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Last week 
•  We calculated paramagnetic susceptibility using an entirely 

classical approach and obtained Curie’s Law for a paramagnet. 

•  We saw that quantization of angular momentum (l) and spin (s) 
will be important components of a quantum theory of 
paramagnetism. 
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This week 

We will first learn how to calculate the magnetic dipole  
moment of an atom. 

This requires knowledge of some atomic physics, and 
uses Hund’s rules (rules to work out the relative ordering 
of electronic spins). 

Will compare calculated values with measured data. 



Russell- Saunders coupling  
•  Need to add the spin and angular momentum 

of all electrons in an atom. 

•  L  and  S  combine to give the total angular 
momentum  J  for the atom where,             

  total AM = orbital AM + spin AM 
    

There are rules how we do this addition. These rules 
are called Hund’s rules. 
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Hund’s rules  
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J = L− S
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J = L+ S

1. Full shells and subshells do not contribute to total S , and  L quantum 
numbers."

2. The term with maximum S (termed multiplicity) has the lowest "
energy level."

3. For a given S, the term with the largest value of L "
has the lowest energy."

4. For atoms with shells less than half-full: "

For atoms with shell more than half-full:"

For atoms with shell just half full, then 1. (above) gives L = 0, so "

J = S"



Hund Rules 
•  An atom will always attempt to reach its lowest energy configuration. 

The Hund rules provide a way of determining which energetic 
configuration is the lowest. In general, a greater total spin state usually 
makes the resulting atom more stable, most commonly manifested in a 
lower energy state, because it forces the unpaired electrons to reside in 
different spatial orbitals. 

•  Rule 1 – maximum spin multiplicity. Electrons in singly occupied 
orbitals are less effectively screened or shielded from the nucleus, so 
that such orbitals contract and electron nuclear attraction energy 
becomes greater in magnitude. 

•  Rule 2 – maximum orbital angular momentum This rule deals again 
with reducing the repulsion between electrons. It can be understood 
from the classical picture that if all electrons are orbiting in the same 
direction (higher orbital angular momentum) they meet less often than if 
some of them orbit in opposite directions. When electrons 
‘meet’ (interact) the Coulombic repulsive force increases, which 
separates them. This separation adds potential energy, thereby 
increasing their energy level. 



So how do we calculate the  
magnetic dipole moment of an atom? 
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Both the orbital motion and the spin of the electron 
produce a magnetic dipole moment but, the 
electron spin creates twice as much moment! 

Remember that,    

So for the orbital motion,           
        
        

But   
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(recall magnitude of AM =  )    
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The quantity                  is known as the  Bohr 

magneton it is the fundamental unit of magnetic 
dipole moment.It is given the symbol  µB, 

 its value is 9.274 ×10-24  A m2 

•  From now on we will adopt the symbol  µ  for 
magnetic dipole moment (in place of  m)  so that, 

Orbital magnetic moment 

Spin magnetic moment             
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Vector diagram  
of   µJ , µL, µS  
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The resultant magnetic dipole moment   
µR  does not lie along the  resultant  J, 
- it precesses around  J.  However, it is 
the component  of  µR  which lies 
parallel to  J  that gives the actual 
value of the  magnetic dipole moment, 
since the perpendicular component 
(µ’)  averages to zero. The magnitude 
of this is, a new parameter g is 
obtained by applying the cosine rule 
to the vector triangles shown in the 
figure. 
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“g” is called the “Landé splitting factor”and is given by, 

  

It obviously compensates for the different contributions from 
the orbital motion and the electron spin, since substitution 
shows that, 

                    g = 1   when   S = 0  
(i.e. in an atom with no electron spin contribution) 
              and,       g = 2   when   L = 0  
(i.e. an atom where no AM contribution and all contribution 

to J comes from electron spin) 
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Apply Hund’s Rules 
 Step 1: Add electron spins to give maximum value of S (rule 2) 
   S = (5 x 1/2) = 5/2 

Step 2: Add orbital momenta to give maximum L (rule 3) 
L = -2 + -1 + 0 + 1 + 2 = 0 

Step 3, As shell is half filled, we have  L=0 so J = S = 5/2  

This is as expected for ‘spin-only’ atom, and so 
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Apply Hund’s Rules 
 Step 1: Add electron spins to give maximum value of S (rule 2) 
   S = (4 x 1/2) = 2 

Step 2: Add orbital momenta to give maximum L (rule 3) 
L =  -1 + 0 + 1 + 2 = 2 

Step 3, J = L ± S. As shell is less than half filled, we must have  
J = L - S, Thus J = 2 - 2  = 0 

(not very exciting!! - don’t need to calculate g) 
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How does this work in practice? 

Magnetic 4f electrons are 
well inside electron cloud. 
screened from internal  
crystal fields. 

5p electrons 
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‘Magnetic electrons are now 3d  
Electrons which are outer  
electrons of the transition metals. 
Fully exposed to internal crystalline 
fields. Orbital motion cannot  
contribute to magnetic moment -  
determined by  electron spin alone 

Quenching of the orbital motion. 

Transition metal ions 
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Summary 
 Learned how to calculate the magnetic dipole 

moment of an atom. 

 Introduced the “Landé splitting factor”g. Saw 
that it compensates for the different contributions 
from the orbital motion and the electron spin. 

 Compare calculated values with measured data 


