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Aims

In this lecture, we will . . .

I Introduce the concept of Newton’s General Interpolating Formula

I Introduce the Interpolation with Spline Functions



Newton’s General Interpolating Formula

Since we noted in the previous section that for a small number of data point one
can easily use the Lagrange formula of the interpolating polynomial. However, for
a large number of data points there will be many multiplication and more
significantly, whenever a new data point is added to an existing set, the
interpolating polynomial has to be completely recalculated. Here, we describe an
efficient way of organizing the calculations so as to overcome these disadvantages.



Let us consider the nth-degree polynomial pn(x) that agrees with the function
f(x) at the distinct numbers x0, x1, . . . , xn. The divided differences of f(x)
with respect to x0, x1, . . . , xn are derived to express pn(x) in the form

f(x) = pn(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + · · ·
+ an(x− x0)(x− x1) · · · (x− xn−1), (1)

for appropriate constants a0, a1, . . . , an.
Now to determine the constants, firstly, by evaluating pn(x) at x0, we have

pn(x0) = a0 = f(x0) (2)

Similarly, when pn(x) is evaluated at x1, then

pn(x1) = a0 + a1(x1 − x0) = f(x1),

which implies that

a1 =
f(x1)− f(x0)

x1 − x0
. (3)



divided differences

Now we express the interpolating polynomial in terms of divided difference.
Firstly, we define the Zeroth divided difference at the point xi by

f [xi] = f(xi), (4)

which is simply the value of the function f(x) at xi.
The first-order or first divided difference at the points xi and xi+1 can be
defined by

f [xi, xi+1] =
f [xi+1]− f [xi]

xi+1 − xi
=

f(xi+1)− f(xi)

xi+1 − xi
. (5)



In general, the nth divided difference f [xi, xi+1, . . . , xi+n] is defined by

f [xi, xi+1, . . . , xi+n] =
f [xi+1, xi+2, . . . , xi+n]− f [xi, xi+1, . . . , xi+n−1]

xi+n − xi
. (6)

By using this definition, (2) and (3) can be written as

a0 = f [x0]; a1 = f [x0, x1],

respectively. Similarly, one can have the values of other constants involving in (1)
such as

a2 = f [x0, x1, x2],
a3 = f [x0, x1, x2, x3],
· · · = · · ·
· · · = · · ·
an = f [x0, x1, . . . , xn].

Table: Divided difference table for a function y = f(x)

Zero First Second Third
Divided Divided Divided Divided

k xk Difference Difference Difference Difference
0 x0 f [x0]
1 x1 f [x1] f [x0, x1]
2 x2 f [x2] f [x1, x2] f [x0, x1, x2]
3 x3 f [x3] f [x2, x3] f [x1, x2, x3] f [x0, x1, x2, x3]



Putting the values of these constants in (1), we get

f(x) = pn(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1)

+ · · ·+ f [x0, x1, . . . , xn](x− x0)(x− x1) · · · (x− xn−1), (7)

which can also be written as

f(x) = pn(x) = f [x0] +
n∑

k=1

f [x0, x1, . . . , xk](x− x0)(x− x1) · · · (x− xk−1). (8)

This type of polynomial is known as the Newton’s interpolatory divided difference
polynomial. Table 1 shows the divided difference for a function f(x).



Example 0.1
Construct the fourth divided differences table for f(x) = 4x4 + 3x3 + 2x2 + 10 for
the values x = 3, 4, 5, 6, 7, 8.
Solution. The result are listed in Table 2.
From the results in Table 2, one can note that the nth divided difference for the
nth polynomial equation is always constant and the (n+1)th divided difference is
always zero for the nth polynomial equation. •

Table: Divided differences table for f(x) = ex at given points

Zeroth First Second Third Fourth Fifth
Divided Divided Divided Divided Divided Divided

k xk Difference Difference Difference Difference Difference difference
0 3 433
1 4 1258 825
2 5 2935 1677 426
3 6 5914 2979 651 75
4 7 10741 4827 924 91 4
5 8 18058 7317 1245 107 4 0



Linear Newton’s Interpolating Polynomial

The linear Newton’s interpolating polynomial passing through two points
(x0, f(x0)) and (x1, f(x1)) can be written as

f(x) = p1(x) = f [x0] + (x− x0)f [x0, x1].

The quadratic Newton’s interpolating polynomial passing through the
points (x0, f(x0)),
(x1, f(x1)) and (x2, f(x2)) can be written in terms of divided differences as

f(x) = p2(x) = f [x0] + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2].

This polynomial can also be written as

f(x) = p2(x) = p1(x) + (x− x0)(x− x1)f [x0, x1, x2],

that is, the interpolating polynomial of degree 2 makes full use of the polynomial
of degree 1, simply adding one extra term to p1(x). This is one of the advantages
of the Newton’s polynomial over Lagrange polynomial.



Cubic Newton’s Interpolating Polynomial

Similarly, the cubic Newton’s interpolating polynomial passing through the points
(x0, f(x0)),
(x1, f(x1)), (x2, f(x2)) and (x3, f(x3)) can be written in terms of divided
differences as

f(x) = p3(x) = f [x0]+(x−x0)f [x0, x1]+(x−x0)(x−x1)f [x0, x1, x2]+(x−x0)(x−x1)(x−x2)f [x0, x1, x2, x3].

This polynomial can also be written as

p3(x) = p2(x) + (x− x0)(x− x1)(x− x2)f [x0, x1, x2, x3],

that is, the interpolating polynomial of degree 3 makes full use of the polynomial
of degree 2, simply adding one extra term to p2(x). Note that using linear
polynomial in quadratic polynomial, the starting point x0 for both polynomials
should be same.



Nth Degree Newton’s Interpolating Polynomial

Repeating this entire process again, p3(x), p4(x) and higher degree interpolating
polynomials can be consecutively obtained in the same way. In general, the
interpolating polynomial pn(x) passing through the points
(xi, f(xi))(i = 0, 1, . . . , n), can be written in terms of divided differences as

f(x) = pn(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1)

+ · · ·+ f [x0, x1, . . . , xn](x− x0)(x− x1) · · · (x− xn−1), (9)

which can also be written as

f(x) = pn(x) = f [x0] +
n∑

k=1

f [x0, x1, . . . , xk](x− x0)(x− x1) · · · (x− xk−1), (10)

or

f(x) = pn(x) = f [x0] +
n∑

k=0

f [x0, x1, · · · , xk]

k−1∏
i=0

(x− xi). (11)

This type of polynomial is known as the Newton’s interpolatory divided difference
polynomial.



Theorem 1
(Newton’s Interpolating Polynomial)
Suppose that x0, x1, . . . , xn are (n + 1) distinct points in the interval [a, b]. There
exists a unique polynomial pn(x) of degree at most n with the property that

f(xi) = pn(xi), for i = 0, 1, . . . , n.

The Newton’s form of this polynomial is

f(x) = pn(x) = a0+a1(x−x0)+a2(x−x0)(x−x1)+· · ·+an(x−x0)(x−x1) · · · (x−xn−1),

where
ak = f [x0, x1, x2, · · · , xk], for k = 0, 1, 2, . . . , n.

•



Example 0.2
Show that the Newton’s interpolating polynomial p2(x) of degree 2 satisfies the
interpolation conditions

p2(xi) = f(xi), i = 0, 1, 2.

Solution. Since the Newton’s interpolating polynomial of degree 2 is

f(x) = p2(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1).

First take x = x0, we have

p2(x0) = f [x0] + 0 + 0 = f(x0).

Now take x = x1, we have

p2(x1) = f [x0] + f [x0, x1](x1 − x0) + 0 = f(x0) +
f(x1)− f(x0)

x1 − x0
(x1 − x0),

it gives
p2(x1) = f(x0) + f(x1)− f(x0) = f(x1).



Finally, take x = x2, we have

p2(x2) = f [x0] + f [x0, x1](x2 − x0) + f [x0, x1, x2](x2 − x0)(x2 − x1),

which can be written as

p2(x2) = f [x0] + f [x0, x1](x2 − x0) +
f [x1, x2]− f [x0, x1]

x2 − x0
(x2 − x0)(x2 − x1).

It gives

p2(x2) = f [x0]+f [x0, x1](x2−x1+x1−x0)+f [x1, x2](x2−x1)−f [x0, x1](x2−x1),

or
p2(x2) = f [x0] + f [x0, x1](x1 − x0) + f [x1, x2](x2 − x1).

From (5), we have

p2(x2) = f [x0] +
f(x1)− f(x0)

x1 − x0
(x1 − x0) +

f(x2)− f(x1)

x2 − x1
(x2 − x1),

which gives

p2(x2) = f(x0) + f(x1)− f(x0) + f(x2)− f(x1) = f(x2).

•



Example 0.3
The cubic Newton’s polynomial p3(x) = 2− (x + 1) + x(x + 1)− 2x(x + 1)(x− 1)
interpolates the first four points in the following table:

x −1 0 1 2 3
f(x) 2 1 2 −7 10

By adding one additional term (3, 10) to p3(x), find Newton’s polynomial p4(x)
that interpolates the whole table and then use it to find the approximation of
f(0.5).

Solution. Since the Newton’s polynomial for the whole table data points is the
four degree Newton’s interpolating polynomial and it can be written as

f(x) = p4(x) = p3(x) + x(x + 1)(x− 1)(x− 2)f [x0, x1, x2, x3].

Now to find fourth divided difference f [x0, x1, x2, x3], we have to construct the
required divided differences table. The result are listed in Table 3.

Table: Divided differences table for f(x) = ex at given points

Zeroth First Second Third Fourth
Divided Divided Divided Divided Divided

k xk Difference Difference Difference Difference difference
0 -1 2
1 0 1 -1
2 1 2 1 1
3 2 -7 -9 -5 -2
4 3 10 17 13 6 2



Thus the Newton’s interpolating polynomial passing through all the given data
points is

f(x) = p4(x) = 2− (x + 1) + x(x + 1)− 2x(x + 1)(x− 1) + 2x(x + 1)(x− 1)(x− 2).

Thus at x = 0.5, we get
f(0.5) ≈ p4(0.5) = 3.1250,

the required approximation of the function. •



Example 0.4
Consider the following table of date points

x 3 1 5 6
f(x) 1 −3 2 4

Find the third divided difference f [3, 1, 5, 6] and use it to find the Newton’s form
of the interpolating polynomial. Find approximation of f(2).

Solution. The third divided differences for the given data points are listed in
Table 4.

Table: Divided difference table for a function y = f(x)

Zero First Second Third
Divided Divided Divided Divided

k xk Difference Difference Difference Difference
0 x0 = 3 f [x0] = 1
1 x1 = 1 f [x1] = −3 f [x0, x1] = 2
2 x2 = 5 f [x2] = 2 f [x1, x2] = 5/4 f [x0, x1, x2] = −3/8
3 x3 = 6 f [x3] = 4 f [x2, x3] = 2 f [x1, x2, x3] = 3/20 A

where f [x0, x1, x2, x3] = 7/40.



The cubic Newton’s interpolating polynomial passing through the given points can
be written as

p3(x) = f [x0]+(x−x0)f [x0, x1]+(x−x0)(x−x1)f [x0, x1, x2]+(x−x0)(x−x1)(x−x2)f [x0, x1, x2, x3],

so using Table 4, we have

f(x) = p3(x) = 1 + 2(x− x0)−
3

8
(x− x0)(x− x1) +

7

40
(x− x0)(x− x1)(x− x2),

or

f(x) = p3(x) =
1

40
[7x3 − 78x2 + 301x− 350].

Thus at x = 2, we get

f(2) ≈ p3(2) =
1

40
[7(2)3 − 78(2)2 + 301(2)− 350] = −

1

10
,

the required approximation of the function at x = 2. •



Interpolation with Spline Functions

In the previous sections we studied the use of interpolation polynomials for
approximating the values of the functions on closed intervals. An alternative
approach is divide the interval into a collection of subintervals and construct a
different approximating polynomial on each subinterval. Approximation by
polynomial of this type is called piecewise polynomial approximation. Here, we
will discuss some of the examples of a piecewise curve fitting techniques; the
use of the piecewise linear interpolation.



Definition 2
(Spline Function)
Let a = x0 < x1 < x2 · · · < xn = b. A function s : [a, b]→ R is a spline or spline
function of degree m with points x0, x1, . . . , xn if:
1. A function s is a piecewise polynomial such that, on each subinterval
[xk, xk+1], s has degree at most m.
2. A function s is m− 1 times differentiable everywhere. •
A spline is a flexible drafting device that can be constrained to pass smoothly
through a set of plotted data points. Spline functions are a mathematical tool
which is an adaptation of this idea.



Piecewise Linear Interpolation
It is the one of the simplest piecewise polynomial interpolation for the
approximation of the function, called linear spline. The linear spline is continuous
function and the basic of it is simply connect consecutive points with straight
lines. Consider the set of seven data points (x0, y0), (x1, y1), (x2, y2),
(x3, y3), (x4, y4), (x5, y5) and (x6, y6) which define six subintervals. These intervals
are denoted as [x0, x1], [x1, x2], [x2, x3], [x3, x4], [x4, x5] and [x5, x6], where
x0, x1, x2, x3, x4, x5, and x6 are distinct x-values. If we use a straight line on each
subinterval (see Figure 1) then we can interpolate the data with a piecewise linear
function, where

sk(x) = pk(x) =
(x− xk+1)

(xk − xk+1)
yk +

(x− xk)

(xk+1 − xk)
yk+1,

or

sk(x) = yk +
(yk+1 − yk)

(xk+1 − xk)
(x− xk).
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Figure: Linear spline.



It gives us
sk(x) = Ak + Bk(x− xk), (12)

where the values of the coefficients Ak and Bk are given as

Ak = yk and Bk =
(yk+1 − yk)

(xk+1 − xk)
. (13)

Note that the linear spline must be continuous at given points x0, x1, . . . , xn and

s(xk) = f(xk) = yk, for k = 0, 1, . . . , n.



Example 0.5
Find the linear splines which interpolates the following data

xk 1 2 3 4
yk 1.0 0.67 0.50 0.40

Find the approximation of the function y(x) =
2

x + 1
at x = 2.9. Compute

absolute error.

Solution. Given x0 = 1.0, x1 = 2.0, x2 = 3.0, x3 = 4.0, then using (13), we have

A0 = y0 = 1.0, A1 = y1 = 0.67, A2 = y2 = 0.50, A3 = y3 = 0.4,

and

B0 =
(y1 − y0)

(x1 − x0)
=

(0.67− 1.0)

(2.0− 1.0)
= −0.33,

B1 =
(y2 − y1)

(x2 − x1)
=

(0.50− 0.67)

(3.0− 2.0)
= −0.17,

B2 =
(y3 − y2)

(x3 − x2)
=

(0.40− 0.50)

(4.0− 3.0)
= −0.10.



Now using (12), the linear splines for three subintervals are define as

s(x) =

 s0(x) = 1.0− 0.33(x− 1.0) = 1.33− 0.33x, 1 ≤ x ≤ 2,
s1(x) = 0.67− 0.17(x− 2.0) = 1.01− 0.17x, 2 ≤ x ≤ 3,
s2(x) = 0.50− 0.10(x− 3.0) = 0.80− 0.10x, 3 ≤ x ≤ 4.

The value x = 2.9 lies in the interval [2, 3], so

f(2.9) ≈ s1(2.9) = 1.01− 0.17(2.9) = 0.517.

Also,
|f(2.9)− s1(2.9)| = |0.513− 0.517| = 0.004,

the required absolute error. •



Summary

In this lecture, we ...

I Introduced the concept of Newton’s General Interpolating Formula

I Introduced the Interpolation with Spline Functions


