
The Green Paradox and Budgetary Institutions

2019, Energy Policy, 133, 110846

Sarah Najm Department of Economics

Internal Seminar Series. 31st, October 2019 College of Business Administration, King Saud University

Motivation - do green choices generate green outcomes?

ATELIER POPULAIRE. (1968). *Je participe, tu participes, il participe, nous participons, vous participez, ils profitent*. Paris, s.n.

Motivation: The Green Paradox (Sinn 2012, 2008)

- Why climate policy has failed to reduce emissions?
- Demand vs. supply measures
- Climate policy can lead to higher emissions by influencing fossil producers to increase production in the short and medium term
- How do oil producers react to the rise of heavily subsidised renewable energy

Motivation: The Green Paradox (Sinn, 2012, 2008)

- Insightful narrative, but lacks focus on:
- I. Oil production strategies
- II. The political economy of the oil industry it is also subsidized!
- III. Variant incentive structure across different producers
- IV. In other words, an institutional (empirical) perspective

Quick main findings

Is there a green paradox effect? (Yes and no)

Saudi oil production-cut strategy in response to green regulations. *Why?*

• Procyclical fiscal policy prevents profit maximization

Green paradox U.S. oil production. *Why?*

- No evidence for procyclicality
- Budget surplus channels towards standard of living

Outline of the talk

- Research questions (RQs) and contribution of this study
- Data and comparative framework: Saudi Arabia vs. the United States
- Econometric specification: unified simultaneous equation model (SEM)
- Estimation results
- Conclusion

This study investigates...

• Oil production strategies in response to the rise of alternative energy: is there a green paradox effect? (RQ1)

• An institutional narrative based on the behaviour of budget balance in the macroeconomy (RQ2)

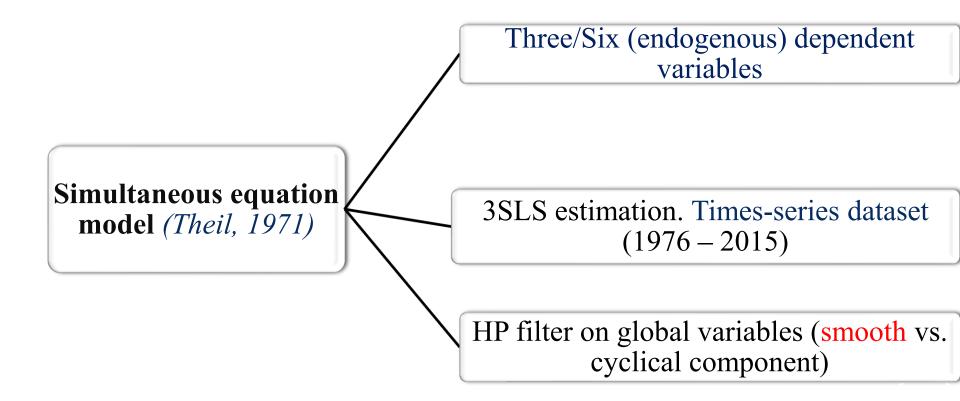
• A simultaneous equation model (SEM): Saudi Arabia vs. USA (1976-2015)

Contribution

- I. Innovative (empirical) framework examining oil production in response to the rise of green regulations in a comparative context
- II. Bridge the gap between the green paradox and the natural resource curse literatures
- III. The choice of modelling framework allows for endogeneity effects and cross market interaction (Wang and Sun, 2017, Ahajji and Huettner 2000b)
 - Institutional narratives using macroeconometrics and comparative methods

Related literature

- I. The green paradox (Sinn, 2012, 2008)
- Theoretically driven, less empirical context (Lemoine, 2017, Zhang et al., 2017, Rezai and Van er Pleog, 2016, Grafton et al., 2014, Marie et al. 2014, Ploeg and Withagen, 2012, Smulders et al.2012, 2008)


II. <u>Natural resource curse</u>

- Natural resources and nature of property rights (Bohn and Deacon, 2000)
- Economic growth and natural resource abundance (Auty, 2001, Sachs and Warner, 2001)
- Quality of institutions and fiscal policy behaviour (*Al-Kasim et al., 2013, Sala-i-Martin and Subramanian, 2013, Frankel, 2012*)

Empirical estimation framework

- Unit-root tests (Dickey-Fuller, KPSS, Zivot-Andrews)
- H-P filter on global variables: *smooth* vs. cyclical components
- Econometric framework: simultaneous equation model
- Diagnostic checks: identification, autocorrelation, heteroscedasticity tests

Econometric framework

Model step-up: simultaneous equation model (SEM)

A general notation for L structural (behavioural) equations (Theil, 1971):

$$y_j = Z_j \partial_j + \epsilon_j \qquad (1)$$

Where:

- j= 1, ..., L
- y_i represents the vector of dependent variables
- Zj represents the matrix $(n \times N_j)$ that includes all independent variables
- N_i corresponds to the number of independent variables in equation j
- ∂j represents a vector that includes the unknown parameters
- *Ej*: represents the disturbances in the corresponding equation

Econometric specification – SEM (6 equations)

 $G_{U(t)} = \alpha_1 p_{U(t-1)} + \alpha_2 pr_{(s)t} + \alpha_3 pr_{(c)t} + \alpha_4 ca_{U(t)} + \alpha_5 fis_{U(t)} + \alpha_6 exp_{U(t)} + \epsilon_2$

 $Ca_{U(t)} = v_{1}pr_{st-1} + v_{2}pr_{ct-1} + v_{3}A_{(s)t} + v_{4}A_{(c)t} + v_{5}pop_{U.S.t} + v_{6}fis_{U(t)} + \epsilon_{3}$

Econometric specification – SEM (6 equations) cont.

 $p_{SA(t)} = \lambda_1 p_{SA(t-1)} + \lambda_2 pr_{(s)t} + \lambda_3 pr_{(c)t} + \lambda_4 p_{U(t-1)} + \lambda_5 G_{SA(t)} + \lambda_6 A_{(s)t} + \lambda_7 A_{ct} + \lambda_8 86 + \epsilon_4$

 $G_{SA(t)} = h_1 p_{SA(t)} + h_2 pr_{(s)t} + h_3 pr_{(c)t} + h_4 ca_{SA(t)} + h_5 fis_{SA(t)} + h_5 exp_{SA(t-1)} + \epsilon_5$

 $Ca_{SA(t)} = E_{1}ca_{SA(t-1)} + E_{2}pr_{(s)t} + E_{3}pr_{(c)t} + E_{4}pop_{SA(t)} + E_{5}fis_{SA(t-1)} + E_{6}A_{st} + E_{7}A_{ct} + \epsilon_{6}A_{st} + E_{7}A_{ct} + \epsilon_{6}A_{st} + E_{7}A_{ct} + \epsilon_{6}A_{st} + E_{7}A_{ct} + \epsilon_{6}A_{st} + \epsilon_{6}A_{st} + \epsilon_{7}A_{ct} + \epsilon_{7}$

Data and variables

Data sources

Variable	Source		
Oil-production	BP- annul statistical review (2016)		
WTI oil-price	BP- annul statistical review (2016)		
GDP, CPI	World bank		
Budget balance	SAMA, FRED		
Net-exports	SAMA, FRED		
 Alternative energy: Total other renewables (Mtoe): solar, biomass, wind, geothermal and waste. Nuclear energy (Mtoe) Hydro energy (Mtoe) 	BP- annul statistical review (2016)		

Dependent Variables	Definition (proxy of)
P _{SA,US}	Growth-rate of the aggregate crude oil crude supply
G _{SA, US}	Real GDP growth rate
Са	Per capita energy consumption: standard of living

Independent	Definition (proxy of)
Variable	
A _{c,s}	The cyclical/smooth component of alternative
	energy supply : renewables, nuclear, and hydro
Fis	The ratio of budget balance to GDP (surplus/deficit)
Pr	US dollars per barrel of WTI crude price
pr	The cyclical/smooth component of the US dollars
	per barrel of WTI crude oil price
Netexp	The ratio of net-exports
Ca	Per capita energy consumption (standard of living)
рор	Population growth

Independent variables of interest

- **I.** As: the rise of alternatives on oil-production?
- Is there a green paradox effect? If not, why?

II. Fis: healthier budget on growth and standard of living?

- Fiscal policy behaviour and quality of institutions
- Procyclical fiscal policy = (lower commitment to budget rules) (lower quality of institutions?)
- Countercyclical redistribution = income inequality or market based incentives?

Estimation results

Dependent variable: oil production	US	Saudi Arabia
L. production	0.333	-0.320
	(0.02)	(0.001)
L.oil-price	-0.431	-0.972
	(0.014)	(0.119)
GDP	0.585	0.363
	(0.018)	(0.00)
Alernative _s	0.658	-5.359
	(0.012)	(0.007)
2008	0.069	-
	(0.00)	
1986	-	0.458
		(0.00)
Production (US)	-	-0.326
		(0.285)
Production (SA)	-0.179	-
	(0.00)	
Constant	-0.046	-0.471
	(0.00)	(0.00)

Dependent variable: GDP growth	US	Saudi Arabia
Oil-price (smooth) (pr)	0.159	0.339
	(0.081)	(0.232)
Capita consumption (ca)	0.861	0.092
	(0.00)	(0.026)
Production (p)	0.054	0.157
	(0.258)	(0.06)
Budget balance (fis)	0.001	0.003
	(0.353)	(0.014)
Net exports (nexp)	-0.0001	-
	(0.008)	
lag net exports (nexp)	-	-0.045
		(0.002)
Constant	0.023	-0.131
	(0.00)	(0.073)

Dependent variable: std of living	US	Saudi Arabia
l. capita consumption (ca)	-	-0.525
		(0.00)
Alternative(smooth) (al)	0.151	0.151
	(0.262)	0.859
Рор	1.204	0.822
	(0.416)	(0.464)
l.oil-price (smooth) (pr)	-0.038	0.534
	(0.675)	(0.027)
budget balance (US) (fis)	0.006	-
	(0.00)	
l. budget balance _(SA) (fis)	-	-0.001
		0.059
Constant	-0.014	0.006
	(0.331)	(0.849)

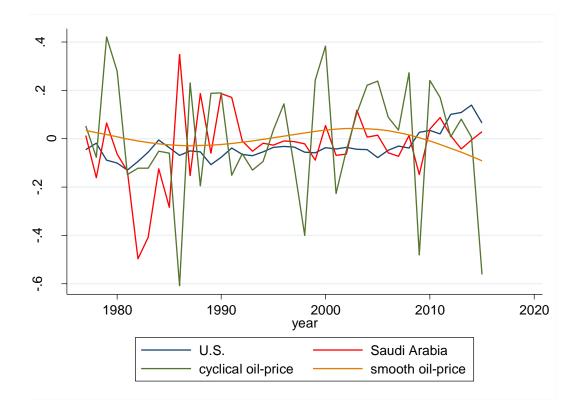
Main findings

- Different variables behave differently under different institutional settings the role of incentive constraints
- In contrast to Saudi production strategies:
- Green paradox effect in the US context
- US strategies behave closer to a profit maximiser
- Why?

Implications: U.S. context

- Green Paradox effect \rightarrow environmental challenge
- Closer to a rational optimisor behavior?
- Green paradox effect suggests inconsistency between environmental and energy policies
- Thriving (shale?) oil industry seems to offset negative impact of oil-prices
- Deceasing impact of oil-shocks on the macroeconomy (Kilian, 2016, 2014)

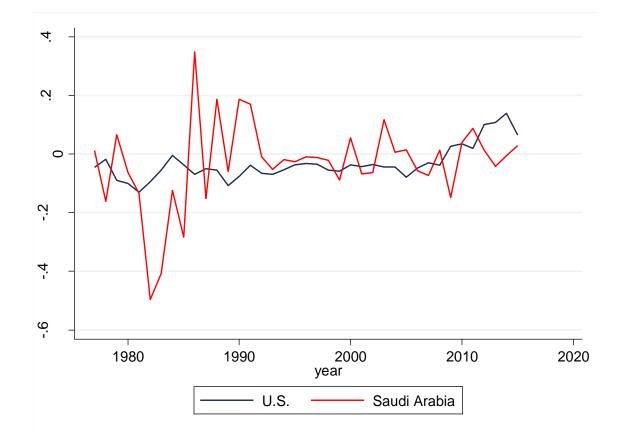
Implications: Saudi context


- I. Production behavior should rather be contextualized (Sem, 2017)
- II. Procyclical fiscal behavior is branched across the economy
- Inefficient patterns of energy demand high subsides?
- Fiscal policy behavior seems to deteriorate standards of living
- Massive oil-wealth, but high poverty...

Overall implications

- Evidence against conventional wisdom of the green paradox not all producers are profit maximisers
- In other words, different producers may face different discount rates
- Different budgetary institutions generate identifiable oil production strategies
- An institutional perspective is needed in the green paradox literature
- Need for further coordination between:
 - Environmental and energy initiatives
 - Macroeconomic and institutional aspects between energy regulators

QUESTIONS? EMAIL: SNAJM@KSU.EDU.SA


Oil-production growth ad price

Landscape of global oil production (BP, 2015)

Country	OPEC share	Global share	INDC Climate performance
OPEC			
Saudi Arabia	31.46%	13.03%	Inadequate
Iraq	10.9%	4.51%	-
Iran	10.1%	4.18%	-
UAE	9.71%	4.02%	Inadequate
Kuwait	8.25%	3.41%	-
Venezuela	7.48%	3.09%	-
Nigeria	6.25%	2.59%	-
Angola	4.9%	2.03%	
Qatar	4.38%	1.81%	-
Libya	1.11%	0.46%	-
Algeria	3.79%	1.57%	-
Ecuador	1.61%	0.66%	-
Non-OPEC			
U.S.	-	13%	Medium
Russia	-	12.39%	Inadequate
Canada	-	4.93%	Inadequate
China	-	4.91%	-
Brazil	-	3.02%	-
Norway	-	2.01%	Medium
*Intended Nationally Determined Contribution (INDC) performance target			

Oil-production growth (1976-2015)

