Curves
 Math 473
 Introduction to Differential Geometry Lecture 1

Dr. Nasser Bin Turki
King Saud University
Department of Mathematics

September 15, 2018

Curves

How can we describe a curve? There are different ways to describe a curve.
(1) By geometric properties: The set of all points in \mathbb{R}^{2} at the distance 1 from the origin $(0,0)$ is the unit circle with centre at the origin.

Curves

How can we describe a curve? There are different ways to describe a curve.
(1) By geometric properties: The set of all points in \mathbb{R}^{2} at the distance 1 from the origin $(0,0)$ is the unit circle with centre at the origin.
(2) By an equation: as the set of all points $(x, y) \in \mathbb{R}^{2}$ which satisfy the equation $x^{2}+y^{2}=1$:

Curves

How can we describe a curve? There are different ways to describe a curve.
(1) By geometric properties: The set of all points in \mathbb{R}^{2} at the distance 1 from the origin $(0,0)$ is the unit circle with centre at the origin.
(2) By an equation: as the set of all points $(x, y) \in \mathbb{R}^{2}$ which satisfy the equation $x^{2}+y^{2}=1$:

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}
$$

(3) By a parametrisation: as a path of a moving object, see definitions in the following slide.

Space Curves in \mathbb{R}^{3}

Defnation (1):

We define a parametrised curve in \mathbb{R}^{3} as a map $\alpha: I \rightarrow \mathbb{R}^{3}$, where I is an interval in \mathbb{R}.

Space Curves in \mathbb{R}^{3}

Defnation (1):

We define a parametrised curve in \mathbb{R}^{3} as a map $\alpha: I \rightarrow \mathbb{R}^{3}$, where I is an interval in \mathbb{R}.

Examples:

(1): $\alpha: I \mapsto \mathbb{R}^{3}, \alpha(t)=(t, t, t)$ is a parametrisation of a straight line.

Examples: (2): $\alpha: I \mapsto \mathbb{R}^{3}, \alpha(t)=(\cos t, \sin t, t)$ is a Helix

Regular Curve

Defnation (2):

A parametrised curve $\alpha: I \mapsto \mathbb{R}^{3}$ is regular if the map α can be differentiated infinitely many times and

$$
\alpha^{\prime}(t) \neq(0,0,0), \quad \forall t \in I .
$$

Regular Curve

Defnation (2):

A parametrised curve $\alpha: / \mapsto \mathbb{R}^{3}$ is regular if the map α can be differentiated infinitely many times and

$$
\alpha^{\prime}(t) \neq(0,0,0), \quad \forall t \in I
$$

Example: Determine which of the following Curve α is regular:
(1): $\alpha: \mathbb{R} \mapsto \mathbb{R}^{3}, \alpha(t)=(3 t, t-7, t)$

(2): $\alpha: \mathbb{R} \mapsto \mathbb{R}^{3}, \alpha(t)=\left(3 t^{2}, t^{2}-5, t^{3}\right)$

(3): $\alpha: \mathbb{R} \mapsto \mathbb{R}^{3}, \alpha(t)=(\cos t, \sin t, 0)$

(4): $\alpha: \mathbb{R} \mapsto \mathbb{R}^{3}, \alpha(t)=(t \cos t, t \sin t, 5)$

(5): $\alpha: \mathbb{R} \mapsto \mathbb{R}^{3}, \alpha(t)=(\cos t, \sin t, t)$

Thanks for listening.

