Velocity, Speed and Unit Tangent Vector for Regular Curve Math 473 Introduction to Differential Geometry Lecture 2

Dr. Nasser Bin Turki

King Saud University Department of Mathematics

September 15, 2018

Dr. Nasser Bin Turki Velocity, Speed and Unit Tangent Vector for Regular Curve Math

Defnation (1): Let $\alpha : I \mapsto \mathbb{R}^3$ be a parametrised regular curve in \mathbb{R}^3 . Then,

Defnation (1):

Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a parametrised regular curve in \mathbb{R}^{3} . Then,

• The velocity of α at $t \in I$ is the derivative $\alpha'(t)$.

Defnation (1):

Let $\alpha: I \mapsto \mathbb{R}^3$ be a parametrised regular curve in \mathbb{R}^3 . Then,

- The **velocity** of α at $t \in I$ is the derivative $\alpha'(t)$.
- The speed of the curve α at $t \in I$ is $|\alpha'(t)|$.

Defnation (1):

Let $\alpha: I \mapsto \mathbb{R}^3$ be a parametrised regular curve in \mathbb{R}^3 . Then,

- The **velocity** of α at $t \in I$ is the derivative $\alpha'(t)$.
- The **speed** of the curve α at $t \in I$ is $|\alpha'(t)|$.

Note: Let $\alpha(t) = (x(t), y(t), z(t))$ be a regular curve. Then, we compute the velocity for the curve α as

$$\alpha'(t) = (x'(t), y'(t), z'(t))$$

Defnation (1):

Let $\alpha: I \mapsto \mathbb{R}^3$ be a parametrised regular curve in \mathbb{R}^3 . Then,

- The velocity of α at $t \in I$ is the derivative $\alpha'(t)$.
- The **speed** of the curve α at $t \in I$ is $|\alpha'(t)|$.

Note: Let $\alpha(t) = (x(t), y(t), z(t))$ be a regular curve. Then, we compute the velocity for the curve α as

$$\alpha'(t)=(x'(t),y'(t),z'(t))$$

We compute the speed for the curve α as

$$|\alpha'(t)| = \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2}.$$

Definition (1): Let $\alpha : I \mapsto \mathbb{R}^3$ be a parametrised regular curve in \mathbb{R}^3 , i.e. $|\alpha'(t)| \neq 0 \quad \forall t \in I$.

Defnation (1): Let $\alpha : I \mapsto \mathbb{R}^3$ be a parametrised regular curve in \mathbb{R}^3 , i.e. $|\alpha'(t)| \neq 0 \quad \forall t \in I$. Then, we define the **Unit Tangent Vector** to α at t as

• • = • • = •

Defnation (1):

Let $\alpha : I \mapsto \mathbb{R}^3$ be a parametrised regular curve in \mathbb{R}^3 , i.e. $|\alpha'(t)| \neq 0 \quad \forall t \in I$.

Then, we define the **Unit Tangent Vector** to α at t as

$$T(t) = \frac{\alpha'(t)}{|\alpha'(t)|}$$

• • = • • = •

O check that the curve is regular,

- Check that the curve is regular,
- compute the velocity,

- O check that the curve is regular,
- compute the velocity,
- compute the speed,

- Check that the curve is regular,
- compute the velocity,
- compute the speed,
- or compute the unit tangent vector of the curve.

Dr. Nasser Bin Turki Velocity, Speed and Unit Tangent Vector for Regular Curve Math

O check that the curve is regular,

- One check that the curve is regular,
- compute the velocity,

- One check that the curve is regular,
- compute the velocity,
- compute the speed,

- One check that the curve is regular,
- compute the velocity,
- compute the speed,
- compute the unit tangent vector of the curve.

Thanks for listening.

æ