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Abstract

Fish gut microbiome confers various effects to the host fish; this includes overall

size, metabolism, feeding behaviour and immune response in the fish. The emer-

gence of antimicrobial-resistant (AMR) bacteria and hard to cure fish diseases

warrant the possible utilization of gut microbes that exhibits a positive effect on

the fish and thus lead to the usage of these microbes as probiotics. The

widespread and systematic use of antibiotics has led to severe biological and eco-

logical problems, especially the development of antibiotic resistance that affects

the gut microbiota of aquatic organisms. Probiotics are proposed as an effective

and environmentally friendly alternative to antibiotics, known as beneficial

microbes. At the same time, prebiotics are considered beneficial to the host’s

health and growth by decreasing the prevalence of intestinal pathogens and/or

changing the development of bacterial metabolites related to health. Uprise of

sequencing technology and the development of intricate bioinformatics tools has

provided a way to study these gut microbes through metagenomic analysis. From

various metagenomic studies, ample of information was obtained; such informa-

tion includes the effect of the gut microbiome on the physiology of fish, gut

microbe composition of different fish, factors affecting the gut microbial compo-

sition of the fish and the immunological effect of gut microbes in fish; such this

information related to the fish gut microbiome, their function and their impor-

tance in aquaculture is discussed in this review.

Key words: aquaculture, fish metagenome, gut microbes, gut microbiome, immunity, intestinal

microbiota.

Introduction

Gut microbiota is the microorganisms that are positioned

in the intestine, encompassing the whole range of biochem-

ical process, and provoke an immune system of the host

organism (G�omez & Balc�azar 2008; Hanning & Diaz-

Sanchez 2015). Better insight on the conditions of this

taxonomic and metagenomic research helps to understand

the significance of this framework. A microbiota or

microbiome refers to a set of genomes of various microor-

ganisms present in the environment. Microbiota refers to

the different microorganisms that are present in the envi-

ronment, which is frequently used interchangeably that

relate to the concentration of habitat-related microorgan-

isms. The chemical and physical parameters of an ecosys-

tem include a habitat that promotes the individual niche

space; in short, it determines the microbial interaction

along the chemical and physical dimensions of the habitat
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(Shade & Handelsman 2012; Venkatesh et al. 2018).

Metagenomics is regarded as a technique for investigating

the relationship between those elements in an ecosystem

from a molecular genetics outlook. In Table 1, we have pro-

vided a number of instances of the definition used in previ-

ous research.

Whiteside et al. (2015) have provided a description of

the terms such as microbiota and microbiome in which the

microbiota is linked to the dominant environment; a

microbiome is regarded as the linkage between biotic and

abiotic factors that lead in relation to the habitat and to the

symbiotic environment of the microbes. Metagenomic

includes the genetic ability of this microbial taxa in habitat,

both genomic and plasmid levels using the 16S rRNA

sequencing technique (Whiteside et al. 2015). In relation to

the microbiome, the essential distinction of the word

microbiota is clearly stated in Fig. 1. Considering the termi-

nology, the intestinal microbiome is the composition of the

microorganisms of intestinal lumen associated with the

microbial community, in relation to obtaining nutritional

benefits from the subject that conferring the metabolic and

immunological role to the recipient.

The review aims to present a broad spectrum of gut

microbial system and its functional effects and influence on

aquaculture. The gut microbial diversity is specific to the

individual species and various physiological factors such as

temperature, pH, nutrients availability and the environ-

mental conditions influenced the gut microbial system and

immune system in the broad spectrum of metagenomics,

prebiotics and probiotics.

Intestinal microbiota

The interaction of the microbiome in the gut is dynamic in

nature rather than static. Depending on the duration of the

stay of the bacteria residing in the gut, either temporarily

or permanently they are referred as transient and persistent

microbiota (Shade & Handelsman 2012; Prasanth et al.

2018). The transient microbiota comes through the nutri-

tional ingestion mechanism, where the microbes stay in the

food and enter into the gastrointestinal system. These

microbiota do not last for a long time within the environ-

ment as they are surrounded by adhering resident microbes

to the gut wall. The resident microbiota lives in the host

intestinal membrane have a symbiotic relation to the host

(Zhang et al. 2016). The detailed description of the micro-

bial composition of gut microbiota in herbivore, carnivore

and omnivore fish species is provided in Table 2.

Source of gut microbiome to newborn and its
function

The parameter governing the factors of origin and conser-

vation of gut microbiota is a chaotic model (Koenig et al.

2011). The main reason is the broad spectrum of factors

involved in the control of microbial gut composition in

infant organisms. The origin of gut microbiota in newborn

infants is based on the interaction of the microbial com-

munity present in the birth canal of human beings. Fur-

ther, the microbes are introduced into the gastrointestinal

system in infants during breastfeeding (Gueimonde et al.

2006). Lactose-utilizing microbes are more abundantly pre-

sent in the gut of the infants that break down the polysac-

charides present in the milk. The cellulose-utilizing bacteria

are useful for the degradation of plant polysaccharide,

which is frequently consumed in human diets. The random

colonization of cellulose-utilizing bacteria changes the host

behaviour due to the random priming of the immune

response of that particular bacteria (Koenig et al. 2011). It

is initiated in a fish model that environmental microbial

Table 1 Explanation of the terms related to the metagenomics studies of microbiomes

Term Definition Examples

Microbes Microbes are small life forms that are too small for

the naked eye to see

Bacillus spp

Pseudomonas aeruginosa

Citrobacter freundii

Microbiota/microbiome A microbiota is an environmentally friendly microorganism

community within the habitat

Human microbiome

Soil microbiome

Fish microbiome

Habitat The locations to discover nutrition, accommodation,

safety and sexual partners for the animals

Fish gut

Human skin

Anaerobic condition

Acidic environment

Niche The chemical and physical aspect of the environment, which

determines a particular environment of the species or animals

Anoxic sediment sulphur metabolism, Anaerobic

respiration of urinary tract microbes

Ecosystem The communications between organism and dynamics of

biological components of environment

Tropical forest

Human body

Metagenomic A technique for investigating genetic content from microbes 16S rRNA sequencing, Whole-genome sequencing
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accumulation is significantly correlated with the microbiota

composition in the intestine of fish (Jesu et al. 2014). In

determining the composition of gut microbiota, the

feeding pattern of the fish performs an important measure.

Similar challenges as mammals arise while determining the

origin of the gut microbiota in fish due to the multiple

Figure 1 Illustrating the concept of (a)

microbiota, (b) metagenomic and (c) micro-

biome. (a) Microbiota is described as an ecol-

ogy-related (nutrient, vaccine, antibiotics, etc.)

microbial community; (b) metagenomic is ter-

med as the analysis of microbial composition

through molecular study methods such as 16S

rRNA genomics or whole genome; (c) micro-

biome relates to the microbiota genes and

genomes combination and interactions as well

as protein and host metabolite and microbiotic

interactions.
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confounding variables that occurred during the study

(Wu et al. 2012).

With respect to gut microbiota function in an organism,

we need to understand the reciprocal adjustment between

the intestinal function and the microbes that are vital to the

coexistence of these elements. Intestinal activities comprise

two instincts: the intestinal mucosal environment must

originally be controlled to adapt nutrient uptake, and a

fence within the lumen cavity must be deliberated to pre-

vent the transition of microbes into the intestine cells

(Sommer & B€ackhed 2013). The primary function being

the innate nature of the intestinal function is easily

Table 2 Microbial composition of gut microbiota in herbivore, carnivore and omnivore fish

Bacterial species Fish species References

Herbivores

Clostridium sp., Eubacterium

desmolans, Papillibacter,

Cinnaminovorans

Butterfish Odax pullus

Marblefish Aplodactylus arctidens

Clements et al. (2007)

Vibrio sp., Photobacterium, Bacteroidetes,

non-vibrio Proteobacteria, Firmicutes

Parrotfish Chlorurus sordidus,

Surgeonfish Acanthurus nigricans

Smriga et al. (2010)

Clostridium sp., Silver drummer Kyphosus sydneyanus Moran et al. (2005)

Epulopiscium Surgeonfish Acanthurus sp. Miyake et al. (2015)

Enterovibrio, Bacteroides, Faecalibacterium,

Desulfovibrio

Zebraperch Hermosilla azurea Fidopiastis et al. (2006)

Zooplanktivores

Vibrionaceae, Pasteurellaceae, Vibrio

harveyi, Shewanella sp., Endozoicomonas sp.

Cardinalfish, Apogonidae

Damselfish, Pomacentridae

Parris et al. (2016)

Pseudomonas, Alteromonas, Psychrobacter Herring Clupea harengis Hansen et al. (1992)

Curson et al. (2010)

Proteobacteria Pipefish Syngnathus scovelli Ransom (2008)

Achromobacter, Vibrio sp., Pseudomonas Sardines Sardinella longiceps Karthiayani and Mahadeva Iyer (1967)

Psychrobacter, Vibrio sp., Shewanella Atlantic mackerel Scomber scombrus Svanevik & Lunestad (2011)

Carnivores

Clostridium perfringens, Vibrio sp. Atlantic cod Gadus morhua Aschfalk and M€uller (2002);

Star et al. (2013)

Vibrionaceae (larvae & juveniles),

Photobacterium phosphoreum (adults)

Atlantic halibut Hippoglossus

hippoglossus

Verner-Jeffreys et al. (2003)

Acinetobacter junii, Mycoplasma, Lactobacillus sp.,

P. phosphoreum, Lactococcus sp., Bacillus sp.

Atlantic salmon Salmo salar Holben et al. (2002)

Hovda et al. (2007)

Photobacterium, Vibrio sp. Blackfin icefish Chaenocephalus aceratus,

Black rockcod Notothenia coriiceps

Ward et al. (2009)

Vibrio sp., Pseudomonas, Enterobacteraceae Bluefish Pomatomus saltatrix Newman et al. (1972)

Pseudomonas sp. Gilthead seabream Sparus aurata Floris et al. (2013)

Vibrio, Pseudomonas, Flavobacterium Grass puffer Fugu niphobles Sugita et al. (1989)

Bacillus, Vibrio, Delftia, Psychroacter,

Acinetobacter, Pseudomona

Grouper Epinephelus coioides Sun et al. (2009)

Mycoplasmataceae, Photobacterium,

Cetobacterium, Clostridiaceae, Vibrio

Red drum Sciaenops ocellatus Ransom (2008), Givens et al. (2015)

Aeromonas sobria, Pseudomonas Sea trout Salmo trutta trutta Skrodenyt _e-Arba�ciauskien _e et al. (2008)

Cetobacterium somerae Siberian sturgeon Acipenser baerii Geraylou et al. (2012)

Vibrio, Photobacterium Snapper Lutjanusn bohar Smriga et al. (2010)

Clostridium, Photobacterium, Clostridiaceae Southern flounder Paralichthys lethostigma Ramirez and Dixon (2003); Ransom (2008);

Givens et al. (2015)

Escherichia coli Speckled trout Cynoscion nebulosus Ransom (2008)

Aeromonas, Pseudomonas, Vibrio Striped bass Morone saxatilis MacFarlane et al. (1986)

Omnivores

Clostridium, Mycoplasma, Photobacterium,

Propionibacterium, Staphylococcus,

Pseudomonas, Corynebacterium

Pinfish Lagodon rhomboides Ransom (2008); Givens et al. (2015)

Mycoplasma Long-jawed mudsucker Gillichthys

mirabilis

Bano et al. (2007)
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achieved, even though the subsequent criteria retain a sig-

nificant amount of challenge on account of the copiousness

of the microbial community, transiently or permanently

exist within the intestine (O’Hara & Shanahan 2006). From

the view of gut microbiota, as mentioned in this review, the

microbiota must produce the host with immunogenic and

metabolic function.

Importance of fish gut microbiome in aquaculture

Aquaculture is termed as a method of breeding, rearing and

harvesting aquatic organisms in all types of water environ-

ments. The word aquaculture is usually used to describe

the activity of fish farming (Aquaculture 2017). As fish in

marine and freshwater are increasingly demanded as a food

supply chain, in order to ensure the growth of the industry

and to satisfy the consumer’s requirement, resolving prob-

lems in the industry is imperative. It is also necessary to

increase the growth of small-sized fish and to progress in

the protection of fish against microbial pathogens. The

combination of current information in the gut microbiome

can resolve both of these targets; hence, the aquaculture

industry can be provided with useful elements of gut

microbiome function.

Antipathogenic effects of beneficial bacteria

The widespread use of high density in aquaculture, infec-

tious diseases caused by various pathogens such as bacte-

ria, viruses, fungi, protozoa and parasites are extremely

harmful to global aquatic organism farming, resulting in

huge economic losses and potential threats to public

health (Carrias et al. 2012). Vaccines and antibiotics are

important therapeutic strategies for bacterial pathogens

and have played an integral role in protecting aquatic

animals from infection and reducing losses associated

with disease (Carrias et al. 2012). Additionally, many ben-

eficial bacterial (or probiotic) strains have been developed

to treat pathogen-induced bacterial diseases, and this

method’s efficacy has been proven (Verschuere et al.

2000). Among thirty strains of Vibrio anguillarum, only

one strain developed a significantly higher amount of

siderophore (a ferric ion-specific chelating agent promot-

ing iron availability), which was also capable of inhibiting

Vibrio ordalii (Pybus et al. 1994). Smith and Davey

(1993) have isolated a Pseudomonas fluorescens strain F19/

3 that inhibits Aeromonas salmonicida in fish by compet-

ing for free iron and thus protects stress-induced furun-

culosis in external locations.

Some beneficial bacteria can produce pathogens that

suppress or even destroy inhibitory compounds (Teplitski

et al. 2009). Lactococcus lactis TW34 isolated from marine

fish can develop bacteriocin nisin Z, which can inhibit the

growth of the fish pathogen Lactococcus garvieae at 5 AU

mL�1; therefore, it is considered an alternative in the pre-

vention of global aquaculture disease lactococcosis

(Sequeiros et al. 2015). By screening deep-sea shark-iso-

lated bacteria (Centroscyllium fabricii), it possessed gut

antagonistic activity (Bindiya et al. 2015). Also, it was

found that the BTSS-3 strain was most likely related to

Bacillus amyloliquefaciens and demonstrated antimicrobial

activity against pathogenic bacteria like Salmonella Typhi-

murium, Proteus vulgaris, Clostridium perfringens, Staphylo-

coccus aureus, Bacillus cereus, Bacillus circulans, Bacillus

macerans and Bacillus pumilus (Teplitski et al. 2009). Luck-

ily, there have been noticed several other forms of anti-

pathogenic compounds produced by beneficial bacteria.

Bacterial infection: The issues in aquaculture
industry

Despite this rise in aquaculture production, clearly, the eco-

nomic gains in this industry were systematically affected as a

result of intrusion through pathogenic bacterial organisms.

It consists of multidrug-resistant bacteria with a wide range

of host species, which is concerning their natural habitats,

thus immediately infect the fish species. The majority of

pathogenic bacteria have actually been categorized, but only

a few number of bacterial species cause significant financial

losses in the aquaculture industry. As an instance, the range

of severe infectious diseases transmitted by fish in the aqua-

culture industry includes photobacteriosis, furunculosis and

vibriosis. The enhanced mortality rates of photo bacteria and

vibriosis are regarded to account for almost all infectious

diseases in aquaculture, which are commonly prominent

infectious diseases of fish from brackish water and saltwater.

The signs and symptoms of vibriosis have been shown in

skin and fins in dark coloration and serious haemorrhage in

spleen, body cavity and in the intestine; this occurs mainly

because of Vibrio anguillarum. Aside from this, severe infec-

tious illnesses in fish are also caused by Vibrio comprising

V. vulnificus, V. parahemolyticus, V. salmonicida, V. car-

chariae, V. ordalii, V. damsela and V. alginolitycus (Pereira

et al. 2011).

Photobacterium damselae disease is the most serious

cataclysmic disease of the aquaculture, which is caused by

photobacteriosis. As this bacterium is prevalent in exis-

tence, it possesses a broad variety of habitat and enhances

the death rate. The presence of white tubercles and lesion

on the internal organs of fish is often identified. Necrosis

of the spleen, kidney and liver was also noted in fish

affected due to P. damselae infection (Andreoni & Mag-

nani 2014).

In addition, the largest mortality rate for Aeromonas

salmonicida has been demonstrated for the furunculosis of

fish contagious diseases, which are known to cause many
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different variations in freshwater and saltwater fish. Furun-

culosis is externally indicated by haemorrhages that occur

in the base of the fish fin due to the lack of hunger, lethar-

gic movement and melanosis, which are collectively lead to

infection (Holten-Andersen et al. 2012). Flavobacterium

columnare has been shown to cause severe damage in aqua-

culture production, which is another communal infectious

disease in the aquaculture industry. The signs shown in fish

include a complete necrosis and gill lesions as a conse-

quence of this disease. Concerning the skin, the disease cre-

ates mainly a dark discoloration in the centre of the fin and

is bound by reddish tinge (Declercq et al. 2013).

Haemorrhagic and enteric septicaemia are infectious dis-

eases observed in the aquaculture industry that was trig-

gered by Edwardsiella genus; it includes Edwardsiella

ictaluri and E. tarda. These two unique bacterial species

were identified in catfish; normally, E. tarda was isolated

from both freshwater and brackish water fish. However,

E. ictaluri is normally isolated only in brackish water. Sys-

temic haemorrhagic septicaemia is described as the sup-

pression associated with the immune system of the host

developing into necrosis and skin lesions of major internal

organs and muscles. Indications of enteric septicaemia are

showed by septicaemia haemorrhagic enteritis, well ahead

on developing into meningoencephalitis (Sudheesh et al.

2012).

Enteric redmouth (ERM) disease is an infection from

bacteria that takes place primarily in rainbow trout which

are caused by Yersinia ruckeri bacterial species. At the early

phase of this infection, the death rates are lesser. If the

infected fish are untreated from the initial stage, the death

percentage rises exponentially and could cause a massive

financial loss to the farmer. The study has shown that the

death rate in this disease is due to the exposure of stress

conditions such as high stocking densities and compro-

mised water quality (Horne & Barnes 1999). Two more

major fish bacterial diseases are Lactococcosis and Strepto-

coccosis that extend throughout the world. This is certainly

due to the wide spectrum of host withstanding ability to

adapt against Streptococcus and Lactococcus genus bacteria,

which simultaneously confer the diseases. These bacterial

diseases have a group of signs such as dark pigmentation,

exophthalmos, haemorrhage, congestion and erratic swim-

ming lethargy (Dome�enech et al. 1996).

The following pathways primarily cover aquatic microbes

to avoid pathogen colonization, which are categorized into

two groups. The first one to be direct interactions between

commensals and pathogens, such as competition for shared

nutrients and niches. The same ecological niches need for

both pathogens and commensal bacteria to colonize and

spread across the gut, and mechanisms have emerging to

compete with each other. Commensal bacteria produce

bacteriocins and toxins that directly inhibit bacterial species

members of the same or related species. Commensals are

often avoiding the pathogenic infection through the

modification of the host environment, for example pH

(Hammami et al. 2012).

The second category comes under the commensal-medi-

ated enhancement of host defence mechanisms. Commen-

sal bacteria are to prevent pathogen colonization and

infection indirectly by enhancing host defence mechanisms

such as functionally promoting mucosal barrier and

enhance innate immune responses. The first line of defence

against any pathogen invasion is the epithelial barrier. The

promotion of epithelial barrier functions by commensal

bacteria, which was supported primarily by indirect evi-

dence that has demonstrated the germ-free mice, and mice

deficient in proteins involved in microbial recognition such

as Nod2 and the TLR signalling adaptor MyD88 have

impaired the production of antimicrobial peptides, particu-

larly by Paneth cells of the small intestine (Kobayashi et al.

2005 and Vaishnava et al. 2008).

Usage of antibiotic in aquaculture industry:
solution or more issues

Bacterial infection has a predominant position in con-

tributing to economic as well as production loss to the

aquaculture industry, as mentioned previously in this

review. Chemical therapeutics including antibiotics are

essential sensitive solutions for many cases of bacterial

infection. Various antibiotics have been used to prevent

such outbreaks in aquaculture sectors; specifically, ery-

thromycin, sulfamethoxazole, norfloxacin and trimetho-

prim are used in aquaculture industry and also in other

farmings including cow, pig and poultry industries; nowa-

days, even in agriculture the usage of antibiotics has

become common (Giang et al. 2015).

In most cases, a high concentration of antibiotics is

employed in the aquaculture industry as a result of high

stocking densities and impracticality that the individual

treatment plan for infected fish (Resende et al. 2012). While

the use of antibiotics has addressed the fundamental issues

needed for its usage, a distinctive issue occurs in aquacul-

ture farm that is located close to the water source since the

excess antibiotic effluent is discharged into the river (Reis

& Mollinga 2009). The continuous release of effluent

encompassing the surplus antibiotics into the river stream

passes into the land soil system over absorption of the efflu-

ent by soil assists the development of antibiotic-resistant

bacteria within the respective ecosystem (Thiele-Bruhn

2003).

Inadvertently, these bacteria cause specific environ-

mental stress that is encouraging the increase in the

surrounding environment of microbe resistance to

antibiotics. The unceasing admittance of antibiotics into
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the microbial population leads to random chromosomal

alteration of microbes (spontaneous mutation), which

reduces the sensitivity of the microbe to the particular

antibiotic. As a result, the amount of resistant microbes

in the ecosystem is increased. This increased exposure

to antibiotics continuously minimizes the susceptible

microbes (native microbes) and further increases the

number of resistant microbes with increased effects of

spontaneous mutation and transmission of antibiotic-re-

sistant genes among microbes (Meek et al. 2015), which

has been exemplified in Fig. 2. The increase or the pres-

ence of antibiotic-resistant microbes in the environment,

specifically nearby farming lands and water source,

allows the acquaintance of persons to these antibiotic-re-

sistant microbes that specifically aggregate the possibili-

ties of diseases by these resistant microbes in the gut

and disturbing the health of human populace.

Multiple studies have investigated microbes resistant to

antibiotics and the microbial genes responsible for the

expression of antibiotic resistance that enhance claims on

the adverse effects of antibiotic use on the environment.

Meek et al. (2015) proposed that in a Brazilian aquaculture

farm, four hundred and seven bacterial strains including

Gram-positive cocci (GPC), enterobacteria (ENT) and

non-fermenting Gram-negative rods (NFR) are isolated

and they were tested for antibiotic resistance over minimal

inhibitory concentration (MIC) analysis. The analysis

showed that a group of bacteria from GPC are unaffected

due to penicillin and azithromycin, while NFR and ENT

group bacteria are resistant to the antibiotics gentamicin,

ampicillin and sulbactam. Apart from this, the presence of

multidrug-resistant bacteria is also found more abundant

in the fish pond rather than in the water-fed canal (Meek

et al. 2015).

Giang et al. (2015) conducted a study in Mekong Delta,

Vietnam, which projected the presence of aquaculture

industry in Mekong managed the use of antibiotics against

the bacterial infection in fish; in turn, the aquaculture

industry water is released to the utilization of domestic

purpose and detected in the river stream occurrence of

antibiotic compounds such as trimethoprim (TRIM), enro-

floxacin (ENRO), sulfamethoxazole (SMX) and sulfadi-

azine (SDZ) at the level of 17 ng L�1, 12 ng L�1,

21 ng L�1 and 4 ng L�1 correspondingly in the water sam-

ples collected from the delta region (Giang et al. 2015).

Among these, TRIM antibiotics were found to be more in

the water sample owing to the TRIM resistance in contra-

diction to photodegradation. Even though the antibiotic

concentration did not maintain any sudden risks in

evolving antibiotic-resistant bacteria, conversely constant

acquaintance of these antibiotics possibly will cause diffi-

culties in the nearby future. A more suitable technique for

handling infectious bacterial diseases in the long term to

address these issues, with less detrimental to the ecosystem,

is necessary, and this approach is obviously accepted by

many scientists as probiotics.

Effect of antibiotic usage in aquaculture

A microbial organism has been studied by various authors

in intestinal tracts of healthy fish for its considered signifi-

cance in digestion, feeding and the prevention of disease

(Navarrete et al. 2008). Bates (2006) in his studies revealed

that gut microbiota could be involved in important

Figure 2 (a and b) The number of antibiotic-resistant bacteria in the population is increased by an antibiotic selective pressure. (c) The transmissible

gene of antibiotic resistance is carried to certain daughter cells horizontally and vertically. (d) A mutation is carried into each generation in the chromo-

some gene to resist antibiotics. Figure adapted and modified from (Meek et al. 2015).
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processes such as epithelial proliferation, promotion of

nutrient metabolism and innate immune responses (Bates

2006). Modifications to gastrointestinal microbiota by

antibiotics can alter the likely benefit of this host–micro-

biota interaction or relationship. Therefore, it could help to

improve hatchery management to minimize antibiotic use

and improve safety for farmed fish if antibacterial com-

pounds alter the gastrointestinal microbiota of farmed fish.

Few types of research have focused, however, on evaluat-

ing the impact on the microbial ecology of the fish intestine

of antibiotic treatment and have concentrated on antibiotic

resistance level during and after antibiotic application

(Kerry et al. 1997). Antibiotic susceptibility of the patho-

gens isolated from fish farms are detrimental to antibiotic

resistance, which was identified using molecular tools

(Kerry et al. 1997; Miranda & Zemelman, 2002; Giraud

et al. 2006; Akinbowale et al. 2007; Miranda & Rojas 2007).

The gut microbiota and environmental bacteria come in

contact with the antibiotics present in fish farm and hatch-

ery wastes when an antibiotic treatment begins (usually via

medicated feed). In fact, the treatment of salmonids with

different antibiotics (including OTC) has been shown to

result in a significant increase in the proportion of the gut

microbiota showing resistance to the administered antibi-

otics (Austin & Al-Zahrani 1988).

Navarrete et al. (2010) assessed the effects of oxytetracy-

cline (OTC) treatment on bacterial populations present in

the intestines of healthy juvenile salmon. Oxytetracycline

was administered via medicated feed to Atlantic salmon

held in experimental tanks, and their intestinal microbiota

were analysed after culture. Isolates were analysed by

restriction fragment length polymorphism (RFLP) and

sequencing of 16S rDNA amplicons. Microbiota from the

intestines of untreated fish was more diverse, and their

main components were Pseudomonas, Acinetobacter, Bacil-

lus, Flavobacterium, Psycrobacter and Brevundimonas/

Caulobacter/Mycoplana. In contrast, the microbiota of the

OTC-treated group was characterized by less diversity and

was only composed of Aeromonas, clustering with A. sobria

and A. salmonicida. The frequency of resistant bacteria,

defined as those capable of colony formation on TSA med-

ium containing 30 lg mL�1 OTC, indicated that no resis-

tant bacteria were detected (<102 CFU per gram) in the

three tanks before OTC treatment. In treated fish, resistant

bacteria accounted for 60%, 33% and 25% of isolates from

the samples collected on days 11, 21 and 28, respectively.

The intestinal microbiota of salmon treated with OTC

leads to vanish several bacterial phylotypes, but establishes

Aeromonas population. Bacteria belong to this genus have

been widely isolated from the fish gut (Huber et al., 2004;

Romero & Navarrete, 2006) and are considered to be a

normal bacterial component. However, some species

of Aeromonas including A. salmonicida, A. hydrophila,

A. caviae and A. sobria are also regarded as common

pathogens of fish because they may cause furunculosis and

haemorrhagic septicaemia. More recently, Ringø et al.

(2004) proposed that the digestive tract could represent a

port of entry for invading bacteria, especially Aeromonas.

Compared with the OTC-treated salmon, a more diverse

bacterial composition was observed in the untreated sal-

mon. Some authors have suggested that, to maintain a suc-

cessful culture environment in an aquatic hatchery, it is

necessary to maintain a diverse microbial community that

includes innocuous and beneficial bacteria (Schulze et al.

2006). Therefore, the reduction in the diversity of the

intestinal microbiota observed after OTC treatment could

facilitate the proliferation or invasion of opportunistic

microorganisms, as indicated by the rise of some phylo-

types that became prevalent several weeks after treatment.

Antibiotic treatment can eradicate susceptible microorgan-

isms and promote opportunists that may occupy ecological

niches previously unavailable to them. The occurrence of

OTC-resistant bacteria, including Aeromonas species, the

salmon farming, has been demonstrated previously (Jacobs

& Chenia 2007). Mobile resistance determinants have also

been detected in this genus (Miranda et al. 2003). The pres-

ence of bacteria harbouring resistance determinants could

be related to the widespread use of antibiotics in aquacul-

ture (Cabello 2006). Some authors have even suggested that

common components of the microbiota could disperse

resistance genes via horizontal gene transfer because of the

high density and proximity of resident bacteria in the gas-

trointestinal tract microenvironment (Navarrete et al.

2008).

Prebiotic in aquaculture

The promising future of the aquaculture industry will not

come without difficulties. Supplements to natural feed

improve the efficiency of aquaculture production, reduce

treatment requirements, waste disposal, and thus simulta-

neously improve the quality of the farmed fish. The pro-

duction of aquaculture is expected to double by 2050, a

way to meet global demand while reducing the pressure on

wild fishing. By 2030, farming raised fish would account for

nearly two-thirds of the world’s seafood intake, according

to estimates by the United Nations Food & Agriculture

Organization (FAO) (Thorpe et al. 2018).

Improved rearing methods may lead to the use of antibi-

otic therapies, which causes a number of possible problems

including evolving antibiotic-resistant bacteria and the

existence of antibiotic residues in seafood, which further

leads to the destruction of the immune system with a seri-

ous disease outbreak. Fish are exposed to a number of

external stresses and pressures that are unprecedented in

contrast to wild what they encounter during intense
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cultural operations. The alteration or changes in tempera-

ture, photoperiod, salinty, etc., in the farm leads to various

stress to the organism as well as immune suppression. In a

variety of physiological functions of teleost fish, such as

immune responses linked to the neuroendocrine system,

environmental conditions that trigger stress that can be the

source of some negative effects.

In the aquaculture industry, prebiotics are considered as

an environmental-friendly feed additive. The beneficial bac-

teria present in gastrointestinal tract ferment prebiotics,

and the reaction by-products are used to improve the

health of the host. Hence, prebiotics that alter gastrointesti-

nal conditions to benefit those existing bacterial species

increase growth efficiency and reduce the susceptibility of

the pathogen of the host organism which appears an out-

standing way to help the growth of the aquaculture indus-

try (Reverter et al. 2014).

Definition of prebiotics

Prebiotics constitute an important dietary supplement to

improve both growth and digestive tract microbial activ-

ities, which frequently strengthen the immune system

and stress tolerance. On the other hand, prebiotics are

non-digestible compounds that are metabolized by com-

mon bacteria such as Lactobacillus and Bifidobacterium

that promote health. These bacteria are considered bene-

ficial to the health and development of the host by

reducing the existence of intestinal pathogens and/or

altering the production of bacterial metabolites related

to health (Roberfroid 1993; Gibson & Roberfroid 1995;

Manning & Gibson 2004). Prebiotics are carbohydrates,

which categorized into monosaccharides, oligosaccharides

or polysaccharides by their molecular size or polymeriza-

tion. Until date, common prebiotics established in fish

are as follows: inulin, fructooligosaccharides (FOS),

galactooligosaccharides (GOS), arabinoxylo-oligosaccha-

rides (AXOS), chitooligosaccharide (COS), mannano-

ligosaccharides (MOS) and levan.

Inulin

Insulin is a fructose polymer composed of b-D-fructofu-
ranoses attached by b-2-1-linkage bond and is grouped

of sugar-based oligosaccharides. It seems that inulin ben-

efits the intestinal microbiota, particularly in endother-

mic animal colons (Roberfroid 1993). While inulin is

not a natural fibre in fish diets, inulin used in aquacul-

ture stimulates normal bacterial flora in the gut and

simultaneously defeat the pathogens and enhances the

immune system (Possemiers et al. 2009). Oral adminis-

tration of insulin at the dosage of 10 mg kg–1 body

weight (b.w.) to grass carp (Ctenopharyngodon idella)

(24.6 � 3.5 g b.w.) for 2 weeks resulted in susceptibility

against Aeromonas hydrophila and Edwardsiella tarda;

simultaneously, the same dosage of insulin to Tilapia

(Tilapia aureus) (21.8 � 3.5 g b.w.) showed the suscepti-

bility against A. hydrophila and E. tarda (Wang & Wang

1997). Inulin at the dosage of 150 g kg–1 for 4-week oral

administration to Arctic charr (218 g b.w.) (Salvelinus

alpinus L.) controlled the microbiota Bacillus sp.,

Carnobacterium maltaromaticum, Staphylococcus sp. and

Streptococcus sp. (Refstie et al. 2006). Atlantic salmon

(172 g b.w.) administered with 75 g kg–1 of inulin for

four-week oral administration resulted the decrease in

Marinilactibacillus psychrotolerans, C. maltaromaticum

and Enterococcus faecalis and also enhanced the growth

and relative mass of the gastrointestinal tract of fish

(Bakke-McKellep et al. 2007). Oral administration (5

and 10 g kg–1) of inulin for a week to Gilthead seab-

ream (Sparus aurata L.) with initial b.w. 175 g leads to

a significant inhibition in phagocytosis and respiratory

burst in leucocytes (Cerezuela et al. 2008). Gilthead

seabream displayed enhanced IgM level, no effect on

peroxidase activity and alternative complement activity

(ACH50) for 10 g kg–1 dosage of insulin administered

for two to four weeks (Cerezuela et al. 2012). Increased

lysozyme activity was observed at the dosage adminis-

tered at the concentration of 5 g kg–1 for eight weeks in

11 g b.w Nile tilapia (Oreochromis niloticus; Ibrahem

et al. 2010) and 35 g b.w leopard grouper (Mycteroperca

rosacea; Reyes-Becerril et al. 2014).

Fructooligosaccharides (FOS)

Fructooligosaccharides refer to short and medium b-D-
fructans chains in which fructosyl units are bound to a

terminal glucose unit by b-(2–1) glycosidic linkage. Diet-

ary FOS inclusion can positively form intestinal micro-

bial communities and modulate the immune role of

fish. Multiple studies showed FOS could improve fish’s

humoral immune response (Mahious et al. 2006; Ringø

et al. 2014). For example, 3 and 6 g kg–1 of FOS for

56 days to Triangular bream (Megalobrama terminalis;

30.5 g b.w.) modulated the immune system by increas-

ing the IgM content and lysozyme (Zhang et al. 2013).

Administration of FOS (2–4 g kg–1) to Ovate pompano,

Trachinotus ovatus (10.32 g b.w.), increased

immunoglobulin and lysozyme on day 56 (Zhang et al.

2014), and the same activity was observed in Caspian

roach (Rutilus rutilus; 0.67 g b.w.) for the dosage admin-

istrated at 10, 20 and 30 g kg–1 for the duration of

1–7 weeks (Soleimani et al. 2012). Increased lysozyme

activity was also observed in Stellate sturgeon (Acipenser

stellatus; 30.16 g b.w.) for the dosage (10 and 20 g kg–1)

administered for 11 weeks (Akrami et al. 2013).
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Galactooligosaccharides (GOS)

Galactooligosaccharides are composed of 2–20 galactose

and glucose molecules, which can be produced by enzyme

lactose treatments. Few studies are been carried out using

GOS as a prebiotic (Ringø et al. 2014). Reports have shown

that the administration of GOS at the concentration of

10 g kg–1 for eight weeks significantly improved the lyso-

zyme activity in red drum (Sciaenops ocellatus) at 7 g b.w

(Zhou et al. 2010). Atlantic salmon (200.2 g b.w.) fed

a diet containing 10 g kg–1 GOS for four months declined

the lysozyme production (Grisdale-Helland et al. 2008).

However, GOS at 10 g kg–1 administered to red drum

(500 g b.w.) for four weeks boosted the protein ADC and

decreased the lipid ADC (Burr et al. 2008).

Arabinoxylan-oligosaccharides (AXOS)

Arabinoxylan-oligosaccharides is a hydrolysis product of

arabinoxylans, which can exert different properties depend-

ing upon their structure. African catfish (Clarias gariepinus)

(approximately 20 g b.w.) were administered with 10–
20 g kg–1 of AXOS for ten weeks which resulted in upsurge

of acetate, and propionate production; and the same was

also observed in Siberian sturgeon (20 g b.w.; Rurangwa

et al. 2008). Two different forms of arabinoxylans were also

identified namely AXOS-32-0.30 and AXOS-3-0.25.

Administration of these two different forms of arabinoxy-

lans at the dosage 20 g kg–1 for twelve weeks in Siberian

sturgeon (Acipenser baerii; 25.9 g b.w.) enhanced ACH50

and serum peroxidase activity (Geraylou et al. 2012).

Administration of 20 g kg–1 AXOS-32-0.30 for four weeks

in Siberian sturgeon (48.4 g b.w.) increased ACH50 level

(Geraylou et al. 2013).

Chitooligosaccharide (COS)

Chitooligosaccharide is a type of oligosaccharides obtained

through chemical and enzymatic chitosan hydrolysis.

Because of its lower molecular weight or ready solubility in

water, COS has higher activity and more physiological

functions than chitosan. COS incorporated diet fed koi

(Cyprinus carpio koi; 24.9 g b.w.) for eight weeks increased

SOD and lysozyme level (Lin et al. 2012).

Mannanoligosaccharides (MOS)

Mannanoligosaccharides derived from the yeast cell wall

(Saccharomyces cerevisiae), is one of the most frequently

evaluated prebiotics in fish (Merrifield et al. 2010). MOS

improved the lysozyme activity in African catfish (Clarias

gariepinus; 35 g b.w.) at 10 g kg–1 within 45 days (Yoshida

et al. 1995), snakehead (Channa striata; 10 g b.w.) at

2 g kg–1 within 12 weeks (Talpur et al. 2014), red drum

(Sciaenops ocellatus; 7 g b.w.) at 10 g kg–1 within 8 weeks

(Zhou et al. 2010), red drum (10.9 g b.w.) at 10 g kg–1

within 6 weeks (Buentello et al. 2010) and Rainbow trout

(30 g b.w.) at 2 g kg–1 within 90 days (Staykov et al. 2007).

Levan

For aquaculture, levan is another fructose polymer which

was considered an appropriate prebiotic and immune

nutrient. Increased lysozyme activity was observed in Com-

mon carp (Cyprinus carpio; Rairakhwada et al. 2007; Gupta

et al. 2014), rohu (Labeo rohita; Gupta et al. 2008) and

Orange-spotted grouper (Epinephelus coioides H.; Huang

et al. 2014) due to the levan incorporation in diet (1–
50 g kg–1) for 75 days, 12 weeks and 45 days, respectively.

Commercial prebiotic

Grobiotic-A is a mixture of partly autolysed brewer yeast,

components of dairy ingredients and products of dried fer-

mentation. The yeast membrane consists of a large number

of different polysaccharides in which b-glucans is insoluble
in nature. It is widely recognized that the immunological

responses in fish can result in yeast b-glucans and b-glu-
cans from other sources too. Studies have proved that the

commercial prebiotic at the dosage between 10 and

20 g kg–1 administered to Hybrid striped bass (19.7 g b.w.)

for four weeks has shown no effect on lysozyme activity.

However, it increased feed efficiency, growth performance,

respiratory bursts, resistance against Streptococcus iniae and

Mycobacterium marinum (Li & Gatlin 2004 and Li & Gatlin

2005). However, red drum (500 g b.w.) treated with

10 g kg–1 of Grobiotic-A for ten days increased the protein

and lipids levels (Burr et al. 2008).

Effect of prebiotic in immune response

Prebiotics directly enhance different innate immune

responses. For example, inulin as a prebiotics used in aqua-

culture promotes healthy intestinal bacteria, suppresses

pathogenic organism and enhances immune response. It

also stimulates the human immune system through the

binding of leucocyte and increasing macrophage prolifera-

tion. Though several works conducted in inulin as a prebi-

otics, the optimum concentration used as 10g kg–1 due to

significant effect on increased IgM level, serum comple-

ment, respiratory burst activity and leucocyte phagocytic.

After prebiotic feeding, multiple experiments tested the

survival of the individual. The results showed that the

growth factors of prebiotics normally boost weight gain in

daily basis and at a period of interval, specific growth rate,

ratio of food conservation, ratio of food efficiency and
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protein efficiency; all these impacts may vary depending

upon the fish species (Xu et al. 2008; Gultepe et al. 2012;

Hoseinifar et al. 2013). After the administration of prebi-

otics, haematological parameters such as red and white

blood cell counting, levels of thrombocyte or lymphocyte,

corpuscle volume and haemoglobin content have increased.

Also, enzyme activities including lactate dehydrogenase,

alanine phosphatase, alanine aminotransferase and aspar-

tate aminotransferase have increased (Hoseinifar et al.

2011; Ebrahimi et al. 2012; Zhang et al. 2013). Diets

enriched by prebiotics promoted the levels of enzymes that

are associated with weight gain. Nevertheless, the prebiotic

administration was not always related to increase digestive

enzymes (Anguiano et al. 2013).

Mechanism of action of prebiotic in immune
system

Concerning the mechanism of action of prebiotics in

the immune system, immunosaccharides are directly acti-

vated by interacting with PRRs expressed on innate

immune cells such as b-glucan receptor or dectin-1 recep-

tors (expressed in macrophages) are stimulating the innate

immune system (Brown et al., 2002). Interaction of ligand–
receptor activates the molecules such as NF-kB for signal

transduction that stimulate the immune cells (Yadav &

Schorey 2002). Furthermore, they can be recognized by

MAMPs such as teichoic acid, peptidoglycan, glycosylated

protein or the capsular polysaccharide of bacteria, which

trigger the immune response (Bron et al. 2012; Song et al.

2014). Prebiotics therefore tend to activate the innate

immune system by stimulating directly the innate immune

system or by enhancing the growth of commensal micro-

biota (Song et al. 2014).

Probiotics

The word ‘probiotic’ is broadly defined as non-pathogenic

live microorganism, which is included in food nutrition

that has a beneficial impact on the host intestinal health.

However, the term was subsequently applied as a useful

microorganism that has a positive impact on the general

wellness of the host (Ibrahem 2015).

Several investigations have been carried out in the field

of probiotics, reinforcing the claim that certain beneficial

microorganism has positive impact on animal and human

health. The broad variety of research studies has been car-

ried out to study the impact of probiotics on different dis-

eases, including diarrhoea with antibiotic-associated,

constipation, abolition of Helicobacter pylori infection in

human which causes ulcer, moderate inflammatory bowel

disease, lessening the occurrence of ventilator-associated

pneumonia (VAP). Probiotics is improving the circulatory

system as its effects through human food metabolism

(Hungin et al. 2013; Bo et al. 2014; Ettinger et al. 2014).

The implementation of probiotics is not only restricted

to metabolic applications in aquaculture but also to over-

come the related gastrointestinal imbalance. The study of

probiotics has been extended to a number of other physio-

logical and immunological features of aquatic species to

improve hatchling survival, hindrance of diseases and

innate immunity. A detailed description of aquatic species

in which probiotics used is mentioned in Table 3.

Metagenomic studies of fish gut microbiome

Over recent years, widespread research has been carried out

in the fish gut microbiome metagenomic analysis. Detec-

tion of bacteria that are unculturable witnessed the real dif-

ference between the number of bacterial cells seen under a

microscope and the actual wide range of Petri plate’s colo-

nies. This was the origin of the identification as ‘The Great

Plate Count Anomaly’ (Stewart 2012). As a result of this

variance, the reliance upon the bacterial culture method

has decreased considerably, because cultured bacteria com-

prise a bacterial population of only 0.01 to 1 percentage. In

addition to this, advances in scientific methods such as 16S

rRNA taxonomical marker and polymerase chain reaction

(PCR) method are massive leap in genome sequencing

technology (next-generation sequencing) that has greatly

contributed to the overtaking of metagenomic vibrant

replacement from cultural-dependent methodology to cul-

turally independent strategy (Garza & Dutilh 2015).

Indeed, in the last few years, the culture-independent

technique created by scientists was the most appropriate

and preferred method for metagenomic research. In gen-

eral, the major objective of metagenomic research is to

develop probiotic applicants for economically and nutri-

tionally important fish. This is accomplished by altering the

microbial accumulation of the metabolic function, which

in addition to improve the host organism’s metabolic and

immunological performance. More studies are being car-

ried out in metagenomic studies on the gut of the fish such

as factors influencing the composition of the gut micro-

biome and the physiological effect of this microbiome on

the host fish.

Goals of fish gut microbiome metagenomic
research

Metagenomic studies of fish gut microbiomes varied exten-

sively. Two main themes of the fish gut microbiome are a

factor that affects microbiota composition and the influ-

ences of gut microbiota on host species. It is agreed, as in

most cases, that the composition of the microbiota is a

dynamic system and that the origin of the gut microbiome
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is not often studied. As in most cases, the source of intesti-

nal or gut microbiomes is not often studied since the

microbiota composition is usually acknowledged to be a

dynamic system rather than a constant system. Therefore,

the factors affecting the composition of fish gut microbiota

have to be examined from now on.

Nutritional patterns and ecological influence such as pol-

lutants, reef settlement, trophic levels and behaviour of host

fish species were explored according to factors that influ-

ence the composition of fish gut microbiota that hypothe-

sized to regulate the host fish (Baldo et al. 2015; Estruch

et al. 2015; Brown-Peterson et al. 2015; Miyake et al. 2015;

Eichmiller et al. 2016; Liu et al. 2016). Furthermore,

research has also been performed in the determination of

the physiological change to gut microbiota and the genetic

factor of the host fish on the impact of target fish gut

microbiota and vice versa (Li et al. 2013; Smith et al. 2015).

In addition, investigative trials were conducted on gut

microbiota to identify the primary microbiota of fish

species (Roeselers et al. 2011; Star et al. 2013; Parris et al.

2016).

Importance of metagenomics study in aquaculture
industry

Nitrogen and phosphorous metabolites and organic matter

abound in aquaculture, making aquaculture an ideal plat-

form for microorganisms to develop (Mart�ınez-C�ordova

et al., 2009). It is believed that, for this reason, the preva-

lence of microbial DNA could be even greater in aquacul-

ture facilities. The above scenario shows that the

microbiological knowledge of aquaculture currently repre-

sents perhaps only a small part of a whole universe. It is dif-

ficult to demonstrate without genomic techniques the full

diversity and hypothetical function of uncultured microor-

ganisms; metagenomics and functional genomics in combi-

nation with chemical ecology may answer these questions

(Riesenfeld et al. 2004).

Table 3 Probiotic species used in aquatic industry

Probiotic organism and aquatic species used Results References

Aeromonas hydrophila – Oncorhynchus mykiss (Rainbow

trout)

↓ Aeromonas salmonicida infection Irianto and Austin (2002a)

Agarivorans albus F1-UMA – Haliotis rufescens (Abalone) ↑ Survivability Silva-Aciares et al. (2011)

Aeromonas media A199 –Crassostrea gigas ↓ Vibrio tubiashii infection Gibson (1999)

Alteromonas CA2 – Pacific oyster ↑ Survivability Douillet and Langdon (1994)

Arthrobacter XE-7 – L. vannamei (Pacific white shrimp) * Intestinal microbes Li et al. (2008)

Aeromonas sobria GC2 – Rainbow trout ⊕ Lactococcus garvieae and Streptococcus

iniae.

Aeromonas bestiarum

and Ichthyophthirius

multifiliis

Pieters et al. (2008); Brunt and

Austin (2005)

Burkholderia cepacia Y021 – Crassostrea corteziensis,

(Lions-pay scallop)

↑ Growth and survival Granados-Amores et al. (2012)

Bacillus pumilus – P. japonicus ↑ Larval survival El-Sersy et al. (2006)

B. subtilis UTM 126 – Litopenaeus vannamei ⊕ Vibriosis Das et al. (2005)

Dunaliella tertiolecta – Artemia ⊕ Vibrio campbellii

and V. proteolyticus

Marques et al. (2006)

Enterobacter amnigenus – Rainbow trout ↑ Resistance towards

Flavobacterium psychrophilum

Burbank et al. (2011)

Lactobacillus fructivorans

and L. plantarum – S. aurata

↑ Production of HSP70 Carnevali et al. (2004)

Lactococcus lactis AR21 – Rotifers ↑ Growth and protects

against V. anguillarum infection

Harzevili et al. (1998)

L. rhamnosus – O. niloticus ⊕ E. tarda infection Pirarat et al. (2006)

Rhodococcus SM2 – Rainbow trout ↑ Immunity and protection

against V. anguillarum

Sharifuzzaman and Austin

(2010)

Streptococcus phocae P180 – P. monodon ↑ Growth

⊕ V. harveyi infection

Swain et al. (2009)

Shewanella putrefaciens – Sparus aurata L ↑ Growth of juveniles De la Banda et al. (2012)

Yarrowia lipolytica – Pinctada mazatlanica ↑ Growth Aguilar-Macias et al. (2010)

↑- Increase/Promote; ↓- Decrease; ⊕- Protection; *- Alter.
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Aquaculture microbial studies concentrate on under-

standing the symbiotic and antagonistic interrelations

between the microbes and eukaryotes, such as fish, crus-

taceans and molluscs. Metagenomics can provide a deeper

insight into those ties by associating with host or environ-

ment specific host species the information revealed by the

extracted DNA (Suttle 2007; Gianoulis et al. 2009). New

sequencing technologies and bio-informatics technologies

enable the diversity of intracellular bacteria to be examined

as well as specific genomic information from such commu-

nities to be elucidated. In the field of metagenomics,

researchers have investigated the diversity and quantity of

different microbes or genes in the spatially temporal pat-

tern and have identified stronger associations between cer-

tain microbial communities and the host genotype

(Monchy et al. 2011; Gilbert et al. 2012; Quince & Lundin

2013).

• Metagenomics could provide more evidence for the

understanding of the microbial diversity in aquaculture

facilities. By studying hypervariable regions of 16S rDNA

for prokaryotes and 18S for eukaryotes, we can now

understand the wide diversity of these microorganisms

(Not et al. 2009; Hugerth et al. 2014).

• Metagenomics can be used to evaluate antibiotic resis-

tance in bacterial communities according to the objec-

tives of the analysis in two ways: functional

metagenomics or sequence-based metagenomics, that is

shotgun type (Schmieder & Edwards 2012).

• Functional metagenomics include the cloning and trans-

mission of biologically derived DNA into a bacterial host

to identify the roles of genes that may not be elucidated

by analysing their sequences (Schmieder & Edwards

2012)

• Sequence-based metagenomics include the random sam-

pling of whole environmental DNA samples. To identify

resistance genes or mutations in specific genes involved

in antibiotic resistance, the sequences obtained are com-

pared to databases. In addition, mutations of multiresis-

tance were found in aquatic microbes affected by agro-

industrial activities such as aquaculture; the same micro-

bial community may have enhanced tolerance to antibi-

otics, metals, ammonia compounds and other

antibacterial chemicals due to mutation and further hor-

izontal gene transfer (Zhang, et al. 2009).

• Viral species have special mechanisms of replication,

transmission and persistence. Identifying viral processes

can help to identify pathogenic species and mutations

quickly, which are useful information for diagnosis, pre-

vention and treatment development. However, the iden-

tification of pathogens as well as the current diagnostic

techniques is restricted by an incomplete picture of the

immense complexity of viruses and the limitations of

traditional methods of detection.

• Shotgun metagenomics of clinical or random environ-

mental samples are a promising alternative that circum-

vents conventional methods limitations. While this

method has usually been used to study genomic diver-

sity, it may also be useful in clinical detection of viral

pathogens (Rosario et al. 2009; Bibby et al. 2011)

• Virus studies using metagenomic methods were recently

promoted due to the quality and quantity of genomic

information obtained with next generation sequencing;

while the Sanger sequence provides significantly lower

results, it was also used as an ID tool (Finkbeiner et al.

2008; Svraka et al. 2010). Compared to other methods

including PCR or microarrays, metagenomics demon-

strated better efficiency and accuracy of detection of

multiple genomes (Yozwiak et al. 2012).

• Metagenomics libraries for particular biodegradation

genes can be constructed, amplified and screened. This

technique tested by cloning genes into bacteria and incu-

bated in highly toxic compounds medium (George et al.

2010).

• New molecules can be provided with different functions

through metagenomics, such as new enzymes or bioac-

tive molecules, which can provide therapeutic applica-

tions or economic strategies (Lorenz & Eck 2005).

Host fish species

The host species themselves are further considered and pos-

tulated in the determination of the fish gut microbiota; this

parameter involved in a variety of confounding variables.

Fish behavior, habitat salinity and intrinsic feeding ten-

dency were among the various factors that could contribute

to this parameter. For such a range of fish species, their gut

microbiota is being examined. The different fish species

under examination in the relevant studies are shown in

Table 4. In the last ten years, the gut microbiome of carp

fish species has been extensively researched. The carp fish

are recognized comprehensively as invasive species, because

of the enormous quantity of food they need of and it is rec-

ognized that their feeding model disturbs the food chain

and disrupts the environment (Eichmiller et al. 2016).

Besides, carp species are the trophic extent of this genus

grass carp from herbivorous group and filter feeders such

as bighead carps and omnivorous such as common carp

and crucian carp (Liu et al., 2016). Subsequently, zebra and

cichlid fish species have been ascetically studied. Cichlid

fish are identified for their capability to acclimatize at extre-

mely precise niches in the ecology, consenting them to be

distinctive feeders, such as nourishing on eyes or scales

(Baldo et al. 2015). In biomedical studies in the last few

years, zebrafish is a model organism that comes from ray-

finned fish and is pre-eminent in vertebrate Actinopterygii

Reviews in Aquaculture, 1–25

© 2020 Wiley Publishing Asia Pty Ltd 13

Gut microbiota metagenomics in aquaculture



of Cypriniformes order, and is omnivorous species (Roesel-

ers et al. 2011). Fish gut microbiota metagenomic studies

are also conducted on cods and seabreams among them

gilthead seabream and Blunt snout bream fish were studied.

Primary, these fish were herbivorous and then-impending

carnivorous (Estruch et al. 2015; Liu et al. 2016). Major his-

tocompatibility complex II (MHC II) was found to be lack-

ing in Atlantic cods, which was formerly speculated in

Gnathostomata as a conserved domain, constructing it is

an exciting applicant for research of gut microbiome as the

absence of MHC II, an immuno-regulating complex which

possibly subsidize to the alteration in gut microbiota of the

species (Star et al. 2013). Apart from these, other types of

fish species including Gizzard shad, freshwater drum, dam-

sel fish, mandarin fish, cardinal fish, threespine stickleback,

top mouth culter and southern flounders are too

researched.

Factors influence gut microbes

The environment is among the most important key deter-

minant faecal microbiota of silver carp, bighead carp and

common carp, as demonstrated by the variation in fish

gut microbiota content obtained from various sources

from rivers, lakes and laboratory-reared. This correlation

between the environment and the components of gut

microbiota may be caused by multiple factors; for example,

the availability of wild plant material in lakes and rivers

may increase the feeding quantity of such content which

aggregate arabinoxylan oligosaccharide in the fish which in

turn act as a prebiotic for the ergo, Clostridaceae bacteria.

Clostridaceae bacteria are be likely to propagate thriving in

the gut environment (Eichmiller et al. 2016). However, the

composition of the gut microbiota during the larval stage

of the fish must play more prominent role in determining

the environmental influence (Stephens et al. 2016). From a

different standpoint, profile analysis of T-RFLP exhibited

the composition of zebra fish gut microbiota, which was

different among fish captured from the wild in diverse loca-

tions and laboratory-reared fish of different locations.

Unexpectedly, in determining the gut microbiota composi-

tion, the location of the laboratory-reared fish performed a

major part than the wild fish collected (Roeselers et al.

2011). Environmentally ascribed factors, such as pH,

NO3-N, PO3-P and conductivity, are also significantly cor-

related with fish gut microbiota composition (Giatsis et al.

2015). In addition, the existence of pollutants such as crude

oils in the environment also disturbs the gut microbiota

composition. In southern flounder, as evident from the

proliferation of Deltaproteobacteria, Gammaproteobacteria,

Epsilonproteobacteria and Sphingobacteria amid the decline

of Alphaproteobacteria and Clostridia in its gut with crude

oil.

It is suggested that the trophic level of the host fish spe-

cies has a major impact on the gut microbiota composition

of fish. Evident from Liu et al. (2016) studies that fish from

distinct trophic levels, namely herbivores, carnivores and

omnivores (including filter feeders), were specified to have

distinct contents of gut microbiota. Herbivorous fish

appeared to harbour Leptotrichia, Clostridium and Citrobac-

ter in abundance, while the carnivorous fish gut existed rich

in Halomonas and Cetobacterium, and the omnivorous fish

were harbouring Halomonas, Clostridium and Cetobac-

terium.

In different stages of fish development, the composition

of gut microbiota varies (planktonic and mature). The nat-

ure of the fish diet as they grow is conflicting with these

phases, with mature fish getting more complex are all

through the planktonic stage (Parris et al. 2016). During

the larval and juvenile stages, zebrafish gut microbiota was

considerably distinct, with the genotype of the fish as a

cause of the gut microbiota composition is suggested with

the reared environment and the same feeding material (Ste-

phens et al. 2016). The environment performs a significant

part in influencing the composition of gut microbiota at

the larval stage of codfish rather than feed (Bakke et al.,

2013).

In addition, the position of the foregut, midgut and

hindgut is assumed to be one of the variables influencing

the gut microbiota composition of the fish. Changes in

gut microbiota composition may be attributed to the envi-

ronment on the basis of the consumption, and the compo-

sition varies as they transfer over the gut and some are

engaged in the mucosal layer and, approximately, some are

eliminated as waste. The modifications, however, are not

well known, and further studies are needed to strengthen

this proof (Ye et al. 2014; Estruch et al. 2015).

In determining the composition of gut microbiota in

fish, host genotype performs an important role. One such

instance is the host’s immunological genotype that affects

the composition of the gut microbiota. Fish with advanced

genetic heterozygosity exhibited poorer complexity in the

microbiota variation, specifying the role of MHCII in the

control of the microbial population in gut fish (Smith et al.

2015).

Biotic (e.g. genotype, physiological status, pathobiology,

lifestyle) and abiotic (e.g. environmental) factors may affect

the fish gut microbiota and influence its composition and

diversity, as well as its function and metabolic activity, thus

affecting feeding, growth, energy storage and health of the

fish (Ghanbari et al., 2015). Previous studies have shown

that microbes in water can affect the microbiota GI fish

(Tanasomwang & Muroga 1988; Wang et al. 1993). The

intestinal microbiota composition of the grass carp (Ct.

idellus) is related to two main factors influencing GI micro-

biota in the production of water and sediment. Hagi et al.
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(2004) reported that the composition of the intestinal lactic

acid bacteria (LAB) varied with seasons in four species of

fish, namely silver carp (Hypophthalmichthys molitrix),

common carp (Cy. carpio), catfish channel (Ictalurus punc-

tatus) and deep-bodied crucian carp (Carassius cuvieri). It

seems that the intestinal microbiota of fish from estuarine

environments is more similar to that of freshwater fish,

while the intestinal microbiota of fish from mixed salinity

ecosystems is more similar to the intestinal microbiota of

saltwater fish. Nevertheless, it is difficult to evaluate the

exact role of salinity in forming the intestinal microbiota,

as they used different fish from freshwater or marine water.

Zhang et al. (2016) recently revealed that the gut micro-

biota composition of Nile tilapia born under varying salin-

ity was further investigated. The results showed that in

high-salinity conditions, the abundance of Devosia, Pseu-

domonas and Cetobacterium increased. Feeding habit is

also an important factor influencing GI microbial diversity,

and an increasing trend in diversity was observed following

the order of carnivores, omnivores and herbivores (Ward

et al. 2009; Larsen et al. 2014; Li et al. 2014; Miyake et al.

2015).

Table 4 Gut microbiota/microbiome studies in host fish species

Host Fish species Research outcomes References

Freshwater drum (Aplodinotus grunniens)

Common carp (Cyprinus carpio)

Silver carp (Hypophthalmichthys molitrix)

Bighead carp (Hypophthalmichthys nobilis)

Factors affecting carp microbiome characterization Eichmiller et al. (2016)

Bighead carp (Hypophthalmichthys nobilis)

Silver carp (Hypophthalmichthys molitrix)

Crucian carp (Carassius auratus)

Common carp (Cyprinus carpio)

Top mouth culter (Culter alburnus)

Mandarin fish (Siniperca chuatsi)

Grass carp (Ctenopharyngodon idellus)

Blunt snout bream (Megalobrama amblycephala)

Fish gut microbiota and metabolic activity influenced

by the host trophic level

Liu et al. (2016)

Damselfish (Pomacentridae)

Cardinalfish (Apogonidae)

Fish health and ecology significantly influence by

fish-associated microbial communities

Parris et al. (2016)

Haptri (Haplochromis trifasciatus)

Hapmic (Haplochromis microlepis)

Plestr (Plecodus straeleni)

Permic (Perissodus microlepis)

Perecc (Perissodus eccentricus)

Investigation on the adaptation of gut microbiota in

the process of the host adaptive radiation

Baldo et al. (2015)

Gizzard Shad (Dorosoma cepedianum)

(Silver Carp (Hypophthalmichthys molitrix)

Fish gut microbiota differentiate in Asian and

American carp based on the food source

Ye et al. (2014)

Gilthead seabream (Sparus aurata) Replacement in fishmeal had a significant impact on

gastrointestinal microbiota

Estruch et al. (2015)

Zebrafish (Danio rerio) Gut microbial communities interactions with

zebrafish that have been experimentally analysed

Roeselers et al. (2011)

Grass carp (Ctenopharyngodon idella) Factors affecting the gut microbiome of grass carp

and its effect on metabolism

Ni et al. (2014)

Baikal omul (Coregonus migratorius Georgi)

Baikal whitefish (Coregonus baicalensis Dyb.)

Comparison between sympatric species and their

first-generation hybrid crosses

Belkova et al. (2017)

Tilapia (Oreochromis niloticus) The effect of rearing environment on water bacterial

communities which is present in the gut of Nile

tilapia larvae

Giatsis et al. (2015)

Zebrafish (Danio rerio) Intestinal microbiota in zebrafish has distinct

communities throughout development and

increasingly different from the surrounding

environment

Stephens et al. (2016)

Atlantic cod (Gadus morhua) The host-specific selection is determined in the

composition of the core microbiota

Star et al. (2013)

Southern flounder (Paralichthys lethostigma) A sediment-oil mixture has a negative impact on the

health of fish species

Brown-Peterson et al. (2015)

Acanthuridae The gut microbiota of surgeonfish is strongly

influenced by diet

Miyake et al. (2015)
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Physiology and immune role of fish gut
microbiome

Few beneficial effects of gut microbiota are conferred on

host fish, and such impacts can be classified systematically

as physiological and immunological impacts. The following

functions of bacteria in the gut microbiota of fish are

exposed on the basis of latest studies carried out on this

sector.

The gut microbiota physiological impact on the host fish

is perceived through a number of interactions of metabolic

ability and host metabolism of the gut microbiota. This

relationship is defined by the failure of host fish to break

down certain compositions in food, such as xenobiotic

compounds or cellulose, used as a medium of energy by the

host fish’s gut microbiota, and the metabolites generated

from this use as digestible energy source by the fish.

Another component that contributes to the physiological

effect on the fish gut microbiota is the synthesis or part of

the synthesis of an essential supplement like a vitamin.

Verrucomicrobiae acquires the capability to break down

b-glycans to b-glucose over the activity of cellulase. The

presence of these bacteria now suggests that it is important

for the digestion of plant cellulose in the gut of fish, and

this feature has been demonstrated in carps and further

strengthened by reduced cellulase activity in antibiotic-trea-

ted fish, and cellulase action in fish gut is effectively deter-

mined by gut microbiota (van Kessel et al. 2011).

Pseudomonas fluorescens and P. putida were established as

xenobiotic degrading bacteria (Austin et al. 1995). Clostri-

dia was demonstrated to be one of the major representa-

tives in fish gut microbiota. It is renowned for the synthesis

of propionate, short fatty acid chains and butyrate; these

compounds are synthesized in the host GI system and sup-

plied to the host for better growth (Eichmiller et al. 2016).

In addition, the fish diet is also considered to affect the

composition of fish gut microbiota, in particular, the bacte-

ria Clostridia, as shown in most of these bacteria in the gut

microbiota of cichlid fish consuming the primary food

component as the scales connected with other identical fish

niches. These bacteria are connected with collagen-degrad-

ing enzymes because collagen is the primary component of

the scales that are consumed by the particular niches of

cichlid fish (Baldo et al. 2015). In many fish, gut micro-

biota, Fusobacteria, is also found to dominate with the

Cetobacterium genus in the fish gut, being the most domi-

nant genus of this category (Roeselers et al. 2011; Ye et al.

2014; Liu et al. 2016). This bacterium is notorious for the

biosynthesis of vitamin B12 in fish, which is vital for fish

development (Eichmiller et al. 2016).

The fish immune system is much similar to that of

the higher vertebrate’s immune system that comprises

the innate and adaptive immune system. The adaptive

immune system can acquire memory through the produc-

tion of antibodies, whereby the presence of antigens in

monocytes and macrophages facilitates the innate immune

system through cytokine and chemokine receptor profiles;

the antigen-containing bodies are subject to elimination.

This offers immune resistance against a multitude of

pathogenic bacteria that adversely affect fish health

(G�omez & Balc�azar 2008). However, some pathogenic

bacteria are not permitted from the exchange of any

property of causing the disease to the fish, by means of

the innate host resistance mechanism before any immuno-

logical response is activated. The innate resistance of the

host involves a number of biological molecules, for exam-

ple antimicrobial peptides, bile, mucosal layer, proteases

and stomach acids (Huisinget al. 2003). Some beneficial

bacteria that comprise the gut microbiota of fish also lend

the host fish for certain immunological benefits by modu-

lating the fish innate immune system, by interacting with

host NK cells, neutrophils and monocytes. In addition,

the method of action in which beneficial bacteria help

to modulate the host fish immune response to pathogenic

bacteria involves competition for nutrients, stimulating

the nonspecific immune system of host fish, antagonism

of pathogenic bacteria in excess of secretion of antimicro-

bial molecules and rivalry for adhesion site. The conclu-

sion was that lactic acid bacteria (LAB) such as

Lactobacillus sakei, L. lactis, L. rhamnosus and Clostridium

butyricum increased host fish immunoglobulin levels, and

thus, the siderophore-producing biological control agent

such as P. fluorescens was also effectively implemented in

the gut. This might rule out the pathogenic bacteria Aero-

monas salmonicida strain from stress-inducible furunculo-

sis infection in Atlantic salmon presmolts. Also, it is to

limit the death of rainbow trout infection due to Vibrio

anguillarum. Temporary, the immersion of the fish in the

bacterial suspension of probiotics and long-standing expo-

sure of the fish in rearing water or a mixture of these two

procedures resulted in a significant reduction in mortality

following the experimental test (Zorriehzahra et al. 2016).

In Ecuador, at a commercial shrimp hatchery, V. algi-

nolyticus strain has been used as a probiotic and the same

was applied in a bath treatment to Atlantic Salmon, which

was maintained in freshwater. Up to 21 days after initial

probiotic implementation, V. alginolyticus was encoun-

tered in the intestine. The experiment exposed that the

probiotic application to Atlantic salmon controlled the

decline of mortality once exposure to A. salmonicida and

to a reduced the level after acquaintance to V. ordalii and

V. anguillarum (Austin & Newaj-Fyzul 2017). V. algi-

nolyticus is a strain that has been shown to be a probiotic

agent in the treatment of fish infection with V. ordalii,

V. anguilarrum and A. salmonicida (Austin et al. 1995).

Pediococcus acidilactici originating from LAB is considered
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to secrete organic acids and a range of biomolecule bacte-

riocin that has an adverse effect on a variety of pathogenic

bacteria (Ferguson et al. 2010). Another research has

focused on endogenous intestinal microbes, Bacillus

circulans, in Siberian sturgeon, which displayed substantial

enhancement of complete stimulation of immune

response and growth performance of the fish (Geraylou

et al. 2013).

Table 5 Studies on the gut microbial composition of microbiota/microbiome in corresponding fish gut

Bacterial composition in the Fish gut Studies outcome References

Proteobacteria

Firmicutes

Fusobacterium

Factors affecting the characterization faecal microbiomes of

common, silver and bighead carps

Eichmiller et al. (2016)

Proteobacteria

Firmicutes

Fusobacteria

Bacteroidetes

The structure, gut content enzyme activity and composition of gut

microbiota, metabolic capacity influenced by host trophic level

Liu et al. (2016)

Gammaproteobacteria

Pseudoaltermonadaceae

Endozoicimonaceae

Vibrionaceae shewanellaceae

Identifying transition in microbiome structure across host life stage Estruch et al. (2015)

Firmicutes

Proteobacteria

Actinobacteria

The microbial composition of the gut was analysed after the total

fishmeal replacement by vegetable-based feed in the sea bream

Baldo et al. (2015)

Firmicutes

Fusobacteria

Proteobacteria

Bacteroidetes

Actinobacteria

Planctomycetes

Verrucomicrobia

Effect of host adaptive radiation in the gut microbiota of cichlids Ye et al. (2014)

Proteobacteria

Fusobacteria

Firmicutes

Cynobacteria

Bacteroidetes

Actinobactericae

Gut microbiota analysis differentiates in food sources including

bacteria ingested by Asian and American carp

Roeselers et al. (2011)

Proteobacteria

Fusobacteria

Firmicutes

Actinobacteria

Bacteroidetes

The zebrafish intestinal habitat selected for specific bacterial taxa

differences in host provenance

Ni et al. (2014)

Proteobacteria

Fusobacteria

Firmicutes

Gut microbiome metabolism in grass carp is affected by feeding Belkova et al. (2017)

Proteobacteria

Firmicutes

Actinobacteria

Cyanobacteria

Through water microbial management the steering of gut microbial

communities could be possible

Giatsis et al. (2015)

Proteobacteria

Firmicutes

Zebrafish intestinal microbiota was increasingly different from the

surrounding environment and from one another

Stephens et al. (2016)

Bacteroidales erysipelotrichales

Clostridiales

Alteromonadales Deferribacterales

Composition of core microbiota is determined by the host-specific

selection

Star et al. (2013)

Gammaproteobacteria

Deltaproteobacteria

Epsilonproteobacteria

Alphaproteobacteria

Clostridia

Chronic exposure of oiled sediments produces adverse effects in

bacterial population structures

Brown-Peterson et al. (2015)

Firmicutes

Proteobacteria

Surgeonfish change in feeding behaviours, which in turn has a

strong impact on the reef ecology.

Miyake et al. (2015)
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Microbial load in fish gut

As mentioned earlier, the microbial composition of host

fish varied due to several variables; and the microbial loads

of different fish found in the related study are shown in

Table 5. Most of the gut microbiota of fish comprises of

Actinobacteria, Bacteroidetes, Fusobacteria, Firmicutes and

Proteobacteria cumulatively in phyla term with more than

80% concentration.

A study directed at defining the effects on the gut micro-

biota composition of invasive carp fish in wild as well as in

captive environments concluded that Fusobacteria, Pro-

teobacteria and Firmicutes phyla in the gut microbiota were

available in the carp fish with a combined concentration of

76.7%. Five mutual OTUs were found to consist of 40% of

the core faecal microbiota between laboratory and wild

carp fish (Eichmiller et al. 2016). Another study aimed at

identifying the correlation between the composition of gut

microbiota and wild freshwater trophic level fish indicated

the fact the most prevalent bacterium genus observed in all

fish was Proteobacteria, with a comparative abundance of

45.52% in herbivorous fish and in carnivorous fish 32.82%,

in omnivorous fish about 37.32% and 38.13% in filter-

feeding fish. This is preceded by Firmicutes, the most

common bacterial species, with a comparative abundance

of 21.16%, 21.83%, 22.38% and 27.13%, in filter-feeding

fish, carnivorous, herbivorous and omnivorous, respec-

tively. Other bacterial species, such as Actinobacteria,

Acidobacteria, Crenarchaeota, Bacteroidetes, Verrucomicro-

bia, Cyanobacteria and Planctomycetes, were relatively

abundant in a range between 0.89% and 8.26%. More

noteworthy is the fact that, at the level of the genus, the

comparative abundance of the Leptotrichia, Citrobacter and

Clostridium bacteria was found with the capacity to degrade

cellulose, which was significantly higher in Halomonas

bacterial species, Cetobacterium and herbivorous fish. Liu

et al. (2016) reported that the protease producing bacteria

were rich in carnivorous fish species. The gut microbiome

of pre-settlement-reef and postsettlement reef of cardinal-

fish and damselfish was completed by discovering indicator

taxa for the two species specified life phases. Throughout

the fish pre-settlement stage, the guts were initiated to be

harbouring Kordia (Flavobacteriia), Oceonospirilum

(Gammaproteobacteria), Arcobacter (Epsilonproteobacte-

ria), Halomonas (Gammaproteobacteria) and Idiomarina

(Gammaproteobacteria) in downward order relating to

the strength of the indicator of the bacterial taxa.

Meanwhile, in postsettlement, fish harboured bacteria

from Planctomycetes (Pirellulaceae), Firmicutes (Epulopis-

cium), Gammaproteobacteria (Vibrionaceae, Portiera),

Verrucomicrobia (Coraliomargarita) and Alphaproteobacteria

(Kiloniellales, Hyphomicrobiaceae; Parris et al. 2016).

The lab-reared zebrafish gut microbiota composition was

subjective to the different stages of the fish development,

where the change from the larval stage to the juvenile phase

was noted in the microbiota structure, and an alteration in

the microbial composition was detected throughout the

changeover from the juvenile to the adult stage. In this,

considerably extensive bacteria such as Fusobacteria and

Class CK-1C4-19 bacteria in the gut of adolescent zebrafish

were found to be in tiny proportion during the larval and

juvenile stages, indicating the development of zebrafish

physiology plays a major role in determining the microbial

composition of the intestine (Stephens et al. 2016).

Conclusion

Metagenomic research of fish gut microbiome provided

numerous data on the physiological and immunological

features of the gut microbiota of various fish. Gut micro-

biota influences the fish metabolism and modulates the fish

immunogenicity with respect to pathogenic microbes. Fish

gut microbial composition differed depending on habitat,

species and feeding behaviour. The gut microbes that have

been shown to have a positive effect on the health of the

fish that can be used as a probiotic candidate awaiting fur-

ther study.
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