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Q2IO(X2P)–Ar cluster: ab initio potential energy
surface and dynamical computations†

S. Marzouk,ab Y. Ajili,c F. Lique, d M. Ben El Hadj Rhouma,a M. Mogren Al Mogrene

and M. Hochlaf *b

Iodine oxide (IO) is an important tropospheric molecule. In the present paper, we mapped the potential energy

surfaces (PESs) of the doubly degenerate IO(X2P)–Ar van der Waals system using single- and double-excitation

coupled cluster approaches with non-iterative perturbation treatment of triple excitations [RCCSD(T)]

extrapolated to the complete basis set (CBS) limit. In addition to bent local minima, we identified a linear Ar–IO

complex as a global minimum. Afterwards, we performed scattering calculations on these PESs, considering the

non-zero spin–orbit contribution and the Renner–Teller effect. The integral cross-sections exhibit an oscillatory

structure vs. the final rotational state, as already observed for the NO(X2P)–Ar system. Moreover, computations

reveal that the Ar–IO complex is stable toward dissociation into IO and Ar. Therefore, it can be found in the

atmosphere and participates in iodine compound physical chemical processes occurring there.

I. Introduction

The biogeochemical cycle of iodine is based on intense exchanges
from the oceanic compartment to the atmosphere.1 Iodine emis-
sions to the atmosphere consist of iodine containing organic
compounds, including methyl iodide (CH3I),2,3 a gas emitted
abundantly in the ocean by the phytoplankton, hypoiodous acid
(HIO)4 and molecular iodine (I2).2–4 Once in the atmosphere, these
volatile iodine compounds and the molecular iodine undergo
dissociation processes by photolysis producing radicals, such as
atomic I. These radicals are involved in a complex atmospheric
chemistry leading, by reaction with ozone, to the formation of
oxidized species (IO, I2O, OIO. . .). These oxidized species then
participate in the formation of aerosols and condensation of clouds
and they are strongly suspected to be involved in the ozone
destruction over the oceans.5–8 In particular, tropospheric IO can
be formed via the reaction I + O3 - IO + O2. It thus participates
directly in the photochemical ozone loss in the tropical Atlantic
Ocean boundary layer. It can also impact indirectly the ozone

budget in the atmosphere via its implication in the photochemistry
of tropospheric HOx and NOx (production/destruction).

Several details on IO spectroscopy and its gas phase reactiv-
ity can be found in ref. 9 and 10. For instance, the kinetics and
mechanisms of reactions involving the IO molecule have been
studied in a large number of laboratory studies.11–19 Experi-
mental data on the thermochemistry of the IO molecule are
also available.20 Moreover, the physical properties of the iso-
lated molecule are also available.21–24 Its spectroscopy was
investigated by a multitude of experimental and
theoretical25–29 approaches. These include mw,21 rotational,30

laser magnetic resonance,31 cavity ring-down,32 high-resolution
laser-rf,33 laser induced fluorescence11,12 and absorption and
emission spectroscopies34–36 as well as spin–orbit configu-
ration interaction calculations.37–39 These studies established
that the ground state of IO is of 2P symmetry species.33 It is a
Hund’s case (a) radical with a negative spin–orbit constant (ASO

= �2091 cm�1 22). The electronic orbital angular momentum
and the electron spin have well-defined projection onto the
internuclear axis of L = �1 and S = �1/2, respectively. There-
fore, there are two spin–orbit manifolds: the lowest component
is the 2P3/2 with |O| = |L + S| = 3/2 (labeled F1), and the higher-
energy is the 2P1/2 with |O| = 1/2 (labeled F2). Each rotational j
splits into two close lying L-doublet levels labeled e (total parity
+ as (�1) j�1/2) and f (total parity – as (�1) j�1/2).42 The energies
of the rotational levels, including the spin–orbit and L-
doubling fine structure, are given by:

Ej;O¼1=2;e ¼ 1=2ASO þ Be½jð j þ 1Þ þ 1=4� þ e
2
pð j þ 1=2Þ (1)
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Ej;O¼3=2;e ¼ � 1=2ASO þ Be jð j þ 1Þ � 7=4½ � þ eBe

2ASO

� 2qþ pBe

ASO

� �
ð j � 1=2Þð j þ 1=2Þð j þ 3=2Þ

(2)

where e is the parity. e = +1 and e = �1 correspond to e-labelled
and f-labelled levels respectively. Be (=0.3388 cm�1 33) is the
rotational constant at equilibrium of IO (X2P3/2). p (=0.1094212
cm�1 30) and q (=�0.0000166 cm�1 30) are the two L-doubling
parameters (see ref. 30 for more details).

The present contribution deals with the investigation of the
IO–Ar van der Waals complex. Ar is the third most abundant
gas of the Earth’s atmosphere. This complex may be formed in
the troposphere/low stratosphere after collision between IO and
argon. These collisional processes may participate in the mod-
ification of the radiation budget of the atmosphere. The
implication in atmospheric processes of other IO–M complexes
was noticed. For instance, the formation of the IO–water
complex was suspected to be at the origin of the inhibition of
the polymerization of IO leading to the atmospheric IO
aerosols.41 The existence of a stable IO–water complex was
confirmed later by ab initio computations.42 Also, the implica-
tion of the IO–CO van der Waals complex was suggested during
the oxidation of IO by CO to form I + CO2.43 In the other hand,
molecules containing iodine are prototype molecular systems
for fundamental photophysical studies (see, for instance, the
studies by Zewail and co-workers44). This is also true for the
specific case of iodine van der Waals complexes such as those
studied by Bogomolov et al.45

To date, nothing is available in the literature concerning the
IO–Ar molecular species that may help its identification or
elucidating its possible role in the physical chemical atmo-
spheric phenomena. At present, we predict a stable IO–Ar
complex. We derived its dissociation energy, which may help
its identification in the laboratory. For that purpose, we gener-
ated the 2D potential energy surfaces (2D PESs) of the IO(X2P)–
Ar interacting system. These PESs are mapped in the Jacobi
coordinates (Fig. 1) using the coupled cluster approach extra-
polated to the complete basis set (CBS) limit. Afterwards, these
PESs are incorporated into full quantum treatment of the
nuclear motions. Because of the 2P nature of IO, the ground
state of the IO–Ar complex is doubly degenerate for linear
configurations with non-zero spin–orbit contribution. This
results in a Renner–Teller system,46 which complicates the
dynamics of such colliding systems. Such treatments are

challenging and rare. For instance, we can cite the spectro-
scopic and dynamical investigations of the OH/OD–Rg (Rg =
He, Ne, Ar, Kr, Xe),47–53 PO–He,54 NO–Rg (Rg = He, Ne, Ar),55–67

NO–D2,60 and SH/SD–Ar68 colliding systems.

II. Generation of the PESs of the IO
(X2P)–Ar interacting system
1. Electronic structure computations

The IO–Ar van der Waals system is described using the Jacobi
coordinates as specified in Fig. 1. They correspond to the IO
internuclear distance (r), the distance from the center of mass
of the IO molecule to the Ar atom (R) and the angle between R
and the IO bond axis (y), with y = 01 for the collinear I–O–Ar
arrangement. In the present study, the IO diatomic is consid-
ered as rigid. The IO bond distance was kept fixed at its
experimental equilibrium value (r = 1.872 Å = 3.538 Bohr).33

All electronic calculations were performed using the MOLPRO
2015 package69 in the Cs symmetry point group.

When the IO(X2P) radical interacts with a spherical
structure-less target (such as the Ar atom), the doubly-
degenerate 2P electronic state splits into two components:
one of 2A0 symmetry and one of 2A00 symmetry. Ab initio
calculations of the PESs of Ar–IO(X2P) van der Waals complex
being in the 2A0 or the 2A00 electronic states were carried out
using the partially spin-restricted coupled clusters with the
single, double and perturbative triple excitations
(RCCSD(T))70,71 approach as implemented in the MOLPRO
2015 package.69 For both components, the electronic structure
computations were carried out for y angle values from 01 to
1801 by steps of 101. The R distances were varied from 6 to 22
Bohr yielding 30 points for each angular orientation. Never-
theless, for R 4 14 Bohr, some irregular behaviors were
noticed. Thus, only the points where R r 14 Bohr were
considered during the fitting of the PESs. For R 4 14, the PESs
were extrapolated (cf. infra).

For oxygen and argon atoms, we used the aug-cc-pVXZ (X =
D, T, Q) basis sets of Dunning and co-workers.72,73 The iodine
was described using the corresponding aug-cc-pVXZ-PP (X = D,
T, Q) correlation consistent basis sets together with the appro-
priate Stuttgart/Koeln ECP28MDF pseudopotential.38 Through-
out the calculations of the IO–Ar interaction potentials, V(R,y),
the basis set superposition error (BSSE) was corrected at all
geometries using the Boys and Bernardi74 counterpoise
scheme, as follows

V(R,y) = EIO–Ar(R,y) � EIO(R,y) � EAr(R,y) (3)

where the energies of the IO and Ar monomers are computed in
the full basis set of the complex.

Afterwards, the ab initio energies were extrapolated to the
Complete Basis Set (CBS) limit, employing the mixed exponen-
tial and Gaussian formula of Peterson et al.75

E = ECBS + Ae�(X�1) + Be�(X�1)2

(4)
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Fig. 1 Definition of the Jacobi coordinates of the IO–Ar complex.
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where X is the basis set cardinal. X = 2, 3 and 4. ECBS is the
energy extrapolated to the CBS limit. A and B are parameters to
adjust. In the following, we will discuss the RCCSD(T)/
CBS PESs.

2. Analytic forms of the 2D-PESs

For the representation of the IO–Ar 2A0 and 2A00 2D-PESs, we
derived analytical expressions. We thus adopted the fitting
procedure described by Werner et al.76 for the CN–He complex.
Such a procedure leads us to generate the V(R,y) numerical
expansion routine for each component:

V R; yð Þ ¼
XL
l¼1

AlðRÞdlþm�1
m;0 ðcos yÞ (5)

where the dl+m�1
m,0 are the reduced rotation matrix elements of

Wigner and L represents the total number of the ab initio
angles. The Al(R) are given by

Al Rð Þ ¼ e�al R�R 0ð Þ
l

� � X2
i¼0

b
ið Þ
l Ri

 !

� 1

2
1þ tanh

R� R
ð1Þ
l

RRef
l

 ! X
j¼6;8;10

c
ð jÞ
l

Rj
(6)

The analytic potentials were found to reproduce the calcu-
lated energies quite well. Over the entire grid, the mean
difference between the analytic fit and the ab initio computed
interaction energies is less than 2–3%. The major deviations
between the fitted potential values and the ab initio points are
concentrated in the long-range part of the PESs. The long-range
part of the PES was extrapolated assuming a Cn/Rn (n = 6, 8, 10)
multipolar expansion. The Cn coefficients were obtained from
the ab initio energies computed for distances larger than R = 12
a0. The corresponding expansions are given in the ESI.†

In the scattering calculations, it is more convenient to use
the average and the difference of the VA0 and VA00 potential
energy surfaces which we define as:

Vsum = 1/2(VA00 + VA0) (7)

Vdiff = 1/2(VA00 � VA0) (8)

These two adiabatic potentials are usually expanded in a
series of reduced Wigner functions dm(cos y),77

Vsum R; yð Þ ¼
Xlmax

l¼0
Vl0ðRÞdl0ðcos yÞ (9)

Vdiff R; yð Þ ¼
Xlmax

l¼0
Vl2ðRÞdl2ðcos yÞ (10)

where Vl0(R) and Vl2(R) correspond to the radial dependence of
the potentials as expressed in ref. 77. lmax was set to 18.

In the pure Hund’s case (a), Vsum is responsible for inducing
inelastic collisions within a given spin manifold, and Vdiff for
inducing inelastic collisions between the 2P1/2 and 2P3/2 spin–
orbit manifolds.

3. Features of the 2A0 and 2A00 2D-PESs

Fig. 2 shows the 2D contour plots of the 2A0 and 2A00 PESs along
the R and y Jacobi coordinates. Table 1 gives the main char-
acteristics of these PESs including the geometric parameters of
the stationary points, their well depths and isomerization
barrier heights. Fig. 3 shows the minimum energy paths of
the 2A0 (VA0) and 2A00 (VA00) components along the bending angle.
For linear configurations, both components are degenerate and
then split for bent structures. They form hence a linear–linear
Renner–Teller system for y = 1801 and a linear–bent Renner–
Teller system for y = 01.46 For both components, the global
minimum occurs at a linear configuration, where the Ar is
located at the iodine side of IO (i.e. y = 1801) and for R = 7.31
Bohr. The associated well depth is De = 273.58 cm�1. For the 2A0

state, we found a second local minimum for bent structures (y =
561, R = 7.67 Bohr) with a well depth of De = 197.90 cm�1. This
minimum correlates with a transition state for y = 01 and is
separated by a transition state with the global minimum
located at y = 1071 and R = 7.94 Bohr (Table 1). For the 2A00

state, two secondary minima are found: (i) at bent structures i.e.
R = 7.46 Bohr, y = 631, De = 217.49 cm�1; and (ii) at a linear Ar–
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Fig. 2 2D contour plots of the 2A0 (top) and 2A00 (bottom) PESs of the IO–
Ar complex. The blue (red) contours are for positive (negative) energies.
Energies are in cm�1. The reference energy is the energy at separated IO
and Ar species.
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O–I configuration i.e. R = 9.46, y = 01, De = 157.52 cm�1. As for
the 2A0 component, the transition states connecting these
minima are located below the dissociation of the complex (cf.
Table 1). As discussed for other weakly bound complexes,
complex quantum effects, including quantum tunneling, vibra-
tional memory and quantum localization effects are expected to
take place.78,79 These effects together with the Renner–Teller
coupling complicate the spectroscopy and the dynamics of the
IO–Ar colliding system. Note that the features described here
for the 2A00 PES are similar to those found for other van der
Waals complexes such as ICl–Ar80 and HI–Ar.81

4. Features of the Vsum and Vdiff 2D-PESs

Fig. 4 presents the 2D contour plots of the Vsum and Vdiff. As can
be seen there, the average potential Vsum has two minima: (i) for
the linear configuration, where y = 1801 and R = 7.31 cm�1 Bohr
and Vsum = �272.8 cm�1; and (ii) for the bent structure, where y
= 621 and R = 7.52 cm�1 Bohr and Vsum = �204.7 cm�1; whereas
y = 01 corresponds to a transition state. Fig. 4 shows also that
Vdiff exhibits small variations along the R and y coordinates.
Thus, inelastic collisions between the 2P1/2 and 2P3/2 spin–
orbit manifolds are not expected to take place.

III. Dissociation energy of the IO–Ar
complex

We carried out fully quantum close coupling calculations of the
lowest bound states for total angular momentum J = 0.5, for the
set of IO–Ar PESs determined here. In these calculations, the
Vsum and Vdiff were incorporated. The open-shell electronic
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Table 1 Characteristics of the IO–Ar PESs. We give the well depths (De, in cm�1), equilibrium distances (R, in Bohr) and angles (y in degrees) and the
energies of the transition state (E* in cm�1) with respect to the IO and Ar separated species

2A00 component

Ar–IO Transition state Bent IO–Ar Transition state IO–Ar

De R y E* R y De R y E* R y De R y

273.58 7.31 1801 �107.55 8.32 114 217.49 7.46 631 �144.31 9.08 29 157.52 9.46 01

2A0 component

Ar–IO Transition state Bent IO–Ar

De R y E* R y De R y

273.58 7.31 1801 �134.42 7.94 1071 197.90 7.67 561

Fig. 3 Minimum energy paths of the 2A0 (VA0) and 2A00 (VA00) components of
the IO–Ar PES as a function of the y angle.

Fig. 4 2D contour plots of Vsum (top) and of Vdiff (bottom) along the R
and y coordinates. The blue (red) contours are for positive (negative)
energies. Energies are in cm�1.
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structure of the IO molecule was taken into account. We
employed the HIBRIDON suite of codes.82

The radial part of the wave functions in the bound-state
calculations is expanded in a replicated Gaussian basis dis-
tributed between R = 5.5 and 20 Bohr. The IO–Ar reduced mass
was 31.22 amu. The channel basis included all rotational levels
of IO up to jmax = 18.5.

The calculated dissociation energy of IO–Ar, D0, is B228
cm�1. Such a large value is explained by the relatively large well
depth of both 2A0 and 2A00 PESs of the IO–Ar complex. This
shows that the IO–Ar complex is expected to be stable under
atmospheric conditions where it is also expected to be effi-
ciently formed during collisions between IO and Ar.

IV. Integral cross-section calculations
for the scattering of IO by collision with
Ar

In the scattering calculations, we assume that the spin–orbit
constant is independent of the IO–Ar intermolecular separa-
tion. The latter approximation is commonly employed in scat-
tering calculations because of the moderate-to-large
intermolecular separations at typical atmospheric collision
energies. The quantum scattering calculations of integral
cross-sections for the scattering of IO by collision with Ar were
performed using the quantum Coupled States (CS)
approximation.83 We also performed some costly close cou-
pling (CC) computations for comparison. Both techniques are
implemented in the HIBRIDON package.82

The numerical accuracy of the integration procedure with
respect to the number of partial waves and rotational basis
functions and the integration parameters were tested to meet
convergence criteria better than 2 percent for the cross-
sections.

Using eqn (1) and (2), we give in Table 2 the energies of the
first fine structure levels of IO. The dynamical calculations were
performed on a grid of energies up to a total energy of Etot = 500
cm�1. The maximum values of the total angular momentum
and of the IO rotational quantum number were J = 330.5 and j =
44.5, respectively. For a better description of the resonances,
the energy steps were spanned as follow: 0.1 for Etot r 100, 0.2
for 100 r Etot r 200, and 0.5 for 200 r Etot r 300 and 1 cm�1

for Etot Z 300 (all values are in cm�1).
In order to check the accuracy of the CS approximation, a

comparison with the exact close coupling (CC) approach has
been carried out. Table 3 gives the comparison with the two
methods for some transitions where the collision energy, Etot is
equal to 50 cm�1 and 300 cm�1. As expected, the CS cross-
sections differ significantly from those obtained using exact CC
calculations at very low collision energies. This difference
however vanishes while increasing the total energy. Indeed,
Table 3 shows that the CS approach can lead to inaccuracies of
20–50 percent at total energy of 50 cm�1, whereas the agree-
ment improves significantly between CC and CS cross sections
for Etot = 300 cm�1. The relative accuracy of the CS

approximation compared to the full CC approach can be
explained by the relatively small energy spacing between IO
rotational levels (Table 2).

As mentioned above, the IO molecule can be described in
the Hund’s case (a) with a large spin–orbit splitting (of 2091
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Table 2 Pattern of the rotational levels ( j) of IO (X2P) for O = 1/2 and 3/2.
Energies (EO=3/2 and EO=1/2) are in cm�1. e is the parity. The reference
energy is that of the EO=3/2 j = 1.5 level

j e EO=3/2 EO=1/2

0.5 e 2090.771
0.5 f 2090.661
1.5 e 0.000 2091.842
1.5 f 0.000 2091.623
2.5 e 1.694 2093.591
2.5 f 1.694 2093.263
3.5 e 4.065 2096.018
3.5 f 4.065 2095.580
4.5 e 7.113 2099.122
4.5 f 7.113 2098.575
5.5 e 10.839 2102.904
5.5 f 10.839 2102.248
6.5 e 15.243 2107.364
6.5 f 15.243 2106.598
7.5 e 20.324 2112.502
7.5 f 20.324 2111.626
8.5 e 26.082 2118.317
8.5 f 26.082 2117.332
9.5 e 32.518 2124.810
9.5 f 32.518 2123.716
10.5 e 39.631 2131.980
10.5 f 39.631 2130.777
11.5 e 47.422 2139.829
11.5 f 47.422 2138.516
12.5 e 55.890 2148.355
12.5 f 55.890 2146.933
13.5 e 65.036 2157.559
13.5 f 65.036 2156.027
14.5 e 74.859 2167.440
14.5 f 74.859 2165.799
15.5 e 85.359 2177.999
15.5 f 85.359 2176.249

Table 3 Comparison between CC and CS IO–Ar cross-sections (in Å) for
total energies Etot = 50 cm�1 and Etot = 300 cm�1. Transitions were chosen
among levels in the F1 spin–orbit manifold

Transition

Etot = 50 cm�1 Etot = 300 cm�1

CC CS CC CS

1.5 e - 1.5 f 22.71 46.81 10.46 14.17
1.5 e - 3.5 e 7.130 4.808 2.786 3.136
1.5 e - 3.5 f 7.136 7.865 3.333 3.880
1.5 e - 4.5 e 5.386 4.830 2.170 2.187
1.5 e - 4.5 f 4.920 3.787 1.311 1.529
1.5 e- 5.5 e 4.644 3.323 0.978 0.936
1.5 e- 5.5 f 4.289 3.305 1.373 1.315
2.5 e - 6.5 e 6.623 6.191 1.297 1.137
2.5 e - 6.5 f 5.685 4.867 1.479 1.554
3.5 e - 8.5 e 4.849 7.023 1.579 1.389
4.5 e- 6.5 e 9.774 9.213 4.319 3.865
7.5 e- 10.5 e 15.64 12.39 3.549 4.123
10.5 e - 11.5 e 30.23 28.80 10.16 9.762
10.5 e - 15.5 e —a —a 2.435 2.610

a Energetically inaccessible transition.
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cm�1) between O = 3/2 and O = 1/2 states. As expected, no spin–
orbit changing transitions occur during the collisions between
the O = 3/2 and O = 1/2 manifolds, which are induced by Vdiff.
Whereas Vsum potential, which is responsible for the collisional
excitation within a given spin–orbit manifold, shows large
variations (Fig. 4).

Fig. 5 displays the integral cross-sections of IO induced by
collision with Ar as a function of the collision energy for
transitions out of the rotational level ( j = 1.5, e) of the F1

spin–orbit manifold to some selected rotational levels ( j0, e/f)
within the F1 manifold. As may be seen, regardless of the
transition considered, the cross-sections show a dense reso-
nance structure at low energies (E o 200 cm�1). They corre-
spond to both shape resonances and Feshbach resonances
resulting from the decay of bound and quasi-bound states
supported by the IO–Ar weakly bound wells in the 2A0 and 2A00

potentials. It is clear also that the cross-sections for spin–orbit
conserving transitions present a strong propensity in favor of
the parity conserving e - e and with Dj = 1.

As explained by Dagdigian et al.,84 the values of the integral
cross sections for e - e and e - f collisions should be
identical to those of f - f and f - e, respectively84 in the limit
case of a pure Hund’s case (a). This is the case here. Indeed,
these e/f conserving and changing cross-sections are illustrated
in Fig. 6, which shows the integral cross sections obtained for
IO(X2P) colliding with Ar at Etot = 500 cm�1 for spin–orbit
conserving collisions, resolved into initial and final L-doublet
levels. Fig. 6 shows also that the integral cross sections exhibit
an oscillatory structure as a function of the final rotational
state. This predicted alternation in the case of IO–Ar for the
spin–orbit conserving transition was already noticed for the
NO–Ar scattering system.85

V. Conclusions

We mapped the 2D PESs of the IO(X2P)–Ar colliding system
along the R and y Jacobi coordinates. These PESs are incorpo-
rated later to treat the nuclear motions using quantum form-
alism. Computations show that the IO–Ar complex possesses a
relatively large dissociation energy and thus it can be formed in
the atmosphere. We also deduced the cross-sections of the
excitation of IO colliding with Ar. Our calculations reveal that
the integral cross sections present an oscillatory structure along
the final rotational state. Such behavior was already noticed for
the NO(X2P)–Ar colliding system, for which several experi-
mental and theoretical studies were devoted.

As said in the introduction, IO is playing an important role
in the atmosphere. The present work should motivate new
experimental investigations in the laboratory to characterize
the IO (X2P)–Ar van der Waals system. Also, it should help in
identifying this complex in the atmosphere and to understand
the physical chemical processes involving IO there and more
generally the iodine compounds.
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Fig. 5 Variation of the cross-sections vs. the collision energy for transi-
tions out of the ( j = 1.5, e, F1) fine structure level to the ( j0, e/f, F1) spin–
orbit level manifold.

Fig. 6 Variation of the cross sections for the e - e, f - f, e - f and f - e
transitions vs. the j quantum number.
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