Physics-145 Summer 2019

Homework No. 1

Q1) A particle moves in a straight line according to the equation $x=50 t^{2}-10 t^{3}$ where x is in meters and t in seconds.
(a) Calculate the average velocity of the particle in the time interval $t=0 \mathrm{~s}$ and $t=3 \mathrm{~s}$.
(b) Calculate the acceleration of the particle at $t=2 \mathrm{~s}$.

Q2) The graph below shows the position-time graph of a particle.

From the graph, find the following:
(a) The distance moved in the time interval \mathbf{C} (between $t=6 \mathrm{~s}$ to $t=10 \mathrm{~s}$).
(b) The displacement moved in the time interval \mathbf{C}.
(c) The average velocity in the time interval \mathbf{C}.
(d) The total distance moved by the particle.
(e) The average velocity for the whole journey.

Q3) The graph below shows the first 10 seconds velocity-time graph of a Tesla car journey.

From the graph, find the following:
(a) The car's acceleration in the first two seconds.
(b) The car's acceleration in the time interval between $t=0 \mathrm{~s}$ to $t=6 \mathrm{~s}$.
(c) How far did the car move before reaching the speed of $45 \mathrm{~m} / \mathrm{s}$?

Q4) A particle accelerates from rest with a constant acceleration of $15 \mathrm{~m} / \mathrm{s}^{2}$. How far the particle moves before it reaches a speed of $60 \mathrm{~m} / \mathrm{s}$?

Q5) A car starts from rest until it reaches a speed of $25 \mathrm{~m} / \mathrm{s}$ with an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$. After that, the car decelerates (slows down) with deceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$ until it stops. How much time elapsed from start to stop?

Q6) Consider the following three vectors: $\mathbf{A}=2 \mathbf{i}-4 \mathbf{j}, \mathbf{B}=5 \mathbf{j}, \mathbf{C}=3 \mathbf{i}+3 \mathbf{j}$.
(a) Calculate $\mathbf{R}=2 \mathbf{A}-\mathbf{C}+10 \mathbf{B}$.
(b) What the angle \mathbf{R} makes with the positive x-axis?
(c) What is the length of \mathbf{R} ?

