General Mathematics II (MATH 104)

Homework

Name:
ID:
Course:
Group:

Notes:

1- This homework covers from chapter 1 to chapter 7.
2- Deadline: 21-10-2021 Time: 15:00

1-9 Choose the correct answer:
1 The foci of the ellipse $\frac{(x-1)^{2}}{36}+\frac{(y-1)^{2}}{20}=1$ are:
(A) $F_{1}(1,5)$ and $F_{2}(1,-3)$
(B) $F_{1}(5,1)$ and $F_{2}(-3,1)$
(C) $F_{1}(4,1)$ and $F_{2}(-2,1)$
(D) $F_{1}(2,1)$ and $F_{2}(-3,1)$

2 The foci of the ellipse $\frac{(x-1)^{2}}{9}+\frac{(y-1)^{2}}{25}=1$ are:
(A) $F_{1}(1,5)$ and $F_{2}(1,-3)$
(B) $F_{1}(5,2)$ and $F_{2}(-3,2)$
(C) $F_{1}(5,2)$ and $F_{2}(1,2)$
(D) $F_{1}(5,1)$ and $F_{2}(-5,1)$

3 The focus of the parabola $(x+1)^{2}=-4(y-1)$ is
A) $F(1,1)$
B) $F(0,-1)$
$\begin{array}{ll}\text { C) } F(-1,0) & \text { D) } F(-1,4)\end{array}$

4 The focus of the parabola $2 y^{2}-4 y+8 x+10=0$ is
A) $F(2,1)$
B) $F(2,2)$
$\begin{array}{ll}\text { C) } F(1,-2) & \text { D) } F(-2,1)\end{array}$

5 The directrix of the parabola $(x+1)^{2}=-4(y-1)$ is
A) $y=2$
B) $x=-2$
C) $y=-2$
D) $x=2$

6 The equation of the parabola with vertex $(2,1)$ and focus $F(2,3)$ is
A) $(x-2)^{2}=-8(y-1)$
B) $(y-2)^{2}=8(x-1)$
C) $(x-2)^{2}=8(y-1)$
D) $(y-2)^{2}=-8(x-1)$

7 The equation of the hyperbola with foci at $(-1,-6)$ and $(-1,4)$, and the length of its transverse axis 8 is
A) $\frac{(y+1)^{2}}{16}-\frac{(x+1)^{2}}{9}=1$
B) $\frac{(y+1)^{2}}{9}-\frac{(x+1)^{2}}{16}=1$
C) $\frac{(y-1)^{2}}{16}-\frac{(x-1)^{2}}{9}=1$
D) $\frac{(y+1)^{2}}{16}-\frac{(x-1)^{2}}{9}=1$

8 If $\mathrm{A}=\left[\begin{array}{llll}1 & 1 & 4 & 1 \\ 0 & 2 & 2 & 5 \\ 0 & 0 & 5 & 3 \\ 0 & 0 & 0 & 7\end{array}\right]$, then $\operatorname{det}(A)$ is equal to
$\begin{array}{lll}\text { (A) } 35 & \text { (B) } 70 & \text { (C) } 0\end{array}$
(D) 12

9 If $\mathrm{A}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 3 & -3 & 0 & 0 \\ 4 & 1 & 2 & 0 \\ -1 & 2 & 7 & 5\end{array}\right]$, then $\operatorname{det}(A)$ is equal to
$\begin{array}{llll}\text { (A) } 15 & \text { (B) } 0 & \text { (C) }-30 & \text { (D) } 10\end{array}$
10 If $\mathrm{A}=\left[\begin{array}{cc}2 & 1 \\ -1 & 3\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}4 & 1 \\ 5 & -1\end{array}\right]$, then $2 A+3 B$ is equal to:
A) $\left[\begin{array}{ll}16 & 5 \\ 13 & 3\end{array}\right]$
В) $\left[\begin{array}{cc}12 & 1 \\ 4 & 8\end{array}\right]$
C) $\left[\begin{array}{cc}8 & -1 \\ 4 & 9\end{array}\right]$
D) $\left[\begin{array}{cc}-8 & 1 \\ -17 & -9\end{array}\right]$

11-14 Determine the elements of the conic section and sketch its graph.
$11(x-1)^{2}=8(y+1)$
$12 \frac{x^{2}}{100}+\frac{y^{2}}{49}=1$
$13 \frac{(x+3)^{2}}{16}+\frac{(y-2)^{2}}{9}=1$
$14 y^{2}-5 x^{2}+6 y-40 x-76=0$
15-24 If $A=\left[\begin{array}{ccc}1 & 3 & 2 \\ 5 & -4 & 6 \\ 0 & 9 & 2\end{array}\right], B=\left[\begin{array}{cc}5 & 0 \\ 1 & 4 \\ 10 & 11\end{array}\right]$ and $C=\left[\begin{array}{cc}-2 & 0 \\ 0 & 7 \\ 5 & 3\end{array}\right]$, compute the following (if possible):
$15 B+C$
$162 B+3 C$
$17 C-B$
$18 A-C$
$19 A B$
25-26 \square Use Cramer's rule to solve the system of linear equations
$25 x+y+z=18$
$x-y+z=6$
$x+y-z=4$

27-28 \square Use Gauss elimination method to solve the system
$27 x+y+z=18$
$x-y+z=6$
$x+y-z=4$

29-30 \square Use Gauss-Jordan method to solve the system

$$
29 \begin{aligned}
& x-3 y+z=21 \\
& \\
& 4 x+2 y+z=14 \\
& \\
& 3 x+3 y+z=7
\end{aligned}
$$

$$
30 \quad \begin{array}{ll}
2 x-4 y+3 z=10 \\
& 3 x+y-2 z=6 \\
& x+3 y-z=20
\end{array}
$$

31-44 \square Evaluate the integral.
$31 \int \sec ^{2}(3 x-5) d x$
$38 \int\left(\frac{1}{x-2}+\frac{2}{x+1}\right) d x$
$32 \int \frac{d x}{\sqrt{16-x^{2}}}$
$33 \int\left(x^{2}+3 x+1\right) d x$
$39 \int(1+\sqrt{\cos x})^{2} \sin x d x$
$34 \int\left(2 x^{2}+x-1\right) d x$
$40 \int\left(x^{\frac{3}{2}}+1\right) d x$
$35 \int_{2}^{2}\left(6 x^{2}+3\right) d x$
$41 \int \frac{2}{\sqrt{x}} d x$
$36 \int\left(x^{3}-4 x^{4}\right) d x$
$42 \int x \cos x^{2} d x$
$37 \int x \sqrt{x^{2}+1} d x$
$20 B A$
$21 A^{t}$
$22(3 A)^{t}$
$23 \operatorname{det}(A)$
$24 \operatorname{det}(2 A)$
$262 x-4 y+3 z=10$
$3 x+y-2 z=6$
$x+3 y-z=20$
$8 x+y+z=12$
$x-y=2$
$x-z=4$
$43 \int \frac{\csc ^{2} \sqrt{x}}{\sqrt{x}} d x$
$44 \int \frac{\sec x+\tan x}{\cos x} d x$

45-48 Sketch the region bounded by the graphs of the given equations, then find its area.
$45 y=x+2$ and x-axis over $[-2,1]$
$47 y=x^{2}+1$ and $y=x+1$ from $x=0$ to $x=1$
$46 y=x^{2}, y=4$
$48 y=\ln x, y=0, x=e^{2}$

49-52 Sketch the region R bounded by the graphs of the given equations and find the volume of the solid generated by revolving R about x-axis.
$49 y=2 x$ and x-axis over $[0,1]$
$51 y=x^{2}, y=9$
$50 x=y+1, x=2 y-3, x=1, x=3$
$52 y=x^{2}, y=x$

53-56 \square Find $f_{x}, f_{y}, f_{x x}$ and $f_{y y}$.
$53 f(x, y)=2 x^{4} y^{3}-x y^{2}+3 y+1$
$55 f(x, y)=x^{3} \ln y+x y^{4}$
$54 f(x, y)=4 e^{x^{2} y^{3}}$
$56 f(x, y)=x^{3} y-y^{3} x$

57-60 \square Solve the differential equation.
$57 x^{2} d y+y^{2} d x=0$
$59 x y^{\prime}-y=x^{2} e^{-x}, x>0$
$58 x y^{\prime}-y=x^{3} e^{x}$
$602 y^{\prime}-y=4$

