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Abstract

We deal with a relational algebra model to define
a refinement fuzzy ordering (demonic fuzzy inclu-
sion) and also the associated fuzzy operations which
are fuzzy demonic join (tfuz), fuzzy demonic meet
(ufuz) and fuzzy demonic composition ( 2 fuz). We
give also some properties of these operations, and il-
lustrate them with simple examples. Our formalism
is the relational algebra.

Keywords: Fuzzy sets, demonic operators,
demonic fuzzy operators, demonic fuzzy
ordering.

1 Relation Algebras

Our mathematical tool is abstract relation alge-
bra [8, 28, 30], which we now introduce.

(1) Definition. A (homogeneous) relation algebra
is a structure (R,∪,∩, , ^, ;) over a non-empty set
R of elements, called relations. The following con-
ditions are satisfied.

• (R,∪,∩, ) is a complete Boolean algebra, with
zero element Ø, universal element L and order-
ing ⊆.

• Composition, denoted by (;), is associative and
has an identity element, denoted by I.

• The Schröder rule is satisfied: P ;Q ⊆ R ⇔
P^;R ⊆ Q ⇔ R ;Q^ ⊆ P .

• L ;R ;L = L ⇔ R 6= Ø (Tarski rule).

The relation R^ is called the converse of R. The
standard model of the above axioms is the set℘(S×
S) of all subsets of S × S. In this model, ∪,∩,
are the usual union, intersection and complement,
respectively; the relation Ø is the empty relation,
the universal relation is L = S × S and the identity
relation is I = {(s, s′) | s′ = s}. Converse and
composition are defined by

R^ = {(s, s′) | (s′, s) ∈ R} and Q ;R =
{(s, s′) | ∃s′′ : (s, s′′) ∈ Q ∧ (s′′, s′) ∈ R}.

The precedence of the relational operators from
highest to lowest is the following: and ^ bind
equally, followed by ;, then by ∩, and finally by ∪.
From now on, the composition operator symbol ;

will be omitted (that is, we write QR for Q ;R).
From Definition 1, the usual rules of the calculus of
relations can be derived (see, e.g., [6, 8, 28]). We
assume these rules to be known and simply recall a
few of them.

(2) Theorem. Let P,Q,R be relations. Then,

• Q ∪R = Q ∩R,

• Q ∩R = Q ∪R,

• Q ∩R ∪R = Q ∪
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• P ∩Q ⊆ R ⇔ P ⊆ Q ∪R,

• Q ⊆ R ⇔ R ⊆ Q,

• P (Q ∩R) ⊆ PQ ∩ PR,

• (P ∩Q)R ⊆ PR ∩QR,

• P (Q ∪R) = PQ ∪ PR,

• (P ∪Q)R = PR ∪QR,

• Q ⊆ R ⇒ PQ ⊆ PR,

• Q ⊆ R ⇒ QP ⊆ RP .

• RLL = RL,

• PQ ∩R ⊆ P (Q ∩ P^R),

• (P ∩QL)R = PR ∩QL,

• (
⋂

i∈X RiL)L =
⋂

i∈X RiL.

2 Fuzzy Relation

Fuzzy relations are fuzzy subsets of A× B, that is,
mapping from A → B. They have been studied by a
number of authors, in particular by Zadeh [38],[39],
Kaufmann [20], and Rosenfeld [26]. Applications of
fuzzy relations are widespread and important.

(3) Definition. Let A,B ∈ U be universal sets, a
fuzzy relation R̃ on A×B is defined by;

R̃ = {((x, y), µR̃(x, y) | (x, y) ∈ A×B,µR̃(x, y) ∈
[0, 1]} is called a Fuzzy relation on A×B.

(4) Example.
R̃ = ”x considerably larger than y, we have: ,

R̃ =

 0.8 1 0.1 0.7
0 0.8 0 0

0.9 1 0.7 0.8

 ,

and, S̃ = ”y very close tox”

S̃ =

 0.4 0 0.9 0.6
0.9 0.4 0.5 0.7
0.3 0 0.8 0.5



2.1 Basic Operations On Fuzzy Rela-
tions

(5) Definition. Let R̃ and S̃ be two fuzzy relations
on A×B. Then:

• Union: µR̃∪S̃(x, y) = max{µR̃(x, y), µS̃(x, y)},

• Intersection: µR̃∩S̃(x, y) = min{µR̃(x, y), µS̃(x, y)},

• Max-min composition:
R̃◦S̃ = {[(x, z),maxy{min{µR̃(x, y), µS̃(y, z)}}]},

(6) Example.

• R̃ =

 0.8 1 0.1
0 0.8 0

0.9 1 0.7

 ,

• S̃ =

 0.4 0 0.9
0.9 0.4 0.5
0.3 0 0.8



• R̃ ∪ S̃ =

 0.8 1 0.9
0.9 0.8 0.5
0.9 1 0.8

 ,

• R̃ ∩ S̃ =

 0.4 0 0.1
0 0.4 0

0.3 0 0.7

,

• R̃ ◦ S̃ =

 0.9 0.4 0.8
0.8 0.4 0.5
0.9 0.4 0.9


(7) Theorem. Let R̃ be a fuzzy relation on A×A.

• R̃ is reflexive [39] iff µR̃(x, x) = 1 ∀x ∈ A

• R̃ is ε-reflective [40] iff µR̃(x, x) ≥ ε ∀x ∈ A

• R̃ is weakly reflexive [40] iff

µR̃(x, y) ≤ µR̃(x, x) ∀x, y ∈ A

µR̃(y, x) ≤ µR̃(x, x) ∀x, y ∈ A

• R̃ is symmetric iff R̃(x, y) = R̃(y, x).
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• R̃ is antisymmetric [20] iff for x 6= y either
µR̃(x, y) 6= µR̃(y, x) or µR̃(x, y) = µR̃(y, x) =
0 , ∀x, y ∈ A .

• R̃ is perfectly antisymmetric [39] iff for x 6= y
whenever
µR̃(x, y) > 0 then µR̃(y, x) = 0 , ∀x, y ∈ A .

3 A demonic fuzzy order re-
finement

We will give the definition of domain of fuzzy rela-
tions R̃

(8) Definition. Let R̃ = {[(x, y), µR̃(x, y)] |
(x, y) ∈ A × B} be fuzzy relation and
R̃(1) = {(x, maxyµR̃(x, y) | (x, y) ∈ A × B}
be the first projection of R̃;
Then:
The domain of fuzzy relation R̃L is the first
projection of R̃, denoted by π∨R̃;
π∨R̃ = {(x,maxyµR̃(x, y) | (x, y) ∈ A×B}, i.e;

π∨R̃=R̃L .

Now, we will give the definition of fuzzy ordering

(9) Definition. We say that a fuzzy relation Q̃
fuzzy refines a fuzzy relation R̃, denoted by Q̃ vfuz

R̃, iff

π∨R̃ ⊆ π∨Q̃ and Q̃ ∩ π∨R̃ ⊆ R̃

In other words, Q̃ refines R̃ if and only if the prere-
striction of Q̃ to the domain of R̃ is included in R̃
: this means that Q̃ must not produce results not
allowed by R̃ for those states that are in the domain
of R̃.

(10) Example.

 0.3 0.2 0.4
0.7 0.8 0.8
0.3 0.5 0.6

 vfuz

 0.3 0.2 0.5
0.4 0.5 0.9
0.1 0.2 0.7


and(

0.1 0.2 0.4
0.5 0.7 0.9

)
6vfuz

(
0.2 0.2 0.3
0.4 0.5 0.8

)

3.1 Fuzzy Demonic operators

In this subsection, we will present fuzzy demonic
operators and also some of their properties.

To clarify the ideas, take two relations Q̃ and R̃:

• Their supremum is

Q̃ tfuz R̃ = min{max{Q̃, R̃}, π∨Q̃, π∨R̃}

and satisfies

π∨(Q̃ tfuz R̃) = π∨Q̃ ∩ π∨R̃.

Then, Q̃tfuz R̃ is exactly the relational expres-
sion of the fuzzy demonic union.

(11) Example. Let

Q̃ =

0.1 0 0.2
0.3 0.8 1
0 1 0.7

 , R̃ =

 0 1 0
0.3 0.5 0.4
0.9 0.7 0.2


Then;

Q̃ tfuz R̃ =

0.1 0.2 0.2
0.3 0.5 0.5
0.9 0.9 0.7


• Their infimum, if it exists, is

Q̃ ufuz R̃ = max{min{Q̃, R̃},
min{Q̃, 1− π∨R̃},min{R̃, 1− π∨Q̃}}

and it satisfies

π∨(Q̃ ufuz R̃) = π∨Q̃ ∪ π∨R̃.

The operator ufuz is called fuzzy demonic in-
tersection. For Q̃ ufuz R̃ to exist, we have to
verify π∨ ⊆ π∨(Q̃∪ ¯π∨Q̃∩ R̃∪ ¯π∨R̃). This con-
dition is equivalent to π∨Q̃∩π∨R̃ ⊆ π∨(Q̃∩ R̃),
which can be interpreted as follows: the exis-
tence condition simply means that on the in-
tersection of their domains, Q̃ and R̃ have to
agree for at least one value.
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Let

Q̃ =

0.1 0 0.2
0.3 0.8 1
0 1 0.7

 , R̃ =

 0 1 0
0.3 0.5 0.4
0.9 0.7 0.2


Then;

Q̃ ufuz R̃ =

 0 0.8 0
0.3 0.5 0.5
0 0.7 0.2


In what follows, we will give the definition of the

fuzzy demonic composition.

(12) Definition. The fuzzy demonic composition
of relations Q̃ and R̃ is

Q̃ 2 fuzR̃ = min{Q̃R̃, 1− Q̃π∨R̃}

.

(13) Example.

0.1 0 0.2
0.3 0.8 1
0 1 0.7

 2 fuz

 0 1 0
0.3 0.5 0.4
0.9 0.7 0.2



=

0.2 0.2 0.2
0.5 0.5 0.4
0.5 0.5 0.4


3.2 Properties of fuzzy demonic op-

erators

The fuzzy demonic operators ufuz,tfuz and 2 fuz,
have the same properties as u,t and 2 , but the
fuzzy demonic intersections have to be defined. Let
us give some of them.

(14) Theorem. Let P̃ , Q̃ and R̃ be fuzzy relations.
Then,

• P̃ ufuz (Q̃tfuz R̃) = (P̃ ufuz Q̃)tfuz (P̃ ufuz R̃),

• P̃ tfuz (Q̃ufuz R̃) = (P̃ tfuz Q̃)ufuz (P̃ tfuz R̃),

• R̃ 2 fuzI = I 2 fuzR̃ = R̃,

• Q̃ vfuz R̃ ⇒ P̃ 2 fuzQ̃ vfuz P̃ 2 fuzR̃,

• P̃ vfuz Q̃ ⇒ P̃ 2 fuzR̃ vfuz Q̃ 2 fuzR̃,

• P̃ 2 fuz(Q̃ tfuz R̃) = P̃ 2 fuzQ̃ tfuz P̃ 2 fuzR̃,

• (P̃ tfuz Q̃) 2 fuzR̃ = P̃ 2 fuzR̃ tfuz Q̃ 2 fuzR̃,

• P̃ 2 fuz(Q̃ufuz R̃) vfuz P̃ 2 fuzQ̃ufuz P̃ 2 fuzR̃,

• P̃ 2 fuz(Q̃ 2 fuzR̃) =
(P̃ 2 fuzQ̃) 2 fuzR̃,

• (P̃ ufuz Q̃) 2 fuzR̃ vfuz P̃ 2 fuzR̃ufuz Q̃ 2 fuzR̃.

(15) Proposition.

• Q̃ deterministic ⇒ Q̃ 2 fuzR̃ = Q̃R̃,

• P̃ deterministic ⇒ P̃ 2 fuz(Q̃ ufuz R̃) =
P̃ Q̃ ufuz P̃ R̃,

• R̃ total ⇒ Q̃ 2 fuzR̃ = Q̃R̃,

• π∨P̃ ufuz π∨Q̃ = Ø ⇒ (P̃ tfuz Q̃) 2 fuzR̃ =
P̃ 2 fuzR̃ ∪ Q̃ 2 fuzR̃,

• π∨P̃ ufuz π∨Q̃ = Ø ⇒ P̃ ufuz Q̃ = P̃ tfuz Q̃.
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Département de Mathématiques et de statis-
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