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Solution: The bitwise OR, bitwise AND, and bitwise XOR of these strings are obtained by taking
the OR, AND, and XOR of the corresponding bits, respectively. This gives us

011011 0110
11 0001 1101

11 1011 1111 bitwise OR
01 0001 0100 bitwise AND

10 1010 1011 bitwise XOR <
Exercises
1. Which of these sentences are propositions? What are the b) There is no pollution in New Jersey.
d truth values of those that are propositions? €) 2+1=3.
a) Boston is the capital of Massachusetts. d) The summer in Maine i hot and sunny.
b) Miami is the capital of Florida. 4. Let p and g be the propositions
¢) 2+3=5. d) 5+7=10. p : I bought a lottery ticket this week.
e) x+2=11 f) Answer this question. g : I won the million dollar jackpot on Friday.
2. Which of these are propositions? Whatare the truth values Express each of these propositions as an English sentence.
of those that are propositions? a) —p b) pvgq ) p—g
d) prg e) pog ) ~p—>—g
a) Do not pass go.
b) What time is it? § SpASE © WypVIpAg)
¢) There are no black flies in Maine. 5. Let p and g be the propositions “Swimming at the New

d) 4+x=5 Jersey shore is allowed” and “Sharks have been spotted
e near the shore,” respectively. Express each of these com-

e) The moon is made of green cheese. pound propositions as an English sentence.

f) 2" > 100.

a) —gq b) pAg c) pvVv
What is the negation of each of these propositions? d) p—> e) iq —p f) —.z _>q—.q
_a) Today is Thursday. g po—q h) ~pA(pVv —9q)

Links

n JOHN WILDER TUKEY (1915-2000) Tukey, born in New Bedford, Massachusetts, was an only child. His
il parents, both teachers, decided home schooling would best develop his potential. His formal education began
§ at Brown University, where he studied mathematics and chemistry. He received a master’s degree in chemistry
. from Brown and continued his studies at Princeton University, changing his field of study from chemistry to
. mathematics. He received his Ph.D. from Princeton in 1939 for work in topology, when he was appointed an
| instructor in mathematics at Princeton. With the start of World War I1, he joined the Fire Control Research Office,
where he began working in statistics. Tukey found statistical research to his likingand impressed several leading
- statisticians with his skills. In 1945, at the conclusion of the war, Tukey returned to the mathematics department
o " at Princeton as a professor of statistics, and he also took a position at AT&T Bell Laboratories. Tukey founded
the Statistics Department at Princeton in 1966 and was its first chairman. Tukey made significant contributions to many areas of
statistics, including the analysis of variance, the estimation of spectra of time series, inferences about the values of a set of parameters
from a single experiment, and the philosophy of statistics. However, he is best known for his invention, with J. W. Cooley, of the fast
Fourier transform. In addition to his contributions to statistics, Tukey was noted as a skilled wordsmith; he is credited with coining
the terms bit and software.
Tukey contributed his insight and expertise by serving on the President’s Science Advisory Committee. He chaired several
important committees dealing with the environment, education, and chemicals and health. He also served on committees working
on nuclear disarmament. Tukey received many awards, including the National Medal of Science.

HISTORICAL NOTE There were several other suggested words for a binary digit, including binit and bigit, that never were widely
accepted. The adoption of the word bit may be due to its meaning as a common English word. For an account of Tukey’s coining of
the word bit, see the April 1984 issue of Annals of the History of Computing.
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30.
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a) p—> —p

b) (pV-r)A(gV —s)

¢) gvpV-sV-orv-tvu

d) (pArAl (@A)

How many rows appear in a truth table for each of these
compound propositions?

a) (4 > —p)V(~p—> —9)

b) (pV-t)A(pV —s)

) (p—>r)V(-s =)V (—u—>v)

d) (pArAs)v@Aatyvra—t)

Construct a truth table for each of these compound
propositions.

a) pA—p

@ (pv—9)—gq

& (p— q) © (~q > =p)
) p>9)—>(@—p
Construct a truth table for each of these compound
propositions.

a) p—> —p b
© rekva

e) (9 > —p)o(pegq)
D (peog)®(pe—q)
Construct a truth table for each of these compound
propositions.

a) (pvg)—> (pd9)

¢) (pvg d(prg)

e) (P q)®(—p < —r)
) pdq9) > (P®—9)
Construct a truth table for each of these compound
propositions.

a) pdp

¢) pd—g

e) (p®qgV(p®—g)

b) pv—p
d) (pvg)—>(prg)

p<—p
d(prg—>(pVy)

ﬁ)‘)(peaq)*(p/\q)
d(peg@(-po 9

b) p®—p
d) ~p&—q
H PdPA(PD—q)

f3\i). Construct a truth table for each of these compound

33.

propositions.

a) p—> g

) (p—>qV(~p—9q)
©(peog)V(-poq)

f) (—po—q)eo(pegq)

b) ~p o g
d) (p=>gIAN(p—9q)

'Qg\ Construct a truth table for each of these compound

propositions.

a) (pvq)vr b) (pVva)Aar

9 (pAg)vr d) (prg)nr

& (pvar—r ) (pAg)v—r

Construct a truth table for each of these compound
propositions.

a) p—>(~qVvr)

b) ~p— (g — 1)

) (p—=>q)vV(p—r)

dy(p—->Ar(-p—>r)

e) (peoq)V(-g or)

) po—q)o(@eor)

34. Construct a truth table for (p - gq) —» r) — s.

3s.
. What is the value of x after each of these statements is

37.

38.
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Construct a truth table for (p < g) © (r © s).

encountered in a computer program, if x = 1 before the
statement is reached?

a) ifl +2=3thenx :=x + 1

b) if(1+1=3)OR2+2=3)thenx =x +1

c) ifR+3=5AND(3+4=T)thenx =x+1

d) if(1+1=2)XOR(1+2=23)thenx =x+1

e) ifx <2 thenx =x+1

Find the bitwise OR, bitwise AND, and bitwise XOR of
each of these pairs of bit strings.

a) 101 1110, 010 0001

b) 1111 0000, 1010 1010

¢) 0001110001, 100100 1000
d) 1111111111, 00 0000 0000
Evaluate each of these expressions.

a) 11000 A (01011 v 1 1011)
b) (01111 A 10101) v 0 1000
¢) (01010 1 1011) & 0 1000
d) (11011 v 01010) A (10001 v 11011)

Fuzzy logic is used in artificial intelligence. In fuzzy logic, a
proposition has a truth value that is a number between 0 and 1,
inclusive. A proposition with a truth value of 0 is false and one
with a truth value of 1 is true. Truth values that are between 0
and 1 indicate varying degrees of truth. For instance, the truth
value 0.8 can be assigned to the statement “Fred is happy,”
because Fred is happy most of the time, and the truth value
0.4 can be assigned to the statement “John is happy,” because
John is happy slightly less than half the time.

39,

41.

*42.
*43.

44.

The truth value of the negation of a proposition in fuzzy
logic is 1 minus the truth value of the proposition. What
are the truth values of the statements “Fred is not happy”
and “John is not happy™?

. The truth value of the conjunction of two propositions in

fuzzy logic is the minimum of the truth values of the two
propositions. What are the truth values of the statements
“Fred and John are happy” and “Neither Fred nor John is
happy”?

The truth value of the disjunction of two propositions in
fuzzy logic is the maximum of the truth values of the two
propositions. What are the truth values of the statements
“Fred is happy, or John is happy” and “Fred is not happy,
or John is not happy”?

Is the assertion “This statement is false” a proposition?

The nth statement in a list of 100 statements is “Exactly
n of the statements in this list are false.”

a) What conclusions can you draw from these
statements?

b) Answer part (a) if the nth statement is “At least n of
the statements in this list are false.”

¢) Answer part (b) assuming that the list contains
99 statements.

An ancient Sicilian legend says that the barber in a re-

mote town who can be reached only by traveling a dan-

gerous mountain road shaves those people, and only those
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1. Use truth tables to verify these equivalences.

a) pAT=p b) pvF=p
¢c) pAF=F d) pvT=T
e) pVp=p ) pAp=p

2. Show that —~(—p) and p are logically equivalent.

3. Use truth tables to verify the commutative
laws

a) pVg=qVp b) pAg=gnp
4. Use truth tables to verify the associative laws
i-a) (pvqVr=pVv(@QVr)
b) (pAg)Ar=pA(gAr)
5. Use a truth table to verify the distributive law
_PA@VN=(@AgV(PAT).
6. Use a truth table to verify the first De Morgan law
~(pAg)=—pV—q.
7. Use De Morgan’s laws to find the negation of each of the
following statements.
a) Jan is rich and happy.
b) Carlos will bicycle or run tomorrow.
¢) Mei walks or takes the bus to class.
d) Ibrahim is smart and hard working.
8. Use De Morgan’s laws to find the negation of each of the
following statements.
a) Kwame will take a job in industry or go to graduate
school.
b) Yoshiko knows Java and calculus.
¢) James is young and strong.
d) Rita will move to Oregon or Washington.

9. Show that each of these conditional statements is a tau-
tology by using truth tables.

a) (prng)—>p b) p—>(pVvyg)
L€) —=p—> (p—q) d) (prg)—>(p—>9)
e) (p—>q)—>p H ~(p—>9)—> g
10. Show that each of these conditional statements is a tau-
tology by using truth tables.
L-2) [~pA(pV g —g
b) [(p=>PA(@—>r]—>(p—>r)
L ©) [pA(p—> 9] > g
d [pvpPArp—>nAr@—->r)]-r
11. Show that each conditional statement in Exercise 9 is a
tautology without using truth tables.
12. Show that each conditional statement in Exercise 10 is a
tautology without using truth tables.

13. Use truth tables to verify the absorption laws.
a) pV(prg)= b) pA(pV g =

14. Determine whether (—-pA(p > ¢g)) > —g is a
tautology.

15. Determine whether (—g A(p > g)) > —p is a
tautology.

Each of Exercises 1628 asks you to show that two compound

propositions are logically equivalent. To do this, either show

that both sides are true, or that both sides are false, for exactly

the same combinations of truth values of the propositional

variables in these expressions (whichever is easier).

16. Show that p &g and (pAg)V(—pA—g) are
equivalent.

17. Show that —(p & gq) and p < —g are logically
equivalent.

HENRY MAURICE SHEFFER (1883-1964) Henry Maurice Sheffer, born to Jewish parents in the western
- Ukraine, emigrated to the United States in 1892 with his parents and six siblings. He studied at the Boston Latin
i School before entering Harvard, where he completed his undergraduate degree in 1905, his master’s in 1907,
andhis Ph.D. in philosophy in 1908. After holding a postdoctoral position at Harvard, Henry traveled to Europe
4 on a fellowship. Upon returning to the United States, he became an academic nomad, spending one year each
| at the University of Washington, Cornell, the University of Minnesota, the University of Missouri, and City
i College in New York. In 1916 he returned to Harvard as a faculty member in the philosophy department. He
} remained at Harvard until his retirement in 1952.
' Sheffer introduced what is now known as the Sheffer stroke in 1913; it became well known only after its use

in the 1925 edition of Whitehead and Russell’s Principia Mathematica. In this same edition Russell wrote that Sheffer had invented
a powerful method that could be used to simplify the Principia. Because of this comment, Sheffer was something of a mystery man
to logicians, especially because Sheffer, who published little in his career, never published the details of this method, only describing
it in mimeographed notes and in a brief published abstract.

Sheffer was a dedicated teacher of mathematical logic. He liked his classes to be small and did not like auditors. When strangers
appeared in his classroom, Sheffer would order them to leave, even his colleagues or distinguished guests visiting Harvard. Sheffer
was barely five feet tall; he was noted for his wit and vigor, as well as for his nervousness and irritability. Although widely liked, he
was quite lonely. He is noted for a quip he spoke at his retirement: “Old professors never die, they just become emeriti.” Sheffer is
also credited with coining the term “Boolean algebra” (the subject of Chapter 11 of this text). Sheffer was briefly married and lived
most of his later life in small rooms at a hotel packed with his logic books and vast files of slips of paper he used to jot down his
ideas. Unfortunately, Sheffer suffered from severe depression during the last two decades of his life.
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“" 18. Show that p — g and ~q — —p are logically equivalent.
19. Show that—p < g and p < —q are logically equivalent.
_~20. Show that —~(p @ q) and p < q are logically equivalent.
21. Show that —(p <> ¢q) and —p < g are logically
equivalent.
22. Show that(p — q) A (p — r) and p — (g A r) are log-
ically equivalent.
23. Show that (p — r) A(g — r) and (p Vv q) — r are log-
ically equivalent.
24. Show that (p — q) V(p — r)and p — (g V r) are log-
ically equivalent. )
25. Show that (p — r) V(g — r) and (p A q) — r are log-
ically equivalent.
26. Show that —p — (¢ — r)andg — (p V r) are logically
equivalent.

1 .27. Show that p & g and (p — g) A (g — p) are logically
equivalent.

28. Show that p <> g and —p « —gq are logically equivalent.

29, Showthat(p — gq) A (@ = r) = (p — r)isatautology.

30. Show that (p v g) A (—p VvV r) = (g V r) is a tautology.

31. Show that (p - q) > r and p — (¢ — r) are not
equivalent.

32. Show that (p A q) = r and (p — r) A(g — r) are not
equivalent.

33. Showthat(p — g) = (r > s)and(p > r) > (g — s)
are not logically equivalent.

The dual of a compound proposition that contains only the

logical operators V, A, and — is the compound proposition

obtained by replacing each Vv by A, each A by Vv, each T by

F, and each F by T. The dual of s is denoted by s*.

34. Find the dual of each of these compound propositions.
a) pVv—q b) pA(gV(rAT))

) WA—q)V@gArF)

35. Find the dual of each of these compound propositions.
a) pA—gA-r b) (pAgAF)Vs
) (pvFHA@VT

36. When does s* = s, where s is a compound proposition?

37. Show that (s*)* = s when s is a compound proposition.

38. Show that the logical equivalences in Table 6, except for
the double negation law, come in pairs, where each pair
contains compound propositions that are duals of each
other.

**39, Why are the duals of two equivalent compound proposi-
tions also equivalent, where these compound propositions
contain only the operators A, Vv, and =?

40. Find a compound proposition involving the propositional
variables p, g, and r thatis truewhen p and g aretrue and
r is false, but is false otherwise. [Hint: Use a conjunction
of each propositional variable or its negation.]

41. Find a compound proposition involving the propositional
variables p, ¢, and r thatis true when exactly two of p, ¢,
and r are true and is false otherwise. [Hint: Form a dis-
junction of conjunctions. Include a conjunction for each
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combination of values for which the propositional vari-
able is true. Each conjunction should include each of the
three propositional variables or their negations.]

5742, Suppose that a truth table in » propositional variables is

specified. Show that a compound proposition with this
truth table can be formed by taking the disjunction of
conjunctions of the variables or their negations, with one
conjunction included for each combination of values for
which the compound proposition is true. The resulting
compound proposition is said to be in disjunctive normal
form.

A collection of logical operators is called functionally com-
plete if every compound proposition is logically equiva-
lent to a compound proposition involving only these logical
operators.

43. Show that —, A, and Vv form a functionally complete col-
lection of logical operators. [Hint: Use the fact that every
compound proposition is logically equivalent to one in
disjunctive normal form, as shown in Exercise 42.]

*44. Show that — and A form a functionally complete collec-
tion of logical operators. [Hint: First use a De Morgan
law to show that p V g is equivalent to ~(—p A —q).]

*45. Show that — and Vv form a functionally complete collec-
tion of logical operators.

The following exercises involve the logical operators NAND

and NOR. The proposition p NAND gq is true when either p or

g, or both, are false; and it is false when both p and g are true.

The proposition p NOR g is true when both p and g are false,

and it is false otherwise. The propositions p NAND g and p

NOR g are denoted by p | g and p | g, respectively. (The op-

erators | and | are called the Sheffer stroke and the Peirce

arrow after H. M. Sheffer and C. S. Peirce, respectively.)

46. Construct a truth table for the logical operator NAND.

47. Show that p | g is logically equivalent to —(p A gq).

48. Construct a truth table for the logical operator NOR.

49. Show that p | g is logically equivalent to =(p V gq).

50. In this exercise we will show that {|} is a functionally
complete collection of logical operators.

a) Show that p | p is logically equivalent to —p.

b) Showthat(p | q) | (p | q)is logically equivalent to
pVvq.

¢) Conclude from parts (a) and (b), and Exercise 49, that
{{} is a functionally complete collection of logical
operators.

*51. Find a compound proposition logically equivalent to
p — q using only the logical operator |.
52. Show that {|} is a functionally complete collection of log-
ical operators.
53. Show that p | g and g | p are equivalent.

54. Showthatp | (9 | r) and (p | g) | r are not equivalent, so
that the logical operator | is not associative.
*55. How many different truth tables of compound proposi-
tions are there that involve the propositional variables p
and g?



