Arc-length, Unit Speed and Reparametrisation Math 473 Introduction to Differential Geometry Lecture 3

Dr. Nasser Bin Turki

King Saud University Department of Mathematics

September 15, 2018

Dr. Nasser Bin Turki Arc-length, Unit Speed and Reparametrisation Math 473 Introdu

Defnation (1): Let $\alpha : [a, b] \mapsto \mathbb{R}^3$ be a parametrised regular curve. We define the **Length of** α as

$$L=\int_a^b |\alpha'(t)|dt.$$

Defnation (1): Let $\alpha : [a, b] \mapsto \mathbb{R}^3$ be a parametrised regular curve. We define the **Length of** α as

$$L=\int_a^b |\alpha'(t)|dt.$$

Hence, the **arc-length** function of a regular curve $\alpha : I \mapsto \mathbb{R}^3$, measured from $\alpha(t_0)$, where $t_0 \in I$, is

Defnation (1): Let $\alpha : [a, b] \mapsto \mathbb{R}^3$ be a parametrised regular curve. We define the **Length of** α as

$$L=\int_a^b |\alpha'(t)|dt.$$

Hence, the **arc-length** function of a regular curve $\alpha : I \mapsto \mathbb{R}^3$, measured from $\alpha(t_0)$, where $t_0 \in I$, is

$$S(t) = \int_{t_0}^t |\alpha'(u)| du \qquad (t \in I) \ i.e. \quad S: I \mapsto \mathbb{R}.$$

Example(1): Find the Length of the curve $\alpha : \mathbb{R} \mapsto \mathbb{R}^3, \alpha(t) = (\cos t, \sin t, 6)$ from a = 0 to b = 5. Then, find the arc-length where $t_0 = 0$?

• • = • • = •

Example(2): Show that for the curve $\alpha(t) = \frac{1}{2}(t, \frac{1}{t}, \sqrt{2} \ln t)$, where $t \in (0, \infty)$, arc-length measured from t = 1 to $t = t_0$ is

同 ト イヨ ト イヨ ト ニヨ

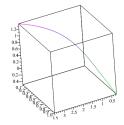
Example(2): Show that for the curve $\alpha(t) = \frac{1}{2}(t, \frac{1}{t}, \sqrt{2} \ln t)$, where $t \in (0, \infty)$, arc-length measured from t = 1 to $t = t_0$ is

$$s(t_0) = \frac{1}{2} \cdot (t_0 - \frac{1}{t_0}).$$

同 ト イヨ ト イヨ ト ニヨ

Example(2): Show that for the curve $\alpha(t) = \frac{1}{2}(t, \frac{1}{t}, \sqrt{2} \ln t)$, where $t \in (0, \infty)$, arc-length measured from t = 1 to $t = t_0$ is

$$s(t_0) = \frac{1}{2} \cdot (t_0 - \frac{1}{t_0}).$$



Defnation (2):

A parametrised curve $\alpha: \mathbf{I} \mapsto \mathbb{R}^3$ is a **unit speed** curve if

$$|\alpha'(t)| = 1$$

for all $t \in I$.

伺 とう きょう く うと

Defnation (2):

A parametrised curve $\alpha: I \mapsto \mathbb{R}^3$ is a **unit speed** curve if

$$|lpha'(t)|$$
 = 1

for all $t \in I$.

Example(3) Show that the curve $\alpha(t) = (\cos t, \sin t, 2)$ is a unit speed curve.

(b) a (B) b (a (B) b)

Note:

Unit speed curves are often easier to work with. But does every curve have a unit speed parametrisation?

• • = • • = •

Note:

Unit speed curves are often easier to work with. But does every curve have a unit speed parametrisation?

Note:

The curve α is a unit speed curve if and only if α is parametrised by its arc-length.

ь « Эь « Эь

Defnation (3): Let $\alpha : I \mapsto \mathbb{R}^3$ be a regular parametrised curve.

回 とう キャット・

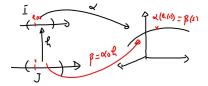
Defnation (3):

Let $\alpha : I \mapsto \mathbb{R}^3$ be a regular parametrised curve. A **parameter transformation** of α is a bijective map $h : J \mapsto I$, where J is an interval in \mathbb{R} , such that the functions $h : J \mapsto I$ and $h^{-1} : I \mapsto J$ can be differentiated infinitely often.

Defnation (3):

Let $\alpha : I \mapsto \mathbb{R}^3$ be a regular parametrised curve. A **parameter transformation** of α is a bijective map $h : J \mapsto I$, where J is an interval in \mathbb{R} , such that the functions $h : J \mapsto I$ and $h^{-1} : I \mapsto J$ can be differentiated infinitely often.

The parametrised curve $\beta = \alpha \circ h : J \mapsto \mathbb{R}^3$ is called a **reparametrisation** of the curve α .



Theorem(1): Let $\alpha : I \mapsto \mathbb{R}^3$ be a regular parametrised curve.

• • = • • = •

Theorem(1):

Let $\alpha : I \mapsto \mathbb{R}^3$ be a regular parametrised curve. Then there exists a parameter transformation $h : J \mapsto I$ for α such that the reparametrisation $\beta = \alpha \circ h : J \mapsto \mathbb{R}^3$ is a unit speed curve.

b) A (B) b) A (B) b

Theorem(1):

Let $\alpha : I \mapsto \mathbb{R}^3$ be a regular parametrised curve. Then there exists a parameter transformation $h : J \mapsto I$ for α such that the reparametrisation $\beta = \alpha \circ h : J \mapsto \mathbb{R}^3$ is a unit speed curve. Moreover, the parameter transformation h has the property h'(n) > 0 for all $n \in J$.

Theorem(1):

Let $\alpha : I \mapsto \mathbb{R}^3$ be a regular parametrised curve. Then there exists a parameter transformation $h : J \mapsto I$ for α such that the reparametrisation $\beta = \alpha \circ h : J \mapsto \mathbb{R}^3$ is a unit speed curve. Moreover, the parameter transformation h has the property h'(n) > 0 for all $n \in J$. **Proof**

In the next lecture.

Thanks for listening.

æ