simple graphics
- Slides are highly choreographed with the verbal presentation

Slow and Simple
The slow-and-simple method uses Lessig-style slides, but a lot fewer of them. This sometimes suits a GIS presentation when you absolutely have to display a map that will take more than ten seconds for the audience to absorb. For this style of presentation you can sprinkle one or two word slides (ten words maximum) in between the complex maps for visual relief and variety. You will have many fewer slides with this method than with the fast-and-simple method. For a fifteen-minute presentation, for example, you might have just 15 slides as opposed to 100 or more.

With the slow-and-simple method (and also sometimes with the fast-and-simple method), do not shy away from having a script written out to help you through the longer intervals when the map slides are shown. Believe it or not, many professional presenters will practice a presentation word for word from a prewritten script ten to twenty times before the real deal. Practicing means reading it on your own and in front of (very patient) loved ones or colleagues. If you have given your script a trial run many times and in front of others, you don’t need to worry about looking as if you are reading throughout the presentation because most of it will be memorized by then. Even if a few sentences wind up getting ad-libbed during the actual presentation, the script will help out tremendously.

To write out your script for practicing, try printing it out in a Comic sans serif script font or if you have loads of time, write it out by hand. It is much easier to read
through a hand-written script (or handwriting style of font) when in front of an audience. Be sure to print it out in large font, like 14 point, and double space it so that it is easy to follow. You can cue yourself to slide changes by simply including the word SLIDE in a different color than the rest of your text at each slide-change location.

Tips for Creating Simple Map Slides

Another application of the simple slides method — whether you are going to present fast or slow — is to create several map slides, each adding to the last, achieving a dynamic map effect. This avoids audience fatigue by enabling them to focus on just one added data layer at a time. It makes your slides simple as opposed to the typical busy multilayered GIS map. Adding the map layers as you advance through the slide deck achieves a dynamic quality in that the layers “magically” appear as you refer to them (in reality you are pressing the next slide button). Don’t confuse this with slide animation effects where the slides fly in at you or fade out — those can be very distracting.

Take this example: when I was in front of an audience describing how a project had utilized impervious surface data in an analysis (Figure 7.1) and then wanted to point out that the reason the map didn't show any impervious surface in one large section was because it was a national park (Figure 7.2), I used two slides instead of one.

![Figure 7.1](image.png)

FIGURE 7.1 This was the first slide in a presentation that showed a project study area and its key data — impervious surfaces (in yellow).
Now, when I advance from the first slide to the second, it doesn’t look to the audience that I have changed slides, it simply looks as if I have added the national park layer onto the first slide map. If I show just one slide with both layers I would have probably needed a pointer to get the audience to look at the little yellow dots when I said “impervious surface” since the national park and national forest lands layer dominated the rest of the map with its visual weight.

Note also that there is no text or legend on these slides because I simply told the audience what the first map was showing (impervious surface pixels in the Hood Canal Summer Chum watershed) and then quickly advanced to the second map with another sentence, “And here are the national park and national forest boundaries so you can see why there was no impervious surface showing in that portion of the watershed.” I wanted them to listen to me, not read words. The point of a visual is to augment the presenter’s words, not to take the place of them.

Slow and Busy
While simpler is usually better when it comes to slide design (even though many presenters try to pack as much information onto slides as possible), there is one situation in which it can be all right to design complex slides. When you are presenting technical information to a small group of people who are already familiar with your project and who are there expressly for the purpose of learning the minutiae of your
analysis, complex maps, tables, and graphs can be necessary. (Do not think that a lot of text would be called for in this situation, however. Large text blocks and lengthy bullets are almost never warranted.)

To give you an example of a complex slide, consider the following situation: the slide in Figure 7.3 was designed for a small group presentation of less than ten people. The presentation was held in a small conference room where the attendees sat around a conference table so they could react to and discuss my points as I spoke.

Since the presentation was more of a starting point for discussion rather than strictly a one-way information exchange, it seemed more natural to allow some complexity in the slide in order to convey the complexity of the analytical process we were discussing. Each slide was left on the screen for several minutes so that the group could study and refer to it as we discussed the issues.

TIME AND RESEARCH WANTED

Remember that a good map slide can be made great if you take the time to consider your audience — not just their level of prior understanding of your material, but also things like audience comfort (affecting placement of maps on the slide), audience size, and desired outcome. Also, be sure to mix it up a little. You need not adopt one method of presenting and stick with it for a decade or more. If you haven’t done
a presentation in a while and have an important one coming up, do some research
on the latest presentation styles and slide designs. For example, at the time of this
book’s publication, YouTube videos online can be a great source of ideas. You can
watch other people give presentations that are similar in scope and subject material
as yours and get ideas about the current trends, what to avoid, and what to include.
As fashions change there will always be new strategies for you to research and adapt
to your individual circumstances. All of these tasks may seem time-consuming. They
are. But your audience will thank you for it. Or at least remember it, which is way
more than can be said for the majority of slide show presentations.

REPORTS

Most of our work has to be reported somewhere and it is usually done via an inter‑
nal or public document or a technical journal. This means that the map has to be
exported as an image file and then imported into the report document at a certain
location. For some of us we leave it at that without worrying about where in the docu‑
ment the map will be placed. But, you will soon come to see the placement of the
map as an important consideration in how the map is designed and how easily the
report is read. This section begins with a discussion about where to put the map and
ends with a discussion about what margin elements to include on it and how to deal
with any text that is specifically tied to the map.

WHERE TO PUT THE MAP

First off, if you do not have full control over the placement of your map(s) in the
document, you will need at least to make suggestions concerning your map’s place‑
ment in the report using the guidelines presented here. If you do have full control
over the placement of your map(s), then you have the opportunity to integrate them
in a professional and aesthetic manner. Some of the placement guidelines for small,
in-line report maps include the following:

- Aim for a map size of about one fifth to one sixth of the overall page.
- Allow the text to flow around the map.
- Place the map near the text that references it.
- Do not place a map on a different page from the text that references it.
- Do not place a border (frame) around the map.
- An in‑line map needs to be about one fifth or one sixth of the overall
 page area, maximum, in order to integrate it into the document text (see
 Figure 7.4).

A map that takes up half the page is not the worst thing in the world, but if you
can make it smaller and less obtrusive, you should do so. Also, if the map is not
wide enough to stretch from one margin to the other, then do not float it between the
margins surrounded by a bunch of extra white space. Simply let the text flow around
it, magazine‑style. Furthermore, please do not put a frame or border around the map
unless absolutely necessary. Allow the white space to be the frame so that the map
and the text are the focus. Instead of neatening up the document, the border will tend to chop it up and distract. This goes against the intuition of the non-design professional. If you are not convinced, simply try printing your report both ways: one with the map borders and one without. In most cases the one without borders will look more professional.

Margin Elements for Report Maps

What margin elements could and should be included on a report map? Reports, especially of the scientific type, typically contain captions that are referenced somewhere in the body text and serve to explain the map or graphic without the reader needing to go back to the text for an explanation. Because of these captions, it is usually not necessary to include titles on the map, since that information is found in the caption. If you have access to the person responsible for the final report product, you will want to discuss whether captions will be included and even suggest captions when needed and if possible. Even without captions a title is optional depending on the context. For example, I recently came across a U.S. city zoning document that explained the various restrictions and permitted land uses for the zones in the city. The beginning of each new zone description was accompanied by a small map set off to the right-hand side of the page. One map per zone showed where the zone was in relation to the rest of the zones. The maps had no borders, the text was wrapped around them, and they had no titles or captions, yet they were highly effective as quick reference graphics to give immediate context to the zone descriptions.
While a title may not be needed, the smaller in-line report maps occasionally contain scale bars and authoring information and, if it the features aren’t obvious, a legend. The point is to keep the margin elements minimal so as not to disrupt the flow of the text and to keep the map simple enough that it can be deciphered at a glance. To accomplish this while still communicating some of the details that would have been put into the margin of a stand-alone map, put those details into the text of the report so that the reader is essentially “reading” the map as part of the text. Remember those stories from childhood that substituted pictures for words to aid early readers? The picture quickly illustrated the concept, you said the word, and then went on with the story. The same can be done with carefully thought out maps in reports. However, the data must be generalized and the map element must be clutter-free in order to achieve such an effect.

When it comes to making a full-page report map, there is more design flexibility. This is due to the extra space and the stand-alone nature of the map. A title may be warranted if there will be no caption (e.g., if it is part of an appendix of maps). Legends are more important on these larger maps because the size enables more layers to be shown on them and more layers means more deciphering on the part of the map viewer. Furthermore, especially in the case of an appendix map, a small amount of explanatory text placed on top of the map element can aid the reader in understanding how the map fits in with the report’s content. For example, an appendix with ten maps of an island’s nearshore environment might have title text at the top of each page saying something like, “Nearshore Degradation: Map 1 of 10.” This way, when someone prints the report and separates this map from the others it will at least have some context written directly on it.

Do steer yourself away from creating elaborate map layouts on letter-sized report maps, though. There simply is not enough space and no need for the disclaimers, data source descriptions, and other supporting information that would go in the margins since those items can more effectively be incorporated into the text of the report or in an appendix to the report. If the map is in an appendix you can write an introductory page that goes at the beginning of the appendix that explains the maps and makes note of the elements listed above. If absolutely necessary, you can include a separate page as a legend for all the maps in a group if the legend won’t fit on the same page as the maps. However, this is to be avoided if possible since you don’t want the reader to constantly have to flip the pages back and forth in order to interpret the maps.

When it comes to reports that are intended to explain the methods and results of a complicated analysis, it can be a struggle to fit everything on one page in a readable manner while still managing to display all of the relevant data. It can be very difficult to convey the magnitude of an analysis to readers when all you have is one (or even a series of) 8.5-inch by 11-inch piece of paper. For example, I will often conduct analyses on a sub-basin scale across a broad geographic area. In some cases there will be a couple of hundred sub-basins with many attributes to display. Though it is difficult to show all 200 sub-basins on one sheet, it is important for the reader to be able to view the results at a glance. Usually the compromise is to use a color scheme (kept at five colors or less) or a black-and-white gradient to display one variable across the geographic area. Sometimes this means that a particularly small sub-basin that contains the highest value or lowest value is not visible. In those instances, the small
sub-basin’s value can be highlighted with an inset box that enlarges that particular area or a label with the value connected to the basin with a leader line. The map is generally accompanied by a table of the basins and their attributes in the report. I find that it is important to include that information, even if it is also being supplied in digital spreadsheet and GIS form, because many of my potential readers will not have the time to view the digital data and will rely, instead, on the paper report.

POSTERS

There are two types of posters (also called “large-format plots”). The first is the summary poster like the kind you see at a conference. The other is the detailed poster that shows all the nitty-gritty attributes for a particular area on a large enough piece of paper to fit them all in. The detail posters are like architect’s plans in that they are not exactly meant for long-range viewing what with all their minute details laid out in smallish font point sizes. In many ways both poster types contain the same things: scale bars, data sources, authorship, titles, and so on. In fact, they may vary only in the amount of detail shown in the map element. However, the summary poster can differ from the detail poster in that it can contain more explanatory text (like methods and results) and fewer annotations on the map element. The detailed poster, on the other hand, does not contain summary text for lay readers and instead contains detailed text and symbology in the style of the profession for which it is made. It is also likely to contain large amounts of annotations and in-depth graphs for its professional audience.

SUMMARY POSTERS

When it comes to summary posters, a lot of information is available on design techniques. It usually consists of little snippets by the organizers of conferences aimed at those who will be submitting posters to an annual gathering. Sometimes these can yield useful and correct guidelines. However, there are many bad suggestions out there as well. For example, I once saw the recommendation that poster titles should be at least three inches tall, or 100 point. But a 100-point font is nowhere near three inches tall. Not only that, but entire Web sites are devoted to selling predesigned poster templates, all of which feature tons of superfluous and confusing details like innumerable separation lines and a zillion places to put a zillion logos. So I am obviously not a fan of those. My point is that you need to do due diligence when following someone else’s guidelines. Consider the current design fashions as well as your particular data’s needs. Do not be afraid to go outside the box if you have a strong case for doing something different from the norm. Above all, do not get stuck using new technologies to create the same old drab posters. For example, occasionally a poster can still be seen at a conference that looks just like the old-fashioned posters, before the days when people had access to graphics software and large-format printers. These posters have six sections, one for the introduction, one for the methods, and so on. Unless you are trying to go for a retro look, you can do a lot more with a poster now that you don’t have to tape together six letter-sized sheets. By the way, titling the sections of your poster with words like “introduction” and “methods” is generic and boring.
What might be a better way to go? Well, you could probably gain a lot of insight into great poster design by studying the design processes of those who know the poster-as-information format the best: architects and landscape architects. Find a book recommended for freshman students in one of those disciplines that goes into the proper ways of conveying information on paper. Or explore the Web sites devoted to such topics, audit a class, or pick up a copy of one of their trade journals. Any of those activities will boost your design skills immensely if you are printing out large-format posters regularly in your work.

The discussion in the Posters section focuses on posters that will be printed out one time, or perhaps a handful of times. However, if you have a need for offset printing, or big runs of large maps, then one of your challenges will be finding a place that will print them at a reasonable cost (since I would assume you are either reselling for a profit or handing them out for free as a promotion). As far as file types go, it used to be that offset printers needed files in certain formats that would have been difficult for a GISer produce but now you can typically give them any number of common file formats like Adobe pdf, FreeHand, or others.

Detailed Posters

The detailed poster, meant to be seen close up, includes many map layers, complicated symbols, and a lot of annotation. This aids visual analyses such as quickly looking up the location of a drain outfall for a utility customer or determining the types of soils in a potential build site. These are reference maps in the truest sense. That makes it imperative that any and all information that might be needed to adequately assess an issue is included. In this case, if you are in doubt you should err on the side of leaving the data on the map.

Margin elements can be complex and lengthy on these detailed posters. All margin information, usually even the legend and sometimes scale bars, is confined to a neatly organized rectangular space found at the bottom or right-hand side of the poster. The whole works are included as far as margin elements go: date, data paths, data sources, detailed legend information, signatures, title and subtitle, to name a few.

WEB

Proper design for Web-based map graphics will depend a lot on the format your map will take. There are static Web maps and dynamic (interactive) Web maps, each with different considerations. The format that you choose for your Web map will be largely based on your audience. Is your audience expecting a quick illustration of a key point or is your audience in need of an interactive map that can help them come to a customized solution for their own particular issue? Is there enough room on the screen to show all of the layers your audience may need or will they need to be able
to zoom in and out and click layers on and off? Do you need to provide multiple static maps that are keyed to a clickable master map?

For the purpose of organizing things, the Web section includes two parts, one on static maps for the Web and the other on dynamic maps for the Web. However, the difference between a static Web map and a dynamic Web map is not always as clear-cut as it may seem at first. Indeed, Web maps can be thought of as belonging somewhere on a continuum between strictly static maps and dynamic maps that are so complex that they are almost (or even entirely) information systems (see Figure 7.5). A mash-up with Google Maps, for example, is somewhere in the middle of the continuum. While you can add a layer on top of the Google Map image, you probably can’t add more than that layer since the Google Map background is fully saturated with information as it is.

Static

Static maps such as those that accompany a newspaper story, blog entry, or project description require similar design considerations as the maps discussed in the Reports section of this chapter. That is, they consist of smaller maps, usually quite simplified, that are there to illustrate a point made in the accompanying text or to provide an overview of a study area. The only difference between these static Web maps and report maps is in the export resolution and file type. The export resolution needs to be quite high for a paper printout, so a report map resolution will be 300 dpi or higher. However, a Web map that is designed only for on-screen viewing can have a much lower resolution (usually 72 dpi) with the benefit being that the lower resolution is faster to load on a user’s screen. The file type for a static Web map is usually confined to the JPEG specification, again, for speed.

A Web site with multiple static maps on the same subject ought to maintain a cohesive design throughout in terms of style (e.g., font and color). This minimizes the amount of time the reader needs to decipher each map since all symbols will have the same color and style qualities while maintaining a professional, non-hodge-podge, look. It also minimizes reader confusion by emphasizing that the maps are all a part of a series meant to explain the same subject and created by the same company or agency. Your static Web maps can be very small and show very little information or can be thumbnail images of larger maps that the user downloads with a click. If you must include a large map on a Web site with other text or other graphics, be sure to use the thumbnail technique. Large maps tend to disrupt a Web site’s flow as well as create a speed problem. Besides that, Web users appreciate having a choice as to what they want to see in more detail and what they don’t.
The first thing to emphasize about dynamic Web map layout design is speed. Nobody wants to visit your site and sit through a clunky process of loading map images onto the screen. When Google Maps introduced the concept of preloading map tiles it was very well received indeed. The preloading enables a user to pan around a map without having to wait for adjacent map images to be brought up since they are already there. Prior to that, the users of services like MapQuest or Microsoft’s teraserver would have to wait for a new map to load every time a pan event was enacted. One of the most common problems causing a slow map-load environment these days is that people will put map images that require a lot of back-end processing onto average servers when what they really need is high-end servers that can accomplish these process-intense image loading tasks.

Client-side techniques such as AJAX can also be used to enhance user experiences (e.g., Openlayers Javascript library). These techniques generally work by enabling the Web page to give data to the server, and vice versa, in small pieces so that the whole page does not need to be refreshed all at the same time.

Speed is also influenced by the file type and size of the map. File types like JPEG and GIF are both acceptable, low size file types. However, GIF files are always compressed to no more than 256 unique colors per image, so if you have a choropleth map (or anything else that shows a gradient of colors) this is probably not the way to go. The size of the image on-screen should be kept at 1,000 by 1,000 pixels in order to accommodate most people’s monitors, though remember that the viewer will be able to pan and zoom and thereby view a lot more spatial area than what shows in one screen. Full-size static maps can be downloaded by the user via a PDF file if 1,000 by 1,000 is too small for your needs. Image compression, if available in your software, is preferable as well. Export dpi is typically kept to a low 72 dpi for on-screen viewing.

Other than the speed of data loading, what else does a nice dynamic Web map need? For the typical user base, you can place the map controls (for example, the buttons, drop-down boxes, list boxes, and zoom tools) over the map itself in order to maximize the size of the map element on the page. While most of the controls should be minimized until they are clicked on, the few most basic controls like zoom and pan can be placed as transparent buttons on the map. While this applies to most Web maps, if your user is expecting more of an information system, then you will need to display the controls in their own separate space so they are easily accessed by the user. This is particularly true if the number of map layers is greater than ten and if you expect the users to toggle them on and off frequently. Placement of the controls is very important design-wise because they often are the limiting factor when it comes to designing a beautiful Web map.

Another consideration for dynamic Web maps is to remember that there may be some map layers that are not needed at certain scales of viewing. For example, if a user zooms out to the view extent of Western Europe, a detailed town point layer would blanket the map with a near-continuous surface of points. Conversely, if a user zooms in to the view extent of Sevilla, Spain, a generalized town boundary layer might be too coarse for this large of a scale. To solve problems like these you need...
to enable and disable layers programmatically depending on the scale that the user chooses. However, be mindful that whenever you take away a decision from a user you may cause the user to become frustrated at the reduced functionality. Another way of reducing clutter on the fly is to put constraints on the scale at which labels show up on the map. As the map is enlarged, more labels can be placed than when the map is at a smaller scale. Label constraints aren’t as likely to cause frustration as layer constraints.

The layer draw order is also important for data that completely overlap. If your user is going to click on a layer that shows poverty rates by county and then click on a layer that shows school funding by county, we had better hope that either the most recent layer that the user clicks on is on top or that the previous layers that were chosen are deselected when the new one is selected. In this way there is no confusion as to what is being shown on the map. When the user clicks on different layers, conflicting color schemes can also crop up. Predetermining what layers will be chosen and what colors will consequently go well together is nearly impossible. If design integrity is very important to you, then you will have to go through every test case possible in terms of unique layer combinations and possibly limit the number of layers available as well. From your test cases, you can set appropriate “conflicts” programmatically so that certain layers cannot be toggled on at the same time.

Relative Scales: While scales in GIS are exactly defined and represented on the map as a scale bar or ratio, general discussions about map scale often use the relative terms: large scale, medium scale, and small scale. While the exact equivalents of these terms are somewhat ambiguous in the literature, the guidelines shown in Figure 7.6 will give you a general idea of what they are.

![Small Scale](image1.png) ![Medium Scale](image2.png) ![Large Scale](image3.png)

FIGURE 7.6 These maps illustrate the relative terms: small scale, medium scale, and large scale.

- Small scale — 1:250,000 and smaller
- Medium scale — 1:50,000 to 1:250,000
- Large scale — 1:50,000 and larger

Lastly, regardless of whether your Web map is static or dynamic, ensure that your color choices provide enough contrast between features on multiple monitors and
Web browsers. Because color can vary so much depending on the monitor and Web browser being used, as well as a user’s individual monitor adjustment settings, it is imperative that colors be different enough to allow for the correct interpretation of the map’s contents even if they change somewhat from monitor to monitor. This is especially important for maps that contain color ramps.

DUAL PURPOSES

I find that clients will often request digital copies of what was originally intended to be a paper map in report or poster form. These digital copies are usually destined for use in slide shows, although they can also be posted on the client’s Web site. I first determine what, exactly, the digital map is going to be used for and then sometimes modify it accordingly. For example, I will take off most of the margin information associated with a large-format poster before making a digital copy for a slide. The margin information could distract from the presentation and the presenter can simply tell the audience any of the important details they might need to know. Conversely, a letter-size map that you originally made for a report might be modified for a slide presentation by adding detail to it. For example, a letter size map of the United States might have a lot of leader lines connecting the state names to the smaller states. When you modify it for a slide, however, you could delete the leader lines and place the labels within the polygons since the slide will be much larger than the letter-size map. Obviously if you are transforming a map from a slide graphic to a letter-size report you may need to do the reverse: delete detail and move elements around to fit on the new page size.

DPI

Dpi, which stands for the dots-per-inch ratio, is often confused with resolution. The resolution is what we are referring to when we say that a map is, for example, 100 pixels by 120 pixels. You might see it written as, “100 × 120.” In this example, the map contains 100 pixels along the horizontal axis and 120 pixels along the vertical axis. However, this alone does not tell us how big the map is. To get at that, we need to know what size the pixels are. Since pixels are measured in dots per inch, let’s say our 100 × 120 map has a dpi of 100. This would make the map 1 inch by 1.2 inches in size. The higher the dpi, the more dots within each pixel and the finer the resulting image, if the resolution stays constant. Now, the reason we GISers often think only in terms of dpi is because our map’s size is a variable that we set at the beginning of a project and do not change come print time. Therefore, when it comes to changing a parameter to try for a smaller file size or, conversely, a finer looking image, we will either lower or raise the dpi.

With all media, you will have to consider the output dpi at export time if your software allows you to specify it. If file size and export file processing time are not issues for you then you may only be constrained by your printer’s output resolution. If you are printing on a simple color office inkjet that only prints at 300 to 600 dpi, then obviously there is no need for you to export at anything higher than that. So check your printer’s dpi output prior to anything else.
Where JPEGs and certain other compression-based file types are concerned, there is an extra variable to consider. JPEGs are made with a compression algorithm that lowers the file size by resampling the image to a lower quality. If you want a higher quality than the typical JPEG compression allows for but still want a JPEG file type for whatever reason (as opposed to simply switching to an uncompressed file format), then your software may provide you the option (sometimes only programmatically) to change the compression by changing the resampling ratio. Therefore, it is possible in some cases to get a JPEG that is not compressed or less compressed than it typically would be. Of course you would have to contend with the higher file size and longer export processing time just as with the other uncompressed file types if you go this route. If you must have a JPEG, though, and need smooth, non-jagged lines for a professional appearance, then this may be your answer. In particular, maps with high contrast or a lot of sharp edges (i.e., the typical GIS map) do require a high quality in the larger map sizes.

Another main goal with the dpi export setting is to match it with your anticipated audience viewing distance and the file size that your printer or computer can handle for the speed you require. With computing power and storage changing so rapidly, your best bet is to do some trial and error to get a feeling for what your software and hardware can do. A good place to start when making, for example, a high-quality, high-dpi, large-format plot is to export only a section of it and record the time it takes. You could also lower the dpi (or the resampling ratio if using a compressed file format) for the first plot. Be forewarned, however, that raising these settings will not result in a linear increase in export time and file size. In fact, twice the original dpi will produce an output with four times the dots per square inch as the original, since you are dealing in two dimensions instead of one.

To get into the idea of dpi versus viewing distance more, consider the example of a typical road sign. (Sure, this example ventures slightly outside the realm of the GIS, but it illustrates the concept nicely.) Take a typical road sign and consider the viewing distance for it. Quite long, right? You could possibly get away with a dpi as low as ten to twenty for a road sign considering how far away it will be seen and, additionally, considering the speed with which the viewer will pass by it. However, because road sign printing technology is advanced enough to be able to handle a higher dpi they are more often printed at well north of seventy-five dpi. Of course some are “printed” via razor knife plotters on reflective sheeting — not exactly your typical office printer setup.

Now let’s retreat back to conventional printing methods for GIS maps. Let’s say you have a 4-foot by 4-foot large-format poster with a lot of detailed bathymetry covering most of the surface area. Let’s also assume your computer, software, and printer cannot typically handle a 600 dpi output for data of this magnitude. And even if it could, the resulting file size might be huge and unwieldy considering today’s computer processing capabilities. If your poster is intended for longer range viewing, say a distance greater than one meter, then the dpi can be lowered substantially, and in some cases an output of 150 dpi for the image can be perfectly adequate for this use. There are exceptions to this. Photographs may look best at 300 dpi or greater. Also, commercial printing technology (“offset printing”) can handle the larger file...
sizes and sky-high dpi, but it is not in the typical GISer’s office setup to handle those specialized printing capabilities.

EXPORT CONSIDERATIONS

Your GIS software will offer many file-type options for exporting your finished map. Vector-based, uncompressed TIFF (Tagged Image File Format) files and EPS (Encapsulated PostScript) files will provide higher image quality than JPEGs but will have large file sizes. A JPEG will be compressed, allowing for smaller file sizes, but with the compression comes a tradeoff in quality. The compression process creates distortion around the edges of large features such that they turn out looking fuzzy, with some little dots of the color drifting off into the surrounding colors. Sometimes this isn’t discernable to the eye, especially when you have many small features (especially in the case of photographs), but other times it is quite noticeable. A good solution for quality and file size issues is the Adobe pdf (portable document format). These have small file sizes but are difficult to impossible to embed in other applications like slides or reports.

Many cartographers and GISers alike do not simply export straight from their GIS package to a finished map file for printing. This is especially true for those professionals who feel comfortable using Adobe Illustrator, Photoshop, or other graphic design software. The general process is to export layers or groups of layers from the GIS into the graphic design file format, do aesthetic manipulations there, and then export to a finished graphics file for printing. It is also not uncommon to go back and forth between the programs to change settings, make different selections, and so on and can therefore become quite an ordeal.

The advantages to this method of map design are that you have some more control over color and you can do fancy things like change individual letters in a text block to different styles, create outlined lettering and drop-caps, generalize boundaries, render halos around features quickly (called “outer glow” in Adobe Illustrator and “glowing edges” in Photoshop), and so on. However, because this process involves taking a map from a geographically centered product and putting it into graphic illustration software that knows nothing about how to line layers up in geographic space, it will be crucial that you ensure that your geography is preserved. One of the best ways to accomplish this is to place a bounding box around your map layers prior to exporting them from the GIS. Then you can use that bounding box to line up your layers in the graphic illustration software.

Some specific tips for this type of export are as follows:

- If you have raster files, make sure they are on the bottom of your layer list.
- Do not set any layer transparencies prior to export.
- Make sure the colors for each data layer are unique so you can select them easily in the graphic illustration software.
- Arrange the layers in the GIS in the order in which you want them layered in the graphic software.
- Export in the projection that you need for the final map.
Obviously you will need to learn a lot about the other specific quirks concerning export to graphic illustration software as well as learn the software itself in order to make this an effective method of mapmaking. With these exporting and media-specific tips you will be well on your way to creating effective, one-of-a-kind maps for your more than grateful audiences.

SUGGESTIONS FOR FURTHER READING

END NOTES

1. Lawrence Lessig, Professor of Law, Stanford University: http://www.lessig.org/. To see one of his presentations go to: http://www.youtube.com/watch?v=7Q25-S7jzgs (accessed 18 July 2008).

2. A stand-alone 8.5-inch by 11-inch map such as a handout does need that supporting information, either in an architect’s style box at the bottom or right-hand side of the page (see Margins section in Chapter 3, “Layout Design”) or as text on the flip-side of the paper.
Appendix A: Layout Sketches

A layout can be put together in a million different ways. The examples that you find here are specific to the type of layout that contains margin information in an actual margin (i.e., set apart from the map element) rather than floating over the map element. They are drawn in the same format as recommended in the emphasis map section of Chapter 3, “Layout Design.” These sketches are meant to provide examples of good layout technique and to give inspiration on how best to organize multiple elements on a layout. They are obviously not comprehensive of all the ways these elements can be arranged.

There are several things to point out here: first, you will notice that all the sketches are formatted to look somewhat like real sketches on paper. Though the original intent was to provide actual hand-drawn sketches in this appendix, it turns out that hand-drawn sketches are not easily printable in book form due to their naturally varying linewths. As a solution to the problem, the sketches are presented here in computerized form (with a Comic sans serif font meant to suggest handwriting) but this does not mean that your layout design attempts should be done the same way. Indeed, it is not even advisable to do so (unless perhaps your map will be published in a printed book, of course).

Why should your emphasis maps be in sketch form? Because sometimes we just need relief from computerized constructs. Switching from your everyday medium (the computer) to a pen and paper can be liberating to the creative processes that are just waiting to come out of latency and get to work for you. Another reason to do this with pen and paper is that it is much faster to create a layout sketch on paper than it is in a graphics program, even for those of us who are seasoned professionals. Speed is important so that you can get as many ideas out as possible during this very first, highly creative stage. Later on, when you are ready to finalize your layout design, you could transfer it to a digital graphic if you choose. Finally, the last reason to sketch out your layout design on paper is that you will likely create several at a time as your ideas evolve. The human eye can quickly and easily read and interpret your own handwriting and sketching much more easily than it can computerized fonts. With a handful of sketches to pick the best ideas from, the handwritten ones will be easier to get through.

The layout ideas found in this appendix are meant to help you get some ideas on how to construct your own emphasis maps with your own variables. Again, they are examples of margin-type layouts. That is, the margin information is not found free-floating on top of the map element and is, instead, neatly contained within one or more boxes surrounding the main map element(s). (Except the scale bar and north arrow, which can, and many times, should, be placed directly on top of the map element.) Though my point of view is that this type of page layout is superior to the free-floating page layout and is generally an easy technique to utilize to make your map look more modern and professional, I am by no means trying to say that free-floating margin information is unacceptable. If you find that a free-floating design

© 2009 by Taylor & Francis Group, LLC
is the best thing for your particular needs, you are on your own in terms of where to put the margin information. Indeed, the reason I have not included such sketches here is that free-floating margin information layouts are dependent on the shape of the thing being mapped. So, if the map element were of Africa, you might float the margin information in the lower-left quadrant of the page where the ocean is. Other map shapes would lend themselves to other possible margin element groupings.

Third, there are many different sizes of maps shown in these sketches. They are drawn to either a 1:1 or 1:2 scale representing layouts in letter-size, ANSI C, ANSI D, and ANSI E standard sizes, as noted in inches. They can be adapted to fit any size page, of course, especially given that these are supposed to represent the general shape and flow of your page layout rather than absolute sizes and placements. Most of the larger sketches were made with conference poster style in mind, though one of them is more of an up-close reference map design. The smaller letter sizes were made with up-close viewing in mind as I envisioned work groups passing them around at meetings or including them in a client report. These differences are noted in the caption for each sketch.

Linewidths and relative darkness of the lines are representative of the amount of weight each item should have in the overall scheme. Thin gray lines denote areas where the viewer will look last, whereas thicker black lines indicate areas where the viewer will look first. For the most part, the boxes and lines are shown as a means of suggesting where things will go on the layout — they are not necessarily to be taken as literal representations of what should be on the final layout. In other words, you do not need to have a thick black line around the map element, nor do you need thin gray boxes around inset map elements. Not all layout elements are shown, just enough to get the general idea of shape, form, symmetry, balance, and emphasis.
FIGURE A.1 This letter-sized layout is somewhat unique in that it has the margin elements organized on the left side of the page instead of the right side or bottom. If the viewer is expected to look first at the margin information and then at the main map, this could be an appropriate design. Alternatively, this design can provide some visual relief for cartographers and audience alike if the more typical design types have become hackneyed.

FIGURE A.2 I envisioned that this letter-sized layout would provide a good way of communicating large-scale information while still providing the larger spatial context for the information in the reference maps. A likely map candidate for this layout would be a zone map of a customer’s property and its adjacent properties with the reference maps illustrating the overall zoning for the region at varying scales.
FIGURE A.3 Though there will not be much room on this letter-sized sheet for a large map element, it is arranged so that a lengthy legend can be placed alongside the map. This is appropriate for large-scale maps that have a lot of colors and symbols to decipher such as soil or geology maps of individual properties. A small reference map can also be included to show where the main map is in relation to major landmarks.

FIGURE A.4 Putting the title off to one side, as on this letter-sized sheet, gives a layout a slightly more modern appearance than if it was located at the top center of the page. Room is left on the bottom for a small amount of margin information.
FIGURE A.5 This letter-sized sheet uses a simple line to separate the map from a small amount of margin information (the line is meant to be a literal line on the finished layout in this case). The title can float over the map if the map has white space to allow it. Alternatively, the title can be surrounded by a white halo or mask to differentiate it from the map element or it can be moved to the left or right until it is not obscured by the map.

FIGURE A.6 This square margin box takes up a small part of the main map on this letter-sized sheet. It is positioned to allow most of the viewer’s focus to be on the main map element and the title.
FIGURE A.7 Letter-sized sheets are not always big enough to show your entire map element without sacrificing some margin information. This layout takes advantage of the entire page, squeezes in a title at the bottom, and perhaps includes a scale bar and north arrow on top of the main map element.

FIGURE A.8 This straightforward ANSI C–sized layout shows how you can arrange things so that the text is slightly more in focus than it usually is when relegated to the right-hand side or bottom of a page. In this layout the text is almost of equal importance to the main map element.
FIGURE A.9 This ANSI C–sized layout is definitely not your normal scientific-type layout but could suit a variety of non-scientific mapping purposes where overall design is most important. It is particularly suited to small-scale maps like a world map or country map.

FIGURE A.10 When designing a layout with a series of maps (usually with the same extent but different time periods or different data) it can be helpful to lay them out side by side like this, aligned horizontally. Occasionally you'll see map series layouts get overly fancy by staggering the maps and filling in the white space with other graphics. That approach takes away from the central point of the layout, which is to compare and contrast the maps. Putting them side by side as shown on this ANSI C sheet is a much better way to get the point across. Incidentally, it is usually best to leave the border boxes off of the maps (they are only shown here to suggest where the maps will be).
FIGURE A.11 ANSI D–sized sheets are long and narrow. They are ideally suited for times when you need a large amount of margin information like in this layout where multiple photos, a reference map, a big legend, and plenty of space for other details take up the right-hand quarter of the page.

FIGURE A.12 Margins do not always have to be on the right-hand side or bottom of a page. In this case I envisioned a map where the reference maps provide crucial detail for understanding the main map and are therefore placed in the upper left where the eye may glance first. Each reference map is explained with some brief textual information directly below it on this ANSI D–sized sheet.
FIGURE A.13 Maps of longish study areas (California or Chile would be two examples) would work well on this ANSI D–sized page with plenty of room for a long, narrow map element. With a couple of photos surrounding some textual information, and a title in between, it achieves a balance while still allowing the main map to be the central focal point.

FIGURE A.14 This is a poster-style layout on ANSI E–sized paper. The idea here is to allow enough space to provide a huge eye-catching map while still retaining some space for very brief text concerning the study. This layout style takes advantage of the fact that most poster viewers will look at and read a poster from left to right by having the introduction, methods, results, and conclusions sections span the page in left-to-right order.
FIGURE A.15 Sometimes process-step maps can convey the methods used to derive the main map much more clearly and memorably than words can. This ANSI E–sized sheet employs this tactic as a means of graphically illustrating the study for a conference audience. The poster viewer could get a quick overview of the study methods via the small maps and look for more information in the text as needed.

FIGURE A.16 This ANSI E–sized layout leaves most of the available space to the map element for close-range viewing of detailed map data. I envisioned this as being part of a series of layouts for a large project, so there is a section at the bottom for the index map that will show what part of the overall map grid this map represents.
Appendix B: Map Examples
FIGURE B.1 This map is an outstanding example of an attractive, well-organized design that communicates effortlessly. With the use of well-organized margin elements, a generous amount of detail, well-placed labels, and standard symbols, visitors to the John Wayne Pioneer Trail will have no trouble locating themselves or the information and services they need. A dark background unifies the entire page while giving it a modern look. The two major titles are in a small-cap font that is lighter in color than the background, which tie together well (as do the lighter colored margin boxes on the side). Colors, fonts, alignment, and many other details were carefully and thoughtfully coordinated. Designed by Matt Stevenson, Principal, CORE GIS, LLC for The Trust for Public Land.
Appendix B: Map Examples

This map of vegetation cover and depth uses black and white aerial imagery as its background layer. The blue hue of the bay and the vegetation colors are all saturated colors that go well with the grayscale background. Furthermore, the legend background matches the dominant color of the background image: gray. This allows the legend to remain secondary to the map, whereas a white background would have drawn too much attention to it. The data sources are neatly tucked into a corner. A small amount of white space between the map and the map’s frame allows for a gradual transition to the white space of the report page that it was placed on. It also matches the small amount of white found in the image itself. Designed by Allison Bailey, Principal, Sound GIS, for the Washington Department of Fish and Wildlife.

© 2009 by Taylor & Francis Group, LLC
FIGURE B.3 This map serves as a basemap template for other Kitsap County government data. With its intuitive road symbol levels and hillshade with hypsometric tinting, it provides the spatial context for all other data. The darker tinting on the county focuses the viewer, whereas the lighter tinting on the surrounding areas is both elegant and unobtrusive. Almost the entire letter-sized layout is taken up by the map element to allow maximum use of space. The lengthy disclaimer is required by the department and is well tucked into a non-focus corner of the layout. The title serves as a simple placeholder. Standard background symbols for roads, lakes, and elevation make a legend unnecessary. Designed by David Nash, GIS Analyst, Kitsap County Department of Community Development.
FIGURE B.4 This map illustrates two related statistical analyses: robbery density and robbery hot spots. Produced by the CrimeStat Program (Levine, N. 2007. CrimeStat III: A Spatial Statistics Program for the Analysis of Crime Incident Locations. Version 3.1. Ned Levine & Associates, Houston, TX; National Institute of Justice, Washington, DC. Available at http://www.icpsr.umich.edu/crimestat.) It allows you to instantly verify the hot spot visually by comparing it with the large circles that indicate numerous robberies in that location. Some ancillary data help to further our understanding of the situation, including the location of a bus terminal that may be related. In case a viewer does not notice that connection, the map designer has clearly highlighted it in the map title. Road symbol levels and clear road labeling give good contextual background for data that are intimately tied with streets. Designed by Ned Levine, Ph.D., Principal, Ned Levine & Associates.
Bear rub data only
females only
psi(area) p(time+effort)

FIGURE B.5 This map, which shows the results of a simple model that estimates the proportion of area used by grizzly bears in the Northern Continental Divide Ecosystem, Montana, is part of a series of maps in a report. The other maps in the series share the same scale, location, drainage basin data, and elevation data, so those are explained on a separate page. The three text lines in the margin explain the particulars of this map so the report reader can quickly see how this map is different from the others. Designed by Jeff Stetz, Biologist, U.S. Geological Survey.
Appendix C: Color Swatches

The color swatches in this appendix are the exact same swatches found in Chapter 6, “Features.” Each section of that chapter has one or two swatches directly underneath the section title. They are repeated here to provide a handy reference to the RGB values for the colors. By no means are the palettes for these feature types to be confined to the colors found here. These are simply inspirational palettes that can be used as starting points to creating your own colors or can be used in their entirety as you deem appropriate. These palettes can also be used for other feature types that aren't described in the “Features” chapter or used to develop color schemes for entire layouts.
Appendix C: Color Swatches

<table>
<thead>
<tr>
<th>Roads</th>
<th>Rivers and Streams</th>
<th>Bodies of Water</th>
<th>Cities and Towns</th>
<th>Political Boundaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>255</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>255</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>255</td>
<td>255</td>
<td>245</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>255</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>158</td>
<td>216</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>111</td>
<td>219</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>115</td>
<td>255</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>126</td>
<td>53</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>0</td>
<td>190</td>
<td>50</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>0</td>
<td>232</td>
<td>138</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>0</td>
<td>99</td>
<td>83</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>0</td>
<td>222</td>
<td>160</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>0</td>
<td>183</td>
<td>142</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>0</td>
<td>169</td>
<td>22</td>
<td>178</td>
<td>178</td>
</tr>
<tr>
<td>0</td>
<td>177</td>
<td>0</td>
<td>178</td>
<td>178</td>
</tr>
<tr>
<td>0</td>
<td>194</td>
<td>199</td>
<td>178</td>
<td>178</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuzzy Features</th>
<th>Elevation</th>
<th>Hillshade</th>
<th>Parcels</th>
<th>Currents</th>
</tr>
</thead>
<tbody>
<tr>
<td>212</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>0</td>
</tr>
<tr>
<td>136</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>0</td>
</tr>
<tr>
<td>89</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>0</td>
</tr>
<tr>
<td>98</td>
<td>178</td>
<td>220</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>86</td>
<td>178</td>
<td>220</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>104</td>
<td>178</td>
<td>220</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>63</td>
<td>110</td>
<td>200</td>
<td>211</td>
<td>230</td>
</tr>
<tr>
<td>122</td>
<td>83</td>
<td>200</td>
<td>255</td>
<td>239</td>
</tr>
<tr>
<td>59</td>
<td>45</td>
<td>200</td>
<td>190</td>
<td>255</td>
</tr>
<tr>
<td>156</td>
<td>153</td>
<td>180</td>
<td>255</td>
<td>253</td>
</tr>
<tr>
<td>100</td>
<td>137</td>
<td>180</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>45</td>
<td>87</td>
<td>180</td>
<td>255</td>
<td>247</td>
</tr>
<tr>
<td>104</td>
<td>252</td>
<td>157</td>
<td>197</td>
<td>35</td>
</tr>
<tr>
<td>104</td>
<td>186</td>
<td>157</td>
<td>0</td>
<td>122</td>
</tr>
<tr>
<td>104</td>
<td>3</td>
<td>157</td>
<td>255</td>
<td>204</td>
</tr>
<tr>
<td>255 255</td>
<td>38</td>
<td>130</td>
<td>245</td>
<td>240</td>
</tr>
<tr>
<td>255 255</td>
<td>115</td>
<td>130</td>
<td>162</td>
<td>48</td>
</tr>
<tr>
<td>255 190</td>
<td>0</td>
<td>130</td>
<td>122</td>
<td>0</td>
</tr>
<tr>
<td>233 201</td>
<td>100</td>
<td>100</td>
<td>211</td>
<td>24</td>
</tr>
<tr>
<td>155 155</td>
<td>100</td>
<td>100</td>
<td>211</td>
<td>24</td>
</tr>
<tr>
<td>235 235</td>
<td>190</td>
<td>100</td>
<td>127</td>
<td>24</td>
</tr>
<tr>
<td>255 230</td>
<td>190</td>
<td>0</td>
<td>215</td>
<td>168</td>
</tr>
<tr>
<td>255 178</td>
<td>232</td>
<td>0</td>
<td>158</td>
<td>0</td>
</tr>
<tr>
<td>255 106</td>
<td>255</td>
<td>0</td>
<td>158</td>
<td>0</td>
</tr>
<tr>
<td>Wind</td>
<td>Temperature</td>
<td>Land Use and Land Cover</td>
<td>Trails</td>
<td>Utilities</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-------------------------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>0</td>
<td>180</td>
<td>235</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>0</td>
<td>228</td>
<td>206</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>255</td>
<td>59</td>
<td>166</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>255</td>
<td>36</td>
<td>138</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>174</td>
<td>255</td>
<td>0</td>
</tr>
<tr>
<td>255</td>
<td>76</td>
<td>166</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>247</td>
<td>19</td>
<td>158</td>
<td>255</td>
<td>0</td>
</tr>
<tr>
<td>210</td>
<td>8</td>
<td>220</td>
<td>127</td>
<td>230</td>
</tr>
<tr>
<td>50</td>
<td>213</td>
<td>181</td>
<td>230</td>
<td>190</td>
</tr>
<tr>
<td>50</td>
<td>158</td>
<td>181</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>130</td>
<td>215</td>
<td>158</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>130</td>
<td>198</td>
<td>158</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>130</td>
<td>195</td>
<td>158</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>232</td>
<td>38</td>
<td>189</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>190</td>
<td>123</td>
<td>221</td>
<td>163</td>
<td>163</td>
</tr>
<tr>
<td>255</td>
<td>172</td>
<td>209</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Impervious Surface</th>
<th>Basins</th>
<th>Building Footprints</th>
<th>Soils</th>
<th>Geology</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>209</td>
<td>100</td>
<td>89</td>
<td>218</td>
</tr>
<tr>
<td>42</td>
<td>252</td>
<td>100</td>
<td>72</td>
<td>230</td>
</tr>
<tr>
<td>61</td>
<td>120</td>
<td>100</td>
<td>45</td>
<td>120</td>
</tr>
<tr>
<td>170</td>
<td>184</td>
<td>225</td>
<td>117</td>
<td>190</td>
</tr>
<tr>
<td>71</td>
<td>255</td>
<td>225</td>
<td>93</td>
<td>167</td>
</tr>
<tr>
<td>41</td>
<td>0</td>
<td>225</td>
<td>39</td>
<td>117</td>
</tr>
<tr>
<td>61</td>
<td>255</td>
<td>145</td>
<td>145</td>
<td>191</td>
</tr>
<tr>
<td>0</td>
<td>255</td>
<td>99</td>
<td>125</td>
<td>94</td>
</tr>
<tr>
<td>22</td>
<td>8</td>
<td>84</td>
<td>47</td>
<td>52</td>
</tr>
<tr>
<td>217</td>
<td>249</td>
<td>233</td>
<td>186</td>
<td>147</td>
</tr>
<tr>
<td>215</td>
<td>149</td>
<td>19</td>
<td>76</td>
<td>191</td>
</tr>
<tr>
<td>202</td>
<td>199</td>
<td>19</td>
<td>19</td>
<td>166</td>
</tr>
<tr>
<td>137</td>
<td>25</td>
<td>244</td>
<td>207</td>
<td>235</td>
</tr>
<tr>
<td>116</td>
<td>175</td>
<td>253</td>
<td>159</td>
<td>235</td>
</tr>
<tr>
<td>151</td>
<td>237</td>
<td>8</td>
<td>89</td>
<td>117</td>
</tr>
<tr>
<td>140</td>
<td>255</td>
<td>0</td>
<td>245</td>
<td>224</td>
</tr>
<tr>
<td>145</td>
<td>85</td>
<td>169</td>
<td>255</td>
<td>137</td>
</tr>
<tr>
<td>117</td>
<td>0</td>
<td>230</td>
<td>122</td>
<td>195</td>
</tr>
<tr>
<td>71</td>
<td>153</td>
<td>197</td>
<td>240</td>
<td>253</td>
</tr>
<tr>
<td>83</td>
<td>126</td>
<td>0</td>
<td>137</td>
<td>225</td>
</tr>
<tr>
<td>80</td>
<td>88</td>
<td>255</td>
<td>102</td>
<td>79</td>
</tr>
<tr>
<td>197</td>
<td>177</td>
<td>255</td>
<td>240</td>
<td>204</td>
</tr>
<tr>
<td>173</td>
<td>201</td>
<td>211</td>
<td>230</td>
<td>31</td>
</tr>
<tr>
<td>155</td>
<td>207</td>
<td>127</td>
<td>198</td>
<td>255</td>
</tr>
</tbody>
</table>

© 2009 by Taylor & Francis Group, LLC