
21-301 “Combinatorics” Oleg Pikhurko

Course Homepage

http://www.math.cmu.edu/~pikhurko/301/

Instructor

Oleg Pikhurko (Office: Wean Hall 7105)

Office Hours: Mon 14:00–15:00, Wen 13:05–14:00 and Thurs 13:30–15:30 on all class days
for the university.

Normally, I will not answer queries by email. If you have any questions, please do one of the
following:

• talk to me after a class;

• come to my office hours;

• post your question at the discussion board via http://www.cmu.edu/blackboard/ (I
will be regularly checking it and answering all new queries);

• call (412) 268-9782 to schedule an individual appointment.

Syllabus

The objective of the course is to introduce students with a previous experience in discrete
mathematics (courses such as 15-251 or 21-228) to more advanced combinatorial results and
techniques. Also, we will consider applications to computer science and information theory.

I expect to cover the following topics:

• Counting techniques

– binomial coefficients and identities

– the Stirling numbers of the 2d kind

– occupancy problem

– the Shapley-Shubik power index

– Gray sequences

– Inclusion-exclusion

• Pigeonhole principle

– Ramsey’s theorem

– Erdős-Szekeres’ theorem
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• Generating functions

– ordinary generating functions

– linear reccurences and the method of characteristic roots

– generalized binomial theorem

– expanding functions into power series

– exponential generating functions

• Coding theory

– error correction/detection and linear codes

– Hamming codes

– Hadamard codes

• Graph theory

– matchings, coverings, and the König-Egervary Theorem

– the Hungarian algorithm

– Eulerian chains in directed graphs with applications to De Bruijn sequences

• Probabilistic method

Textbook

There is no required textbook for the course. If you come to all classes and take comprehensive
lecture notes, you will have all material needed to do homework and to prepare for the exams.

If you wish to read more on the topics covered in the course, I would recommend the following:

RT: R.Roberts and B.Tesman, Applied Combinatorics, 2d Edition, CRC Press, 2009.

This book covers much material from the course (but not everything) as well as many other
important topics, including numerous applications and exercises.

Grade

The TOTAL score consists of

• Weekly homework: 18%

• Unannounced quizes: 7%

• Three best test scores (our of four), with one test being worth 25%

Office Hours (Wean 7105): Mon 14:00–15:00, Wen 13:05-14:00, Thurs 13:30-15:30



21-301 “Combinatorics” Oleg Pikhurko

The final grade will be determined as follows:

A: TOTAL ≥ 85%

B: 72% ≤ TOTAL < 85%

C: 60% ≤ TOTAL < 72%

D: 50% ≤ TOTAL < 60%

Homework Rules

There will be weekly homework assignments. The homework problems will have different
weights. The point value of each problem will be indicated.

You have to bring written solutions, on the due date (usually Friday) to the class.

You can work together on homework problems with your classmates but you have to write
your solutions independently and on your own. Direct copying of someone else’s homework is
prohibited; any two submissions violating this rule may get score 0.

Quizes

There will be unannounced quizes during classes (5–15 quizes). Their purpose is to test
attendance and knowledge. If you are absent during a quiz (for whatever reason), you get
score 0 for this quiz. No make-up quizes will be administered.

Exams

The course will have four in-class exams. They will be given during the regular lecture hour
on

• September 24 (Friday)

• October 18 (Monday)

• November 12 (Friday)

• December 3 (Friday)

All exams will be closed-book and closed-notes. No calculators will be permitted. In case you
must miss an exam due to illness, family emergency, University-sponsored trip, or religious
observance, please notify me as soon as possible. I may require documentation in order to
excuse the absence. Failure to do so will result in score 0.
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Blackboard

The course Blackboard is available via http://www.cmu.edu/blackboard/

It gives an access to the gradebook (under “Tools”) and the discussion forums (under “Discus-
sion Board”). You can use Blackboard’s forum to post your questions. Also, other messages
related to the course are welcome on the forum. In particular, if you see a question by some-
body else and you know the answer or just want to add a comment, you are very welcome to
post a follow-up message.

I will be checking the forum regularly and posting replies to any queries that still need answers.

Returning Graded Material

I will be distributing all graded homeworks and exams by passing it after a class (and keeping
all unclaimed copies in my office). If you prefer that your work is not distributed this way,
please let me know and I will individually accommodate such requests.

Homework 1. Due September 3

The following applies to all homework assignments:

The point value of each exercise is stated in the brackets. Attempt all questions. Please bring
your written solutions to the class on the due date. Cooperation is permitted but you have
to write your solutions independently and on your own.

Problem 1 [1+1] In this exercise you are allowed to write the final answer as a product
without computing it.

i) How many different 20-digit numbers can be made of digits 1, 2, 3, 4, 5 so that no two
consecutive digits give 6 if added together.

ii) We have digits 0, 1, 2, . . . , 9 and we are allowed to use each digit only once. How many
10-digit decimal numbers can be made? (Note: a number cannot start with 0.)

Problem 2 [3]What is the number of permutations of [n] such that 2 does not occur between
1 and 3? (For example, 1324 is allowed but 3421 is not.)

Problem 3 [3] Given integers a and b, what is the number of words made of a letters A
and b letters B such that the first and the last letter is A, and there are at least two letters
A between any two letters B? (For example, if a = 5 and b = 2, then there are three such
words: AABAABA, ABAAABA, and ABAABAA.)
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Problem 4 [2] How many integral solutions of

x1 + x2 + x3 + x4 + x5 = 36

satisfy x1 ≥ −5, x2 ≥ 0, x3 ≥ 10, x4 ≥ 10, and x5 ≥ 13?

Problem 5 [1+1+3] Let m and n be positive integers.

i) Show that the number of functions f : [n] → [m] such that f(1) ≤ f(2) ≤ . . . ≤ f(n) is
(

m+n−1
n

)

.

ii) What is the number of functions f : [n] → [m] such that f(1) < f(2) < . . . < f(n)?

iii) Suppose n = 2k is even. What is the number of functions f : [n] → [m] such that

f(1) ≤ f(2) ≤ . . . ≤ f(k) < f(k + 1) < f(k + 2) < . . . < f(2k)?

[Hint: consider the differences f(i)− f(i− 1).]

Solution to Quiz 1

Question. Suppose we have Players 1, 2, 3 and 4 and the winning coalitions are

12, 13, 14, 123, 124, 134, 1234, 234

(that is, Player 1 with at least one more players or all of Players 2, 3 and 4). What is the
Shapley-Shubik Power Index of Player 1?

Answer. Player 1 is the pivot if and only if at least one but no more than 2 other players
preceed her, that is, she is in the 2d or 3d position. Since each position is equally likely, the
answer is 2/4 = 1/2.

Bicameral Government with the President

Suppose that we have n1 and n2 members in Cameras C1 and C2 respectively. A bill is passed
if and only if it gets more than half of voices from each camera and the president’s approval.
Let B denote the president. Thus the winning coalitions are

W = {A1 ∪A2 ∪ {B} : A1 ⊆ C1, A2 ⊆ C2, |A1| > n1/2, |A2| > n2/2}.

Let n = n1 + n2 + 1. Assume C1 ∪ C2 ∪ {B} = [n]. Take a random permutation of [n].
Then power index of each player (in particular, the President) equals the probability of being
pivotal.
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Let Event E state that the President is in position k such that k − 1 ≤ n − k, that is, the
number of people before him is at most the number of people after him. This happens with
probability at least 1/2: indeed, consider a permutation and its reverse — for at least one of
them E occurs. If E occurs, then the President is not pivotal. Thus

p(B) = Prob(B is pivot) ≤ 1− Prob(E) ≤ 1/2.

Let us show that the President’s power is at about 1/2 when n1 and n2 are large.

Theorem (Shapley & Shubik (1954)) For every ε > 0 there is N such that for all
n1, n2 > N , we have 1/2− ε ≤ p(B).

Sketch of Proof. Let ε > 0 be given and n1, n2 be large. Let l = ⌊(12 + ε
2)(n1+n2+1)⌋. The

probability of the Event L that President comes after position l is n−l
n ≥ 1

2 − ε
2 . For i = 1, 2,

let Mi be event that more than ni/2 members of the i-th camera are in positions 1 to l (that
is, the first l players create majority in the i-th camera). The President is pivotal whenever
L ∩M1 ∩M3 occurs, that is, all three events happen. (But observe that the converse is not
generally true.) Hence, if we can show that Prob(not Mi) < ε/6, then we are done:

p(B) = Prob(B is pivot) ≥ Prob(L ∩M1 ∩M2)

≥ Prob(L)− Prob(not M1)− Prob(not M2) ≥ 1/2− ε.

Let us estimate e.g. the probability Prob(not M1). Let k be the number of people from C1

that come in positions 1 to l. Then

Prob(not M1) =
∑

k<n1/2

(

n1

k

)(

n2+1
l−k

)

l!(n− l)!

n!
=

∑

k<n1/2

(

n1

k

)(

n2+1
l−k

)

(

n
l

) .

The last formula can be seen directly: the l members that come in the first l positions are
drawn uniformly from all

(

n
l

)

possible l-subsets of [n].

This sum a special case of a hypergeometric sum. Unfortunately, no closed form is known but
there are good estimates (called Chernoff’s bounds). Here is just a sketch of how to estimate
this sum directly.

Let sk be the k-th summand in the sum for Prob(not M1). The ratio

sk+1

sk
=

(l − k)(n1 − k)

(k + 1)(n2 + 2− l + k)

is a monotone decreasing function of k and monotone increasing function of l. Thus, for every
k < ⌊n1/2⌋, the ratio is at most than its value when k = n1/2−1 and l = (12 +

ε
2)(n1+n2+1),

that is,

sk+1

sk
≥ n2/2 + ε(n1 + n2 + 1)/2 + 2

n2/2− ε(n1 + n2 + 1)/2 + 1/2
≥ n2/2 + εn2/2 + 2

n2/2− εn2/2 + 1/2

≥ 1 + ε

1− ε
= 1 +

2ε

1− ε
≥ 1 + 2ε.
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(Note that n1− k > k+1 for k = n1/2− 1.) This means that the summands increase at least
as fast as a geometric progression of ratio 1+2ε, so the main contribution is made by the last
few summands. Formally,

Prob(not M1)

s⌊n1/2⌋
≤ 1 +

1

1 + 2ε
+

1

(1 + 2ε)2
+ . . . =

1 + 2ε

2ε
.

Thus we have to show that s⌊n1/2⌋ ≤ (ε/6) × 2ε/(1 + 2ε). This can be done (calculations
omitted) using Stirling’s formula

n! ≈
√
2πn

(n

e

)n
,

an amazing formula relating π = 3.1415... and e = 2.7182...

Homework 2. Due September 10

Problem 6 [3] What is the sum
∑n

i=k

(

n
i

)

S(i, k), where S(n, k) denotes the Stirling number
of the 2d kind?

Problem 7 [2] Prove by induction on n that

s(n, 2) = (n− 1)!

(

1

1
+

1

2
+ . . .+

1

n− 1

)

, n ≥ 2,

where s(n, k) denotes the Stirling number of the 1st kind.

Problem 8 [2] Suppose we have a bicameral government with 3 people in the first camera
and m people in the second. A winning coalition is formed if and only if we have at least two
people from the first camera and all people from the second camera. Compute the Shapley-
Shubik power index of every player.

Problem 9 [2] Determine all those n for which there is a set of winning coalitions on [n]
such that the Shapley-Shubik power index of Player 1 is exactly 1/n!.

Problem 10 [1+2] Let n, s, t be positive integers with s < t. Determine the following sums:

i)
t

∑

i=s

(

n+ i

i

)

,

ii)
n
∑

i=0

i(i− 1)

(

n

i

)

.
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On Roots of Polynomials

Since we have used the following result in class twice, let me provide its proof.

Theorem. A non-zero polynomial P (x) = anx
n + . . . + a1x + a0 can have at most n roots

(counting their multiplicity).

Proof. We use induction on n with n = 1 being trivialy true. Suppose that n ≥ 2 and the
claim has been proved for all smaller values of n. Let a be a root of P . (If P has no roots,
there is nothing to do.) Divide P by x− a with a reminder:

P (x) = (x− a)Q(x) +R(x). (1)

Here R(x) has degree less than 1, that is, R(x) = r0 is a constant. Plugging x = a into (1),
we get r0 = 0. Thus P (x) = (x − a)Q(x), where the degree of Q is at most n − 1. By the
induction assumption, Q has at most n−1 roots. Hence, P has at most n roots, as required.

Corollary If two polynomials S(x) and T (x) coincide on infinitely many x, then they are
identically equal.

Proof. The polynomial S(x) − T (x) has infinitely many roots. By the above theorem, it is
identically zero.

An Open Problem

The Middle Two Layers Conjecture: For every integer k ≥ 1 one can order
([2k+1]

k

)

∪
([2k+1]

k+1

)

so that every two adjacent sets differ in exactly one vertex.

Known results: Savage and Shields (1999) verified it for all k ≤ 15. (Note that for k = 16
we have

(

2k+1
k

)

> 109.) Johnson (2004) proved that there is a cycle containing almost all sets,

that is, m(k)/
(

2k+1
k

)

→ 0 as k → ∞, where m(k) is the number of the sets that are not listed
in Johnson’s construction.

A correct solution of the conjecture (a proof or disproof) will earn Grade A in 21-301
automatically!

Exam 1

Exam 1 will take place during the class on September 24. Since we will start promptly at
9:30am, please arrive about 10 minutes earlier.

All exams are closed book and notes. Everything that we covered in the lectures (including
the lecture on Sep’17) is examinabile, unless I explicitly marked anything as non-examinable.
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As a rough guide, we covered so far Sections 2.3–2.16 and 2.19 of the Roberts-Tesman book
as well as the Stirling numbers of the 1st kind.

Please note that the term combination may be defined differently by different authors. In
order to avoid any confusion, I will avoid using this term in the exams.

Solution to Quiz 2

Question. In how many different ways can we color all pairs on [n] with 2 colors?

Answer. There are
(

n
2

)

pairs and for each we have 2 choices. Thus the answer is 2(
n

2
).

Homework 3. Due September 17

Problem 11 [3] Let m and n be positive integers. What is the number of functions f :
[n] → [m] such that |f(i)− f(j)| ≥ 4 for every distinct i, j ∈ [n]?

Problem 12 [2] Find a closed form for
∑n

i=1 i
4.

Your answer has to be a linear combination of at most five binomial coefficients. (You do not
have to simplify this expression any further.)

Problem 13 [1] Consider the lexicographic order on
(

[n]
r

)

. Thus the first element is [r] and

the
(

n
r

)

-th element is {n− r + 1, . . . , n}. Which element comes in position
(

n−1
r−1

)

?

Problem 14 [2] Let 0 ≤ r ≤ n. We want to list all binary sequences of length n with exactly
r ones so that every two consecutive sequences differ in exactly two bits.

Here is a recursive construction due to Frank Gray. If r = n, let G(n, r) = 1 . . . 1. If r = 0,
let G(n, r) = 0 . . . 0. If 1 ≤ r ≤ n− 1. then define

G(n, r) = 0G(n− 1, r), 1Reverse(G(n− 1, r − 1)),

that is, we take the list G(n − 1, r) and prepend 0 to each binary sequence there, then we
take the list G(n− 1, r− 1) where we reverse the order of sequences (but not the order inside
sequences!) and prepend 1 to each sequence. Here are some examples:

G(2, 1) = 01, 10

G(3, 1) = 001, 010, 100

G(3, 2) = 011, 110, 101

G(4, 1) = 0001, 0010, 0100, 1000
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G(4, 2) = 0011, 0110, 0101, 1100, 1010, 1001

G(4, 3) = 0111, 1101, 1110, 1011.

Prove by induction that G(n, r) indeed lists every n-element sequence with r ones exactly once
and every two neighboring sequences differ in at most two places. If your inductive statement
is stronger, state carefully all extra property(-ies) that you prove.

Problem 15 [1+2] Consider the Gray ordering G(n, 3) of 0/1-sequences of length n with
exactly three 1’s.

i) Let n = 7. Which sequence comes after 1000110?

ii) Let n ≥ 4. Which sequence comes after S = 110n−31 (that is, S consists of 11, followed by
n− 3 zeros, followed by 1)? Which sequence comes before S?
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Homework 4. Due September 24

Problem 16 [1] Prove that for any integers m,n, k ≥ 0 we have

(

m+ n

k

)

=
k

∑

i=0

(

m

i

)(

n

k − i

)

.

Problem 17 [3] Prove that if
(

[n2+1]
2

)

is colored with 2 colors, then there are x0 < x1 <
. . . < xn in [n2 + 1] such that all pairs {xi−1, xi} with i ∈ [n] have the same color.

Problem 18 [3] What is the smallest l such that for any l numbers chosen from

{1, 3, 5, . . . , 999, 1001}

there are two such that one divides the other?

Problem 19 [3] Prove that in every coloring of
(

[17]
2

)

with 3 colors, there is a monochromatic
triangle (that is, three vertices such that the three edges spanned by them have the same
color).

Problem 20 [3] The Erdős–Szekeres bound tells us that R(4, 3) ≤
(

4+3−2
4−1

)

= 10. Prove that
in fact R(4, 3) ≤ 9.
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Extra Reference Material on Generating Functions

[GKP] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete mathematics: a foundation

for computer science, Addison-Wesley Publ. Comp., 1989.

[N] I. Niven, Formal power series, Amer. Math. Monthly 76 (1969), 871–889.

[W] H. S. Wilf, Generatingfunctionology, Academic Press, 1990 (Avialable from the author’s
website).

The following useful tables are copied from [GKP].
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Homework 5. Due October 1

Problem 21 [3] Prove that in any group of at least 2 people, there are always 2 people who
have the same number of acquaintances in the group. (We assume that if A is an acquaintance
of B, then B is an acquaintance of A.)

Problem 22 [1] Let n ≥ 1 be an integer divisible by 30. How many numbers between 1 and
n are divisible by exactly two of the primes 2, 3, and 5?

Problem 23 [2] Count the number of symmetric n×n matrices such that each entry is 0 or
1 and no row consists entirely of zeros. (Your answer is allowed to be a single sum but not
nested sums or products.)

Problem 24 [3] The classroom has m chairs. On the first lecture there were n students,
where n < m. (Thus m− n chairs remained empty.) When the same n students came to the
second lecture they decided to sit so that no person is in the same chair as on the first lecture.

In how many possible ways can a sitting plan for the second lecture be arranged? Write your
answer as a sum, using the Principle of Inclusion-Exclusion.

Problem 25 [2] Suppose we have six sets A1, . . . , A6 ⊆ A. Express the number of elements
that belong to at least 3 of the sets Ai in terms of the parameters

mj =
∑

1≤i1<...<ij≤6

|Ai1 ∩ . . . ∩Aij |.
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Exam 2

Exam 2 will take place during the class on October 18. Since we will start promptly at
9:30am, please arrive in time.

All exams are closed book and notes. Everything that we covered in the lectures (from the
beginning of the course to the lecture on Oct’8 inclusive) is examinabile, unless I explicitly
marked anything as non-examinable.

As a rough guide, in addition to the material covered by Exam 1, we did Sections 5.1–5.4,
6.1–6.4, and 7.1–7.2 of the Roberts-Tesman book.

Solution to Quiz 3

Question. Expand 1
2z+3 into powers of z.

Answer. We have

1

2z + 3
=

1

3
· 1

1− (−2/3)z
=

∑

n≥0

1

3

(

−2

3

)n

zn.

Solution to Quiz 4

Question. Let fi = 5i+
√
3. Find F (z) =

∑∞
i=0 fiz

i in closed form.

Answer. The sequence (fi) is obtained from the sequence (1, 1, . . .) by multiplying the entry
indexed by i by the polynomial P (i) = 5i+

√
3. Hence the answer is

P
(

z d
dz

)

(

∑

i≥0 z
i
)

= 5z
(

1
1−z

)′
+
√
3 1

1−z = 5z
(1−z)2

+
√
3

1−z .

The Method of Characteristic Roots

Suppose that we have the following linear homogeneous recurrence:

an = c1an−1 + c2an−2 + . . .+ ckan−k, n ≥ k.
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One way to solve it, is to consider the characteristic equation P (α) = 0, where

P (α) = αk − c1α
k−1 − c2α

k−2 − . . .− ck.

is the characteristic polynomial. Each (real or complex) root αi of P of multiplicity mi gives
mi special solutions for an:

αn
i , nαn

i , . . . , nmi−1αn
i .

Since P as a degree-k polynomial has k roots (counting their multiplicity), we obtain k special
solutions. Any linear combination of them is a also a solution. To determine the correct k
coefficients, we have to use some other information about our sequence such as, for example,
the initial values of a0, . . . , ak−1.

The Average Number of Comparisons in Quicksort

Let us analyze the following sorting procedure, called Quicksort. We pick some element x1,
compare it with the remaining elements x2, . . . , xn, splitting them into two groups L and R:
those that preceed x and those that succeed x. Now repeat the procedure recursively inside
each group. One advantage of this algorithm that it is possible to organize it so that we do
not neeed any extra memory in addition to what is need for storing x1, . . . , xn, see

http://en.wikipedia.org/wiki/Quicksort

for more details. Also, this procedure can be represented by an SOR tree, where x1 is the
root, L is its left brach and R its right (defined recursively).

We are interested in the total number of comparisons (that is, how many pairs of elements
are compared until all n elements are sorted).

Quicksort does not perform well in the worst case. For example, if x1 ≺ x2 ≺ . . . ≺ xn, then
the final tree is a path (going to the right all the time) and we used

(

n
2

)

comparisons.

Let us analyze the average performance. Let cn be the average number of steps. Namely, we
take a random ordering of the elements (with all n! orderings being equally likely), and let cn
be the expected (mean) number of comparisons. For example, if n = 3, and x1 is between x2
and x3 in the ≺-order, then we use 2 comparisons; otherwise 3 comparisons are performed.
Hence

c3 =
2 + 2 + 3 + 3 + 3 + 3

3!
=

16

6
=

8

3
.

Also, c0 = 0, c1 = 0 and c2 = 1.

Let us write a recurrence for cn. Let x1 be the j-th element with respect to the unknown
order ≺. Note that x1 becomes the root of the whole tree so it is compared to every other
element while the two branches at x have sizes j−1 and n−j. If we look at the j−1 elements
that made into the left branch, their ordering is uniform (that is, all (j−1)! permutations are
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equally likely). So we use cj−1 comparison on average to sort them. A similar claim applies
to the right branch. So, for every n ≥ 1 we have

cn = n− 1 +
1

n

n
∑

j=1

(cj−1 + cn−j) = n− 1 +
2

n

n
∑

i=0

ci.

Thus

ncn = n(n− 1) + 2
n−1
∑

i=0

ci. (2)

Let C(z) =
∑

i≥0 ciz
i.

Note that
∑

n≥0 n(n− 1)zn = 2z2/(1− z)3. Let us multiply (2) by zn and add for all n ≥ 0:

zC ′(z) =
2z2

(1− z)3
+

2zC(z)

1− z
.

We divide by z, obtaining

C ′(z) =
2z

(1− z)3
+

2C(z)

1− z
. (3)

Alternatively, we could have multiplied (2) by zn−1 and added for all n ≥ 1, getting the same
formula (3) a bit faster.

Mathematica gives the following solution to the differential equation (3) given the initial value
C(0) = c0 = 0:

C(z) =
−2z − 2 ln(1− z)

(1− z)2
,

whre ln denotes the natural logarithm. Note that (ln(1− z))′ = −1/(1− z) = −∑

i≥0 z
i. By

integrating, we obtain that ln(1 − z) = a0 −
∑

i≥1
zi

i for some a0. From ln(1 − 0) = 0, we
conclude that a0 = 0. Thus −2z − 2 ln(1− z) = 2

∑

n≥2 z
n/n and

C(z) = 2





∑

n≥2

zn

n









∑

m≥0

(m+ 1)zm



 = 2
∑

n≥2

n
∑

i=2

n− i+ 1

i
zn.

Thus

cn = 2
n
∑

i=2

n− i+ 1

i
= −2(n− 1) + 2(n+ 1)

n
∑

i=2

1

i
.

Let us run a check: for n = 3, this gives 2(22 + 1
3) = 8/3, as expected.

Here is a simple proof. Suppose that the unknown order is y1 ≺ . . . ≺ yn. For i < j, let the
random variable Yij be 1 if we compare yi and yj and 0 otherwise. Note that the probability
of Yij = 1 is exactly 2

j−i+1 . Indeed, consider for the first time when one of yi, yi+1, . . . , yj
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becomes the pivot; then we compare yi and yj if and only if the pivot is yi or yj Then, by the
linearily of expectation,

cn =
∑

1≤i<j≤n

2

j − i+ 1
=

n
∑

k=2

(n− k + 1)
2

k
.

where we group all pairs i < j by k = j − i+ 1.

Let us try to determine the asymptotics of cn. Note that
n
∑

i=2

1

i
=

∫ n

1

dx

⌈x⌉

and, for every x ≥ 1, we have 1/(x+ 1) ≤ 1/⌈x⌉ ≤ 1/x. Hence,

ln(n+ 1)− ln 2 =

∫ n

1

dx

x+ 1
≤

∑

i≥2

1

i
≤

∫ n

1

dx

x
= lnn

Thus
cn ≈ 2n lnn.

Homework 6. Due October 8

Problem 26 [3] Let n ≥ k ≥ 1 be given. At a party, n couples are to be seated on a
round table, with seats numbered 1, . . . , 2n cyclically. (Thus the seats numbered 2n and 1 are
adjacent.) What is the number of ways to seat these 2n people so that exactly k couples sit
together?

Problem 27 [1] Find the expansion of 1/(2 + z)3 into powers of z.

Problem 28 [1] Find the Taylor expansion around 0 of

F (z) =
1− 8z

2z2 + z − 1
.

Problem 29 [1+1] Let the sequence f0, f1, . . . satisfy f0 = 2, f1 = 0, and

fn = fn−1 −
1

4
fn−2, for n ≥ 2.

i) Determine the generating function F (z) =
∑

n≥0 fnz
n.

ii) Find a formula for fn. (You can use i) or proceed any other way.)

Problem 30 [2] Let the sequence fi be defined by f0 = 1, f1 = 0, f2 = −5, f3 = 0, and
fn = 2fn−1 − fn−2, for n ≥ 4. (Note that this recurrence is not satisfied for n = 2 or 3.) Find
the generating function F (z) of this sequence.
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Homework 7. Due October 18

Problem 31 [1+1] i) Suppose that some sequences (gi)i≥0 and (fi)i≥0 satisfy gi = i ·2i ·fi+2

for all i ≥ 0. Find the generating function G(z) =
∑

i≥0 giz
i, in term F (z) =

∑

i≥0 fiz
i.

ii) The same question if we know that gi = f0 +
∑i+1

j=0 fjfi+1−j for all i ≥ 0.

Problem 32 [2] Compute
∑

i≥1

i2

(i− 1)!
.

Problem 33 [2] Show that if 2n points are marked on a circle and if an is the number of
ways of joining them in pairs by n non-intersecting chords, then an = 1

n+1

(

2n
n

)

is the n-th
Catalan number.

Problem 34 [1+1+1] Find the following generating functions in closed form. (You do not
have to expand into partial fractions.)

i) F (z) =
∑

n≥0(n
2 − 4)zn;

ii) F (z) =
∑

n≥0(n+ 2)5n/2zn;

iii) S(z) =
∑

n≥0 snz
n, where sn =

∑n
i=1 i(i− 1).

Problem 35 [1+3] For n ≥ 3, let an be the number of binary strings ε1ε2 . . . εn of length n
such that the substring 010 appears for the first time at the end of the sequence (that is, we
have min{i ∈ [n− 2] : εiεi+1εi+2 = 010} = n− 2).

For example, a3 = 1, a4 = 2, and a5 = 3.

i) Show that for n ≥ 6 we have

2n−3 = an + an−2 + an−3 2
0 + an−4 2

1 + . . .+ a3 2
n−6.

(Note that an−1 is missing on the right-hand side!)

ii) Find the generating function A(z) =
∑

i≥3 aiz
i.

Problem 36 [1+2] A simple, partly ordered, rooted tree (SPR tree) is a simple rooted tree in
which the labels L and R are placed on the children of a vertex only if there are two children.
Here are examples of a few different SPR trees:
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L R

L R L R L R

RL

Root Root Root

Let un count the number of SPR trees on n vertices. For example, u1 = 1, u2 = 1, u3 = 2,
and u4 = 4. (Also, it is convenient to assume that u0 = 0.)

i) Show that for every n ≥ 1 we have

un+1 = un +
n−1
∑

j=1

ujun−j .

ii) Find the generating function U(z) =
∑

n≥1 unz
n.

Remarks on the Exponential Formula

For more details on the Exponential Formula, see Section 5 in Herbert Wilf’s book “Gener-

atingfunctionology” that should be available for free from the author’s webpage.

Here is one important special case. Let us use the same definitions as in class.

Let the sequence hn =
∑n

k=0 hn,k count the total number of H-objects on [n] (with h0 = 1).
Then its exponential generating function H(z) =

∑

n≥0 hnz
n/n! is just H(z, 1), where

H(z, y) =
∑

n,k≥0

hn,k
zn

n!
yk.

(Here, taking y = 1 is legitimate: the coefficient
∑n

k=0 hn,ky
k at zn/n! in H(z, y) is a finite

sum.) Thus the Exponential Formula implies that

H(z) = eD(z).
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Homework 8. Due October 29

Problem 37 [1+3] Let an be the number of involutions of [n] (that is permutations of
[n] such that every cycle has 1 or 2 elements). Let us agree that a0 = 1 and let A(z) =
∑∞

n=0 anz
n/n!.

i) Show that A(z) = ez+z2/2.

ii) Find a simple closed form for
n
∑

i=0

(−1)i
(

n

i

)

ai.

Problem 38 [4] A graph is k-regular if every vertex has degree exactly k. Let an be the
number of 2-regular graphs on vertex set [n]. (Thus the vertices are labeled.) Find a closed
formula for the EGF A(z) =

∑

n≥0 anz
n/n!. (We do not allow loops nor multiple edges; in

particular, a1 = a2 = 0.)

Problem 39 [2+2+1+1] Let F (z) =
∑

i≥0 fiz
i and G(z) =

∑

i≥0 giz
i (resp. E(z) =

∑

i≥0 fiz
i/i! and H(z) =

∑

i≥0 giz
i/i!) be the ordinary (resp. exponential) generating func-

tions of the sequences (f0, f1, . . .) and (g0, g1, . . .). In the following, you have to write your
answer in terms of F (z) and E(z).

i) Find G and H when gi = (i+ 2)fi+1, i ≥ 0;

ii) Find G and H when gi = fi + fi−1 for i ≥ 1, and g0 = f0;

iii) Find G when gi =
∑i+1

j=0 fj , i ≥ 0;

iv) Find H when gi =
∑i+1

j=0

(

i+1
j

)

fj , i ≥ 0.

Problem 40 [3] Find fk, the number of k-words from an alphabet {a, b, c, d, e} in which b
occurs an odd number of times. Find the EGF of fk in a closed form.

Solutions to Quiz 5

Question. Find a linear code C ⊆ F
5
2 with 4 codewords and Hamming distance 3.

Answer. Up to a permutation of the 5 coordinates, there is only one such code

C = {00000, 10101, 01011, 11110}.
(Note that, since C is linear, we must have 00000 ∈ C.) A generator matrix for C is

M =

[

1 0 1 0 1
0 1 0 1 1

]

.
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Exam 3

Exam 3 will take place during the class on November 12. Since we will start promptly at
9:30am, please arrive in time.

All exams are closed book and notes. Everything that we covered in the lectures (from the
beginning of the course to the lecture on Nov’5 inclusive) is examinabile, unless I explicitly
marked anything as non-examinable.

As a rough guide, in addition to the material covered by Exam 2, we did Sections 5.5, 10.1–
10.5, and 12.1–12.7 of the Roberts-Tesman book.

Please note that there will be no office hours on November 11 (Thursday) (I will be in
Princeton, giving a seminar talk on that day). I will have longer office hours on November 8
(Monday): 13:00–15:00.
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Homework 9. Due November 5

Problem 41 [2+1] Recall that an (n, d)-code C is perfect if the balls of radius ⌊(d − 1)/2⌋
around codewords perfectly partition F

n
2 = {0, 1}n.

i) Prove that no (n, d)-code with d even and n > d > 0 can be perfect.

ii) Prove that no perfect (13, 5)-code exists.

Problem 42 [2] Let C ⊆ F
n
2 be a linear code with a generator k × n-matrix M = [I G] and

the corresponding parity check matrix H = [GT , In−k]. Prove that if a vector x ∈ F
n
2 satisfies

HxT = 0 then x ∈ C.

Problem 43 [1+4+1] Let n = 2p− 1 and Hp be the Hamming code. (Thus its parity check
matrix H is an p× (2p − 1)-matrix consisting of all possible non-zero binary columns.)

i) Prove that the Hamming distance d(Hp) is at most 3.

ii) Let ai be the number of codewords of Hp of weight i, i.e. with exactly i bits equal to 1.
(Thus a0 = 1, a1 = a2 = 0, and ai = 0 for all i > n.) Show that

(

n

i− 1

)

= iai + ai−1 + (n− i+ 2)ai−2

for every i ≥ 2. [Hint: Take all possible vectors x ∈ F
n
2 with exactly i − 1 entries 1 and

consider HxT .]

iii) Convert this recurrence into an equation about the generating function A(z) =
∑n

i=0 aiz
i.

Problem 44 [1+1+1+1] Let the code C have the following generator matrix:

M =





1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0





i) How many codewords does C have?

ii) What is the Hamming distance of C? (Carefully justify your answer.)

iii) Which of the following are codewords of C?

A = 111111

B = 000000

C = 101101

iv) Suppose we received D = 100110 and we know that at most one error occurred. What
was the sent codeword?
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Problem 45 [3] Prove that if two Hadamard n × n-matrices H and G have the same first
n − 1 rows (that is, Hij = Gij , all i ∈ [n − 1], j ∈ [n]) then their n-th rows are the same or
differ by the factor −1.

Homework 10. Due November 12

Problem 46 [2] Deduce from the König Theorem that a bipartite graph with parts A and
B has a matching M that covers all but at most d vertices of A provided |N(X)| ≥ |X| − d
for every X ⊆ A, where

N(X) = {y ∈ B : ∃x ∈ X xy ∈ E(G)}.

Problem 47 [3+1] Let n ≥ k ≥ 0 be given integers. We consider bipartite graphs G with
parts A and B such that |A| = |B| = n and µ(G) = k. (Recall that µ(G) is the maximum
size of a matching in G.)

i) What is f(n, k), the maximal possible number of edges in a such graph?

ii) What is g(n, k), the minimal possible number of edges in a such graph?

Let G be the complete bipartite graph with parts A = {a1, . . . , am} and B = {b1, . . . , bn},
where the weight of an edge {ai, bj} is cij . Solve the following three problems using the
Hungarian Algorithm (and include all intermediate steps).

Problem 48 [1] Let m = n = 5. Find the minimum weight of a perfect matching in G if

(cij) =













2 4 3 2 1
3 4 4 5 2
1 4 1 4 5
3 8 5 3 8
4 6 6 2 3













.

Problem 49 [1] Let m = n = 4. Find the minimum weight of a perfect matching in G if

(cij) =









7 2 5 4
6 5 4 3
4 1 5 2
2 1 1 2









.
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Problem 50 [1] Let m = 4 and n = 5. Find the maximum weight of a matching (where
some vertex of B will be unmatched) if

(cij) =









9 8 7 6 5
9 7 5 3 1
9 6 3 0 3
9 5 1 5 9









.

Extra Credit

If you wish to earn up to 5 homework points as extra credit, please submit (along with
Homework 11) a joke, a cartoon, or a short funny story about any mathematical concepts
that we have covered in the class (or about hedgehogs).

But note that if the Instructor appears in your submission, then your extra credit can be
negative!

Solutions to Quiz 6

Question. What is the number of vertices and edges in Gp,n?

Answer. Since vertices (resp. edges) are labeled by sequences of length n− 1 (resp. n), the
answer is pn−1 (resp. pn).

Thanksgiving Break

Please note that there will be no office hours on November 24 and 25.

Homework 11. Due November 19

Problem 51 [1+1+2] Let G = (V,E) be a graph.

i) Show that if there is S ⊆ V such that G − S (meaning that all vertices of S as well as all
edges intersecting S are removed) has more than |S| connectivity components with an odd
number of vertices, then G cannot have a perfect matching.

ii) Show that if G is 3-regular (i.e. each vertes has degree 3), then |V | is even.
iii) Find a 3-regular graph without a perfect matching.
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Problem 52 [4] Let G be a bipartite graph with parts A and B. Let f : A → N be a
function from A into non-negative integers. Using Hall’s theorem prove that there are disjoint
sets Ba ⊆ B indexed by a ∈ A such that |Ba| = f(a) and Ba ⊆ N(a) for every a ∈ A if and
only if for every X ⊆ A we have

|N(X)| ≥
∑

a∈X
f(a).

Problem 53 [3] Let G be a bipartite graph with parts A and B. Suppose that every
nonempty X ⊆ A has at least |X| + 1 neighbors in B. Prove that every edge of G can
be extended to an A-saturating matching.
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Some Hedgehog-Inspired Creativity

By Shufeng Han

By Fan Yang
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Q. What happens when you fall in a hedge of hedgehogs?
A: You get poked by a perfect matching.
By Amos Yuen

Exam 4

Exam 4 will take place during the class on December 3. Since we will start promptly at
9:30am, please arrive in time.

All exams are closed book and notes. Everything that we covered in the lectures (from the
beginning of the course to the lecture on Nov’22 inclusive) is examinabile, unless I explicitly
marked anything as non-examinable.

As a rough guide, in addition to the material covered by Exams 1–3, we did Sections 3.1–3.2,
11.3–11.4, 12.1–12.7 of the Roberts-Tesman book and parts of Chapters 1–4 of Alon-Spencer’s
“The Probabilistic Method”.

Homework 12. Due December 1

Problem 54 [2] Let an integer n ≥ 2 be given. What is the maximum number of perfect
matchings in a 2-regular graph with 4n vertices?

Problem 55 [1] Given a weakly connected digraph D, does there always exist a directed
walk that uses each arc of D at least once?

Problem 56 [2] Let G = (V,E) be a graph and for a partition V = A∪B let e(A,B) be the
number of edges going across. Prove that if e(A,B) cannot be strictly increased by moving a
vertex across, then e(A,B) ≥ e(G)/2, that is, at least half of edges go across.

Problem 57 [3] If G = (V,E) has 2n vertices and e edges, then there is a partition V = A∪B
with |A| = |B| = n and e(A,B) ≥ en

2n−1 . (Note that n
2n−1 > 1

2 .)

Problem 58 [4] A graph G = (V,E) is k-existentially closed (k-E.C. for short) if v(G) ≥ k
and for every disjoint A,B ⊆ V with |A| + |B| = k, there is x ∈ V \ (A ∪ B) such that x is
connected to every vertex of A but no vertex of B. Prove that for every k there is a k-E.C.
graph.

Problem 59 [1+3] Let G = (V,E) be a graph and α(G) be the largest size of an independent

set in G (that is, A ⊆ V such that no edge lies inside A). Let S be a random subset of V
obtained by choosing each vertex of G independently with probability p, and let F = G[S] be
the graph induced by S. Consider the random variables X = v(F ) and Y = e(F ).
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i) Show that α(F ) ≥ X − Y .

ii) By calculating E(X − Y ) and selecting the value of p appropriately, deduce that α(G) ≥
n2/4m provided that m ≥ n/2, where n = |V | and m = |E|.
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