Chapter 4(2)

Hypergeometric Distribution
Poisson Distribution

Hypergeometric Distribution

In a group of N objects, K are of Type I and $N-K$ are of Type II. If n objects are randomly chosen without replacement from the group of N, let X denote the number that are of Type I in the group of n. Thus, X has a hypergeometric distribution $X \sim H(N, n, K)$. The pmf for X is

$$
f(x)=f(x ; N, n, K)= \begin{cases}\frac{\binom{K}{x}\binom{N-K}{n-x}}{\left(\begin{array}{l}
n
\end{array}\right)} ; & x=\operatorname{Max}[0, n-(N-K)], \ldots, \operatorname{Min}[n, K] \\
0 ; & \text { otherwise }\end{cases}
$$

Parameters of the Distribution: $N \in N^{+}$(population size), $n \in N^{+}$(sample size), $K \in N^{+}$(population elements with a certain characteristic).

Characteristics of Hypergeometric Distribution

1. ' n ' trials in a sample taken from a finite population of size N.
2. The population (outcome of trials) has two outcomes Success (S) and Failure(F).
3. Sample taken without replacement.
4. Trials are dependent.
5. The probability of success changes from trial to trial.

Mean and Variance

If X is a discrete random variable has hypergeometric distribution with parameters M, n, K then,

$$
E(X)=\mu=n \frac{K}{N} \text { and } V(x)=\sigma^{2}=n \frac{k}{N}\left(1-\frac{k}{N}\right)\left(\frac{N-n}{N-1}\right)
$$

EX

A wallet contains $3 \$ 100$ bills and $5 \$ 1$ bills. You randomly choose 4 bills. What is the probability that you will choose exactly $2 \$ 100$ bills?

Solution:

(a) $N=8, n=4, K=3, N-K=5$

$$
P(X=2)=\frac{\binom{3}{2}\binom{5}{2}}{\binom{8}{4}}=0.4286
$$

(b) Find mean and variance

$$
\begin{gathered}
\text { mean }=\boldsymbol{\mu}=\boldsymbol{n} \frac{K}{N}=\mathbf{4} \boldsymbol{x} \frac{3}{\mathbf{8}}=1.5 \\
\text { Variance }=\sigma^{2}=n \frac{k}{N}\left(1-\frac{k}{N}\right)\left(\frac{N-n}{N-1}\right)=4 x \frac{3}{8} \times \frac{5}{8} x \frac{4}{7}=0.5357
\end{gathered}
$$

$$
\text { Standard deviation }=\sigma=\sqrt{\text { Variance }}=\sqrt{0.5357}=0.7319
$$

Example 3.9

A box contains 6 blue and 4 red balls. An experiment is performed a ball is chosen and its color observed. Find the probability, that after 5 trials, 3 blue balls will have been chosen when
I. The balls are replaced (with replacement)
II. The balls not replaced (without replacement)

Solution

I. Let X represents the no. of blue balls in the sample. $\boldsymbol{X} \sim \operatorname{Bin}(5,0.6)$. So, we want to find
$P(X=3)=\binom{5}{3}(0.6)^{3}(0.4)^{2}=0.3456$.
II. Let Y represents the no. of blue balls in the sample. $\boldsymbol{Y} \sim \boldsymbol{H}(\mathbf{1 0}, \mathbf{5}, \mathbf{6})$. So, we want to find
$P(Y=3)=\frac{\binom{6}{3}\binom{4}{2}}{\binom{10}{5}}=0.4762$.

Poisson Distribution

The Poisson distribution is often used as a model for counting the number of events of a certain type that occur in a certain period of time (or space). If the r.v. X has Poisson distribution $X \sim \operatorname{Poisson}(\lambda)$ then its pmf is given by

$$
f(x)=f(x ; \lambda)= \begin{cases}\frac{e^{-\lambda} \lambda^{x}}{x!} ; & x=0,1,2, \ldots \\ 0 ; & \text { otherwise }\end{cases}
$$

Parameter of the Distribution: $\lambda>0$ (The average)

Mean and Variance

If X is a discrete random variable has Poisson distribution with parameter λ then,

$$
E(X)=V(x)=\lambda t .
$$

For example

- The number of births per hour during a given day.
- The number of failures of a machine in one month.
- The number of typing errors on a page.
- The number of postponed baseball games due to rain.

Example

Suppose that X represents the number of customers arriving for service at bank in a one hour period, and that a model for X is the Poisson distribution with parameter λ. In general, for any time interval of length t, the number of customers arriving in that time interval has a Poisson distribution with parameter $\mu=\lambda t, t$ is time
(a) X , the number of bank customers arriving in one hour, Suppose that $\lambda=40$, It 'means that X has mean of 40 '.

$$
\text { (here } t=1, \mu=\lambda t=40 \times 1=40)
$$

(b) Y represents the number of customers arriving in 2 hours, then Y has a Poisson distribution with a parameter $\mu=80$.

$$
\text { (here } t=1, \mu=\lambda t=40 x 2=80)
$$

(c) Z represents the number of customers arriving during a 15 -minute period , then Z a Poisson distribution with parameter $40 \cdot \frac{1}{4}=10$.

$$
\text { (here } t=1 / 4, \mu=\lambda t=40 \times 1 / 4=10)
$$

So, In general, If W represents the number of customers arriving in t hours $W \sim \operatorname{Poisson}(\lambda t)$ therefore,

$$
f(w)=\frac{e^{-\lambda t}(\lambda t)^{w}}{w!} ; \quad w=0,1,2, \ldots
$$

Example 3.11

Suppose that the number of typing errors per page has a Poisson distribution with average 6 typing errors. What is the probability that
I. The number of typing errors in a page will be 7 .
II. The number of typing errors in a page will be at least 2 .
III. The number of typing errors in 2 pages there will be 10 typing errors.
IV. The number of typing errors in a half page there will be no typing errors.
V. Mean of typing errors in per 3 pages
VI. Standard deviation of typing errors in per $1 / 2$ pages

Solution

I. Let X represents the no. of typing errors per page.

Therefore, $\lambda_{X}=6 \Rightarrow X \sim$ Poisson(6).
$P(X=7)=\frac{e^{-6} 6^{7}}{7!}=0.1377$.
II. $P(X \geq 2)=f(2)+f(3)+\cdots=1-P(X<2)=1-[f(0)-f(1)]$

$$
=1-\left[\frac{e^{-6} 6^{0}}{0!}-\frac{e^{-6} 6}{1!}\right]=0.9826 .
$$

III. Let Y represents the no. of typing errors in 2 pages.

Therefore, $\lambda_{Y}=\lambda_{X} t=6 \cdot 2=12 \Rightarrow Y \sim$ Poisson(12).

$$
P(Y=10)=\frac{e^{-12}(12)^{10}}{10!}=0.1048
$$

IV. Let Z represents the no. of typing errors in a half pages.

Therefore, $\lambda_{Z}=\lambda_{X} t=6 \cdot \frac{1}{2}=3 \Rightarrow Z \sim$ Poisson (3).

$$
P(Z=0)=\frac{e^{-33^{0}}}{0!}=0.0498 .
$$

