KING SAUD UNIVERSITY. DEPARTMENT OF PHYSICS AND ASTRONOMY

MODERN PHYSICS (351 PHYS) Problem Set 4

Dr Salwa Alsaleh

PROBLEM (1)

Answer the following questions:

- 1. An electron and a proton are accelerated from rest through the same potential difference. Which particle has the longer wavelength?
- 2. In what ways does BohrâĂŹs model of the hydrogen atom violate the uncertainty principle?

PROBLEM (2)

In order to simplify the calculations, and keep using the Hight-Energy units at all time. We need to find the numerical value of h in continent high energy units, particularly MeV/\times Åor $KeV/c\times$ Å.

Find that numerical values, starting from dimensional analysis of the relation $\Lambda = p \times \lambda_{db}$. (*Hint*: Recall that p is measured in MeV/c and λ in Å).

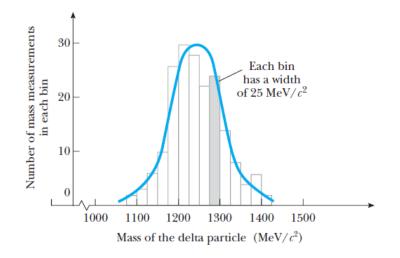
PROBLEM (3)

Calculate the de Broglie wavelength for a proton moving with a speed of 10⁵ m/s

PROBLEM (4)

Calculate the de Broglie wavelength for an electron with kinetic energy (a) 60 eV (b) 60KeV.

PROBLEM (5)


An electron and a photon each have kinetic energy equal to 100 keV. What are their de Broglie wavelengths?

PROBLEM (6)

A proton has a kinetic energy of 1.0MeV. If its momentum is measured with an uncertainty of 5.0%, what is the minimum uncertainty in its position?

BONUS PROBLEM

Typical measurements of the mass of a subatomic delta Δ particle (m ~ 1230MeV/c²) are shown in Figure Although the lifetime of the delta is much too short to measure directly, it can be calculated from the energy-time uncertainty principle. Estimate the lifetime from the full width at half-maximum of the mass measurement distribution shown.

