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Abstract Because it is both biocompatible and biodegradable, chitosan has been used to provide a pro-
tective capsule in new drug formulations. The present work reports on investigations into some of the
physicochemical properties of chitosan-coated liposomes, including drug release rate, transmission elec-
tron microscopy (TEM), zeta potential and turbidity measurement. It was found that chitosan increases
liposome stability during drug release. The coating of DPPC liposomes with a chitosan layer was confirmed
by electron microscopy and the zeta potential of liposomes. The coating of liposomes by chitosan resulted
in a marginal increase in the size of the liposomes, adding a layer of (92 ± 27.1 nm). The liposomal zeta

potential was found to be increasingly positive as chitosan concentration increased from 0.1% to 0.3%
(w/v), before stabilising at a relatively constant value. Turbidity studies revealed that the coating of DPPC
liposomes with chitosan did not significantly modify the main phase transition temperature of DPPC at
examined chitosan concentrations. The appropriate combination of liposomal and chitosan characteristics
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Introduction

Chitosan is a typical biological macromolecule derived from crus-
tacean shells. It has several emerging applications, including in drug
development, obesity control and tissue engineering [1]. It has been
used to provide a protective capsule in new drug formulation because
it is both biocompatible and biodegradable [2,3]. Owing to its prop-
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rties, chitosan can be used in a variety of areas, including medicine,
harmacy, biotechnology, agriculture and the food industry [4,5].

Recently, a number of studies have shown that chitosan forms a
omplex nanoparticle with recombinant DNA plasmids that pro-
ides an effective means of delivering genes into cells [6–9].
or instance, chitosan–DNA nanoparticles successfully delivered
dominant peanut allergen gene to the intestine of a murine model
f peanut allergy and substantially reduced the allergen-induced
naphylaxis [7].

Meanwhile, liposomes have been a visible feature in innovative
rug delivery systems for a number of years [10]. They have been
nvestigated for the delivery of chemotherapeutic agents for cancer
11], vaccines for immunological protection [12], radiopharmaceu-

icals for diagnostic imaging [13], and nucleic acid-based medicines
or gene therapy [14].

However, liposomes also have some limitations. First, they
enerally show a short circulation half-life after intravenous admin-
stration [15]. Second, they are prone to adhering to each other and
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using to form larger vesicles in suspension, which may result in
nclusion leakage [16,17]. Therefore, stability is a general problem
ith lipid vesicles [18,19].

Several authors have used chitin or chitosan related polymers
s a liposome coating in order to increase their stability towards
rug release [20,21], to stabilise haemosomes ‘Artificial Red Blood
ells’ [22,23], and for targeting purposes [24].

We realised that an appropriate combination of the polymer-
ased and lipid-based systems could integrate the advantages and
itigate the disadvantages of each system, and thus lead to new

pplications [25,26].
In our previous study the interaction between chitosan and DPPC

iposomes was studied using a number of biophysical techniques
including FTIR spectroscopy, viscometry and liposomes solubil-
sation) in an attempt to understand the overall behaviour of the
hitosan–liposomes system [27].

The present work uses drug release rate, transmission electron
icroscopy, zeta potential and turbidity measurements at 400 nm

o investigate the characteristics of chitosan-coated liposomes to
evelop and further optimise liposomes that are directed for topical
elease in systemic pharmacological applications.

aterial and methods

aterials

-�-Dipalmitoyl phosphatidylcholine (DPPC) specified 99% pure
nd Triton X-100 were purchased from Sigma (St. Louis, Mo,
SA). Chitosan (from crab shells) was purchased from Fluka with
olecular weight of 150 kD and was used as received. Chloro-

orm was of analytical grade and obtained from Merck. Double
istilled deionised water was used. Doxorubicin hydrochloride
MW = 579.98) was manufactured by CIPLA Ltd. (India) as freeze
ried powder on a 50 mg vial and was used without further purifi-
ation. The chemical structure of DPPC and chitosan are shown in
ig. 1.

reparation of chitosan-coated liposomes

or DPPC liposomal preparation, the lipids were first dissolved and
ixed in chloroform to ensure a homogeneous mixture of lipids.
he organic solvent was then removed by rotary evaporation to
btain a thin lipid film, formed on the sides of a round bottom
ask. The lipid film was thoroughly dried to remove residual organic
olvent by placing the flask on a vacuum pump for nearly 90 min.
ydration of the dry lipid film was accomplished by adding an

queous solution to the container of the dry lipid film and agitating
t a temperature above the phase transition temperature of the lipid
28].

For liposomes encapsulated doxorubicin, the resulting thin film
as hydrated with an appropriate amount of doxorubicin solu-

ion. The non-encapsulated drug was separated by centrifugation
t 9000 rpm for 20 min. The formed pellet was washed with ster-
le double distilled deionised water and re-centrifuged; this step
as repeated four times and the pellet then re-suspended in an

ppropriate amount of sterile double distilled deionised water.

For chitosan-coated liposomes, an appropriate amount of 0.5%

w/v) chitosan solution was added drop wise to the liposomal sus-
ension under magnetic stirring at room temperature [29]. After
ddition of chitosan, the mixture was left to stir for approximately
h and then incubated overnight at 4 ◦C.
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t

Fig. 1 Chemical structure of (A) DPPC and (B) chitosan.

elease experiment

he release experiments were run immediately after the separa-
ion of the free doxorubicin from that encapsulated in liposomes.
o avoid erroneous results due to sudden temperature changes, the
urified liposome preparations were gradually warmed to 37 ◦C,
t which most of the in vitro experiments were performed. Both
iposomes and chitosan-coated liposomes samples (encapsulating
oxorubicin) were incubated at 37 ◦C for different periods of time.
n appropriate amount from each sample was taken after incuba-

ion and then the fluorescence intensity (Fi, excitation at 470 nm,
mission at 585 nm) was measured using a Perkin Elmer Spectroflu-
rometer LS 55 B (U.K.). To lyse liposomes completely, 100 �l
f Triton X-100 was added and the total fluorescence Ftotal (cor-
esponding to 100% release) was measured. The percentage of
oxorubicin release was calculated by dividing Fi by Ftotal. The
ercentage increase of drug release was plotted as a function of
ime.

ransmission electron microscopy

PPC liposomes and chitosan-coated liposomes were analysed via
egative stain electron microscopy using a JEM 1230 Electron
icroscope (Jeol LTD, Tokyo, Japan). A drop of each liposomal

uspension was applied to copper coated with a carbon grid. The
xcess was drawn off with filter paper. An aqueous solution of

mmonium molybdate (1%, w/v) was used as a negative stain-
ng agent. After waiting for 2 min at room temperature, the excess
olution was removed with a filter paper and then examined under
he electron microscope. The particle size was measured by the
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Characteristics of chitosan-coated liposomes

software (Gatan program) accompanying the transmission electron
microscope.

Zeta potential measurements

Zeta potential of DPPC liposomes and chitosan-coated liposomes
with different chitosan concentrations (0.1–0.5%, w/v) were deter-
mined using the Malvern Zetasizer 2000 (Malvern Instruments,
U.K.) after samples centrifugation at 13,000 rpm for 20 min. Pel-
lets were then re-suspended in double distilled deionised water. The
zeta potential of the chitosan-coated liposomes was measured after
centrifugation to confirm that the liposomes were coated.

Turbidity measurements

Turbidity measurements were monitored as a function of tempera-
ture by continuous recording of optical density at 400 nm using a
UV/VIS Spectrophotometer (Jenway 6405; Barloworld Scientific,
Essex, UK) at 400 nm. The samples were heated by a temperature-
controlled bath. Turbidity profiles were plotted for DPPC liposomes
and chitosan-coated liposomes after coating with two different
amounts (0.5 and 0.75 ml) of 0.5% (w/v) chitosan solution.

Results and discussion

Fig. 2 shows the effect of chitosan coating of DPPC liposomes on
the drug release rate from liposomes at different time intervals. It is
clear that the percentage increase of drug release from liposomes was
reduced after coating with chitosan at all examined time intervals.
For example, after 2.5 h, the percentage increases of drug release
were 34.5% and 29.6% for DPPC liposomes and chitosan-coated
liposomes respectively. Our results are in agreement with those of
previous investigations into the effect of surface coating with poly-
mers to preserve liposome stability [30–32]. The protective effect of
hydrophilic polymer coating depends on the ability of the polymer
to adhere to the lipid bilayers [29]. Mady et al. [27] found that the
interaction between chitosan and DPPC liposomes contributed to
an improvement in the stability of lipid vesicles.

The coating of DPPC liposomes by a chitosan layer was con-

firmed by electron microscope images and the zeta potential of
liposomes [33].

The coating of liposomes by chitosan resulted in a marginal
increase in the size of the liposomes by a coating layer of
(92 ± 27.1 nm). The chitosan layer thickness was measured by the
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b
l

Fig. 3 Transmission electron micrographs of: (a) lipo
ig. 2 Percentage increase of drug release from liposomes and
hitosan-coated liposomes incubated at 37 ◦C (n = 3).

oftware (Gatan) accompanying the transmission electron micro-
cope. Surface morphological studies on the shape of the prepared
ystems using transmission electron microscopy indicated that the
ystems were almost spherical (Fig. 3a). Further, the existence of
hitosan surrounding the liposomes was well visualised on the sur-
ace of chitosan-coated liposomes (Fig. 3b). t-Test was made for
he liposomal size values before and after chitosan coating. P-value
as <0.01, indicating that the difference in liposomal size between

hose with and without the chitosan coating was highly significant.
he interaction between chitosan and liposomes appears due to a
ombination of adsorption coagulation and bridging between them
34].

Zeta potential (ζ potential) is a measure of the surface electrical
harge of particles, and has often been used to characterise colloidal
rug delivery systems. The magnitude of the zeta potential gives an
ndication of the potential stability of the colloidal system. As the
eta potential increases, repulsion between particles will be greater,
eading to a more stable colloidal dispersion. If all particles in sus-
ension have a large negative or positive zeta potential then they
ill tend to repel each other and there will be no tendency for the

articles to come together [10].

Information on the overall charge of chitosan-coated liposomes
y zeta potential measurements can speed up the development of
iposomes with specific, prolonged and controlled release.

somes and (b) chitosan-coated liposomes (n = 3).
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ig. 4 Effect of chitosan at different concentrations on ζ potential of
PPC liposomes (n = 3).

DPPC liposomes showed a slight negative zeta potential, in
greement with the observations of previous studies [35–39]. It is
lear from Fig. 4 that the coating of liposomes by chitosan shifted the
eta potential from slightly negative to positive values. The results
how that DPPC liposomes had positive ζ values after their coating
ith (0.1–0.5%, w/v) chitosan solutions. The liposome zeta poten-

ial was found to be increasingly positive as chitosan concentration
ncreased from 0.1% to 0.3%, before coming to a relatively con-
tant value [40]. The increase of ζ potential can be attributed to more
ationic polymers adsorbed to the liposomal surface. Since chitosan
arries a high positive charge, the adsorption of chitosan appears to
ave increased the density of positive charge and hence made the
eta potential positive. DPPC liposomes are typically nearly neutral
nd the mechanism of coating neutral DPPC liposomes by chitosan
robably involved hydrogen bonding between the polysaccharide
nd the phospholipid head groups [40,41].

Chitosan-coated liposomes have been used as a mucoadhesive
elivery system; their positively charged surface favours adhesion
o the cells membranes, which are normally negatively charged
29,30,40]. The adhesive ability has been shown to be an impor-
ant factor in prolonging retention in the gastro-intestinal tract and
romoting penetration into the mucus layer [33].

The turbidity technique at visible range is a spectroscopic tech-
ique that provides valuable information about membrane phase
ransition temperatures and membrane order [42,43]. Lipid turbidity
tudy has been previously utilised in membrane research [42,44,45].

In the present study, the effect of chitosan was investigated on
ipid-phase transition, order and dynamics, and hydration states of
he head and near the aqueous region of zwitterionic DPPC MLVs
s a function of temperature and amount of chitosan. The chitosan
lone showed no peaks of heat absorption below 100 ◦C and there-
ore no phase transition occurred in this temperature range [46].

Fig. 5 represents the variation in optical density at 400 nm as
function of temperature for DPPC liposomes in the absence and
resence of different amounts of chitosan. As can be seen in the
gure, for pure DPPC liposomes absorbance values decrease as
function of increasing temperature and show two transitions: a

re-transition at nearly 36 ◦C, and a main transition around 41 ◦C of
PPC. These temperatures are very close to the values that have been
eported by calorimetric [47,48] and turbidity studies [43,44]. Tur-
idity studies revealed that coating of DPPC liposomes by chitosan
id not significantly modify the main phase transition temperature
f DPPC at examined chitosan concentrations.
ig. 5 Temperature dependence of optical density for: DPPC lipo-
omes (�) and chitosan-coated liposomes with 0.5 ml chitosan (�) and
.75 ml chitosan (�).

onclusion

hitosan coating resulted in a particle size increase and a more
ositive zeta potential of liposomes, forming a more stable sys-
em. Chitosan coating has a significant effect on drug release
ehaviour, but has no significant effect on the phase transition
emperature of DPPC liposomes. Appropriate combinations of the
iposomal and chitosan characteristics may produce liposomes with
pecific, prolonged and controlled release. The results indicate that
hitosan-coated liposomes may be used either in cosmetology or
harmacology as an effective drug delivery system.
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