# MODERN PHYSICS (351 PHYS) <br> Problem Set 2 

## Dr Salwa Alsaleh

## Problem (1)

Calculate the momentum of a proton moving with a speed of (a) 0.010 c , (b) 0.50 c , (c) 0.90 c . (d) Convert the answers of (a)-(c) to $\mathrm{MeV} / \mathrm{c}$.

## Problem (2)

An electron has a momentum that is $90 \%$ larger than its classical momentum. (a) Find the speed of the electron. (b) How would your result change if the particle were a proton?

## Problem (3)

A proton moves at a speed of 0.95 c . Calculate its (a) rest energy, (b) total energy, and (c) kinetic energy.

## Problem (4)

Protons in an accelerator at the CERN Large Hadron Collider at the Swiss-French borders are accelerated to an energy of 6900 times their rest energy. (a) What is the speed of these protons? (b) What is their kinetic energy in MeV ?


Figure 0.1: The Large Hadron Collider

## Problem (5)

The free neutron is known to decay into a proton, an electron, and an antineutrino $\bar{v}$ (of negligible rest mass) according to

$$
\mathrm{n} \longrightarrow \mathrm{p}+\mathrm{e}^{-}+\overline{\mathrm{v}}
$$

This process is called the beta decay. The decay products are measured to have a total kinetic energy of 0.781 MeV Show that this observation is consistent with the excess energy predicted by the Einstein massâĂŞenergy relationship.


## Problem (6)

An unstable particle having a mass of $3.34 \times 10^{-27} \mathrm{~kg}$ is initially at rest. The particle decays into two fragments that fly off with velocities of 0.987 c and 0.868 c in the opposite direction. Find the rest masses of the fragments.

