Curves Math 473 Introduction to Differential Geometry Lecture 1

Dr. Nasser Bin Turki

King Saud University Department of Mathematics

September 15, 2018

Dr. Nasser Bin Turki Curves Math 473 Introduction to Differential Geometry Lecture 1

How can we describe a curve? There are different ways to describe a curve.

By geometric properties: The set of all points in ℝ² at the distance 1 from the origin (0,0) is the unit circle with centre at the origin.

How can we describe a curve? There are different ways to describe a curve.

- O By geometric properties: The set of all points in ℝ² at the distance 1 from the origin (0,0) is the unit circle with centre at the origin.
- **By an equation:** as the set of all points (x, y) ∈ ℝ² which satisfy the equation x² + y² = 1:

How can we describe a curve? There are different ways to describe a curve.

- O By geometric properties: The set of all points in ℝ² at the distance 1 from the origin (0,0) is the unit circle with centre at the origin.
- **By an equation:** as the set of all points (x, y) ∈ ℝ² which satisfy the equation x² + y² = 1:

$$\{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}.$$

Sy a parametrisation: as a path of a moving object, see definitions in the following slide.

伺 ト イヨト イヨト

Space Curves in \mathbb{R}^3

Defnation (1):

We define a **parametrised curve in** \mathbb{R}^3 as a map $\alpha : I \to \mathbb{R}^3$, where *I* is an interval in \mathbb{R} .

伺 と く ヨ と く ヨ と

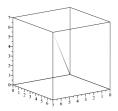
Space Curves in \mathbb{R}^3

Defnation (1):

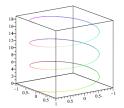
We define a **parametrised curve in** \mathbb{R}^3 as a map $\alpha : I \to \mathbb{R}^3$, where *I* is an interval in \mathbb{R} .

Examples:

(1): $\alpha: I \mapsto \mathbb{R}^3, \alpha(t) = (t, t, t)$ is a parametrisation of a straight line.



Examples: (2): $\alpha : I \mapsto \mathbb{R}^3, \alpha(t) = (\cos t, \sin t, t)$ is a Helix



Regular Curve

Defnation (2):

A parametrised curve $\alpha: I \mapsto \mathbb{R}^3$ is **regular** if the map α can be differentiated infinitely many times and

 $\alpha'(t) \neq (0,0,0), \quad \forall t \in I.$

伺 ト イヨ ト イヨ ト

э

Regular Curve

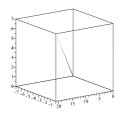
Defnation (2):

A parametrised curve $\alpha: I \mapsto \mathbb{R}^3$ is **regular** if the map α can be differentiated infinitely many times and

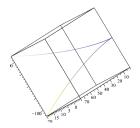
$$\alpha'(t) \neq (0,0,0), \quad \forall t \in I.$$

Example: Determine which of the following Curve α is regular:

(1): $\alpha : \mathbb{R} \mapsto \mathbb{R}^3, \alpha(t) = (3t, t - 7, t)$

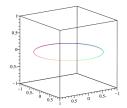


(2):
$$\alpha : \mathbb{R} \mapsto \mathbb{R}^3$$
, $\alpha(t) = (3t^2, t^2 - 5, t^3)$



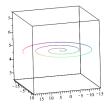
▲口 ▶ ▲母 ▶ ▲目 ▶ ▲目 ▶ ▲日 ● ● ● ●

(3): $\alpha : \mathbb{R} \mapsto \mathbb{R}^3, \alpha(t) = (\cos t, \sin t, 0)$



э

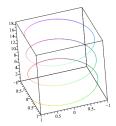
(4): $\alpha : \mathbb{R} \mapsto \mathbb{R}^3, \alpha(t) = (t \cos t, t \sin t, 5)$



э

.⊒ . ►

(5): $\alpha : \mathbb{R} \mapsto \mathbb{R}^3, \alpha(t) = (\cos t, \sin t, t)$



Thanks for listening.

æ