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Aims

In this lecture, we will . . .

I discuss Trapezoidal and Simpson’s rules for numerical integration.



Numerical Integration
Numerical methods of integration represent a natural alternative whenever
conventional methods fail to yield a solution.
Now for numerical integration, we wish to find an approximation to the definite
integral

I(f) =

∫ b

a
f(x)dx, (1)

assuming that f(x) is integrable . If f(x) ≥ 0 on the given interval [a, b], then
geometrically, the integral (1) is equivalent to replacing the area under the graph
of f(x), the x-axis and between the ordinates x = a and x = b.
The definite integral (1) may be interpreted as the area under the curve of
y = f(x) from a to b as shown by Figure 1.
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Figure: Definite integral for f(x)



An obvious approach is to replace a function f(x) in the integral (1) by an
approximating polynomial p(x), that is

I(f) =

∫ b

a
f(x)dx ≈

∫ b

a
p(x)dx.

Numerical integration formulas are derived by integrating interpolation
polynomials. Therefore, different interpolation formulas will leads to different
numerical integration methods.
Many numerical methods for integration are based on using this interpretation of
the integral to derive approximations to it by dividing the interval [a, b] into a
number of smaller subintervals. By making simple approximations to the curve
y = f(x) in the small subinterval its area may be obtained and on summing all the
contributions we obtain an approximation to a integral in the interval [a, b].
Variations of this technique are derived by taking groups of subintervals and
fitting different degree polynomials as approximations for each of these groups.
The lead of accuracy obtained is dependent on the number of intervals used and
the nature the approximation function. There are several methods available in the
literature for numerical integration but the most commonly methods may be
classified into two groups.

(a) The Newton-Cotes formulas that employ functional values at equally spaced
data points.

(b) The Gaussian quadrature formulas that employ unequally spaced data points
determined by certain properties of orthogonal polynomials.



Firstly, we shall discuss the Newton-Cotes formulas which has two different types,
called, the closed Newton-Cotes formulas and the open Newton-Cotes formulas. In
the first type, we shall discuss in some details the two mostly usable formulas,
called the Trapezoidal rule and the Simpson’s rule which can be derived by
integrating the Lagrange interpolating polynomials of degree 1 and 2 respectively.
In the second type we shall consider some good formulas. The use of the closed
Newton-Cotes and other integration formulas of order higher than the Simpson’s
rule is seldom necessary in most engineering applications and can be use for those
cases where extremely high accuracy is required.



Newton-Cotes Formulas

The usual strategy in developing formulas for numerical integration is similar to
that for numerical differentiation. We pass a polynomial through points of a
function and then integrate this polynomial approximation to a function. This
allows us to integrate a function known only as a table of values. Some common
formulas based on polynomial interpolation are referred to as the Newton-Cotes
formulas.
An (n+ 1)-point Newton-Cotes formula for approximating the definite integral (1)
is obtained by replacing the integrand f(x) by the nth-degree Lagrange
polynomial that interpolates the values of f(x) at equally spaced data points

a = x0 < x1 < . . . < xn = b.

Note that if the end-points a and b of the given interval [a, b] are in the set of
interpolating points; then the Newton-Cotes formulas are called closed; otherwise,
it is said to be open.



Closed Newton-Cotes Formulas

An (n+ 1)-point closed Newton-Cotes formula used points xi = x0 + ih, for,

i = 0, 1, 2, . . . , n, where x0 = a, xn = b and h =
b− a
n

, has the form (see Figure 2)

∫ b

a
f(x)dx =

∫ xn

x0

f(x)dx ≈
n∑

i=0

aif(xi), (2)

where

ai =

∫ xn

x0

Li(x)dx =

∫ xn

x0

n∏
j=0
j 6=i

(x− xj)

(xi − xj)
dx. (3)

The following theorem describes the error analysis associated with the above
closed Newton-Cotes formulas.



Theorem 1
(Close Newton-Cotes Formulas)

Suppose that
n∑

i=0

aif(xi) denotes the (n+ 1)-point closed Newton-Cotes formula

with x0 = a, xn = b, and h = (b− a)/n. There exists η(x) ∈ (a, b) for which∫ b

a
f(x)dx =

n∑
i=0

aif(xi) +
hn+3f (n+2)(η(x))

(n+ 2)!

∫ n

0
t2(t− 1) · · · (t− n)dt, (4)

if n is even and f ∈ Cn+2[a, b]. For f ∈ Cn+1[a, b], and n is odd, then∫ b

a
f(x)dx =

n∑
i=0

aif(xi) +
hn+2f (n+1)(η(x))

(n+ 1)!

∫ n

0
t(t− 1) · · · (t− n)dt. (5)
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Figure: Close Newton-Cotes approximation



Different numerical integration formulas can be obtained by using the formulas (4)
and (5) to approximate the definite integral (1). By using the formula (5) for
n = 1, we have well-known numerical integration formula, called, the Trapezoidal
rule. Similarly, by using the formula (4) for n = 2, we have one of the best
integration rule called, the Simpson’s rule. We shall discuss the formulation of
both these rules and also discuss about their error terms. Later we shall also
consider some more closed Newton-Cotes formulas.



Simple Trapezoidal Rule
It is one of the oldest and good numerical method for approximating the definite
integral (1). It is based on approximating a function in each subinterval by a
straight line.
To derive the Trapezoidal rule for one-strip (one interval), let us consider the
first degree Lagrange interpolating polynomial with equally spaced data points,
that is, x0 = a, x1 = b and h = x1 − x0, then

f(x) = p1(x) =

(
x− x1
x0 − x1

)
f(x0) +

(
x− x0
x1 − x0

)
f(x1). (6)

Taking integral on both sides of (6) with respect to x between the limits x0 and
x1, we have∫ x1

x0

f(x)dx ≈
f(x0)

x0 − x1

∫ x1

x0

(x− x1)dx+
f(x1)

x1 − x0

∫ x1

x0

(x− x0)dx,

which implies that∫ x1

x0

f(x)dx ≈
f(x0)

x0 − x1

 (x− x1)2

2

∣∣∣∣∣
x1

x0

+
f(x1)

x1 − x0

 (x− x0)2

2

∣∣∣∣∣
x1

x0


≈

(x1 − x0)

2
[f(x0) + f(x1)],

and by taking h = x1 − x0, we get∫ b=x1

a=x0

f(x)dx ≈ T1(f) =
h

2
[f(x0) + f(x1)]. (7)



Then T1(f) is called the simple Trapezoidal rule or the Trapezoidal rule for one
trapezoid or one strip and can be use for the approximation of the definite integral
(1). The reason for calling this formula the Trapezoidal rule is that when f(x) is a
function with positive values, the integral (1) is approximated by the area in the
trapezoid, see Figure 3.
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Figure: Simple Trapezoidal rule.



Example 0.1
Approximate the following integral∫ 2

1

1

x+ 1
dx,

using the simple Trapezoidal rule and compute the absolute error.

Solution. Given f(x) =
1

x+ 1
and h = 1, so using the simple Trapezoidal rule

(7), gives

T1(f) =
1

2
[f(1) + f(2)] = 0.4167.

The exact solution of the given integral is

I(f) = ln(3/2) = 0.4055, so |ET1 (f)| = |I(f)−T1(f)| = |0.4055−0.4167| = 0.0112,

is the required absolute error. •



Composite Trapezoidal Rule

It is evident that the Newton-Cotes formulas produce accurate approximations to
the definite integral (1) only when the limits a and b are close together, that is,
the integration interval is not large. Formulas based on low-degree interpolating
polynomials are clearly unsuitable since it is then necessary to use large values of
h. Also, note that higher-order Newton-Cotes formulas will not necessarily
produce more accurate approximations to the given integral. This difficulty can be
avoided by using a piecewise approach; the integration interval is divided into
subintervals and low-order formulas are applied on each of these. The
corresponding integration rules are said to be in composite form, and the most
suitable formula of this type make use of the Trapezoidal rule. The interval [a, b] is
partitioned into n subintervals (xi−1, xi), i = 1, 2, . . . , n with a = x0 and b = xn
of equal width h = (b− a)/n and the rule for a single interval (the simple rule (7))
is applied to each subinterval or a grouping of subintervals (see Figure 4). Since
the Trapezoidal rule requires only one interval for application, there is no
restriction on the integer n. We define the composite Trapezoidal rule in the form
of the following theorem.



Theorem 2
(Composite Trapezoidal Rule)
Let f ∈ C2[a, b], n may be odd or even, h = (b− a)/n, and xi = a+ ih for each
i = 0, 1, 2, . . . , n. Then the composite Trapezoidal rule for n subintervals can be
written as ∫ b=xn

a=x0

f(x)dx ≈ Tn(f) =
h

2

[
f(a) + 2

n−1∑
i=1

f(xi) + f(b)

]
. (8)
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Figure: Composite Trapezoidal rule.



Example 0.2

Evaluate the integral

∫ 1

0
e4xdx by using the Trapezoidal rule with n = 1, 2, 4, 8.

Also compute the corresponding absolute errors.
Solution. For n = 1, we use the formula (7) for h = 1, as follows

T1(f) =
1

2

[
f(0) + f(1)

]
= 27.7991.

For n = 2, using the formula (8) and h = 0.5, we have

T2(f) =
0.5

2

[
f(0) + 2f(0.5) + f(1)

]
= 17.5941.

For n = 4, using the formula (8) and h = 0.25, we have

T4(f) =
0.25

2

[
f(0) + 2[f(0.25) + f(0.5) + f(0.75)] + f(1)

]
= 14.4980.

Finally, for n = 8, using (8) and h = 0.125, we have

T8(f) =
0.125

2

[
f(0) + 2[f(0.125) + f(0.25) + f(0.375) + f(0.5)

+ f(0.625) + f(0.75) + f(0.875)] + f(1)
]

= 13.6776.



Error Terms for Trapezoidal Rule

We discuss the error for the simple Trapezoidal rule (7) in the from of the
following theorem and then we use it to define the error for the composite
Trapezoidal rule (8).

Theorem 3
(Error term for Simple Trapezoidal Rule)
Let f ∈ C2[a, b], and h = (b− a). The local error that the simple Trapezoidal rule
(7) makes in estimating the definite integral (1) is

ET1
(f) = −

h3

12
f ′′(η(x)), (9)

where η(x) ∈ (a, b).



Example 0.3
Compute the local error for the Trapezoidal rule (7) using the integral∫ 2

1

1

x+ 1
dx.

Solution. Given f(x) =
1

x+ 1
and [a, b] = [1, 2], then the second derivative of the

function is

f ′′(x) =
2

(x+ 1)3
.

Since the error formula for the simple Trapezoidal rule is

ET1
(f) = −

h3

12
f ′′(η(x)), where η(x) ∈ (1, 2).

This formula cannot be computed exactly because η(x) is not known. But one can
bound the error by computing the largest possible value for |f ′′(η(x))|.



Bound |f ′′(η(x))| on [1, 2] is

M = max
1≤x≤2

∣∣∣ 2

(x+ 1)3

∣∣∣ = 0.25.

Then, for |f ′′(η(x))| ≤M , we have

|ET1
(f)| ≤

h3

12
M.

Using M = 0.25 and h = 1, we get

|ET1
(f)| ≤

0.25

12
= 0.0208.



Error Term for Composite Trapezoidal Rule
The global error of the Trapezoidal rule (8) equals the sum of n local errors of the
Trapezoidal rule (7), that is

ETn (f) = −
h3

12
f ′′(η1(x))−

h3

12
f ′′(η2(x))− · · · −

h3

12
f ′′(ηn(x)),

which can also written as

ETn (f) = −
h3

12

n∑
i=1

f ′′(ηi(x)), for ηi(x) ∈ (xi−1, xi),

or

ETn (f) = −
h3

12
nf ′′(η(x)),

where f ′′(η(x)) is the average of the n individual values of the second derivative.

Since n =
b− a
h

, thus the global error in the composite Trapezoidal rule (8) is

ETn (f) = −
h2

12
(b− a)f ′′(η(x)), η(x) ∈ (a, b). (10)

Hence ∫ b

a
f(x)dx =

h

2

[
f(a) + 2

n−1∑
i=1

f(xi) + f(b)

]
−
h2

12
(b− a)f ′′(η(x)), (11)

for η(x) ∈ (a, b), is the composite Trapezoidal rule with its error term.



Note that whereas the simple Trapezoidal rule (7) has a truncation error of order
h3, the composite Trapezoidal rule (8) has an error of order h2. This means that
when h is halved and the number of subintervals is doubled the error decreases by
a factor of approximately four (assuming that f ′′(η(x)) remains fairly constant
throughout [a, b]). Of course, it is also possible to express the truncation error in

terms of n rather than h. Since h =
b− a
n

, it follows that the global truncation

error (10) is of order O(n2).



Example 0.4

Consider the integral I(f) =

∫ 2

1
ln(x+ 1)dx; n = 6.

(a) Compute the approximation of the integral using the composite Trapezoidal
rule.
(b) Compute the error bound for your approximation using the formula (10).
(c) Compute the absolute error.
(d) How many subintervals approximate the given integral to an accuracy of at
least 10−4 using the composite Trapezoidal rule ?

Solution. (a) Given f(x) = ln(x+ 1), n = 6, and so h =
2− 1

6
=

1

6
, then the

composite Trapezoidal rule (8) for n = 6, can be written as

T6(f) =
1/6

2

[
ln(1 + 1) + 2

(
ln
(7

6
+ 1
)

+ ln
(8

6
+ 1
)

+ ln
(9

6
+ 1
)

+ ln
(10

6
+ 1
)

+ ln
(11

6
+ 1
))

+ ln(2 + 1)
]
.

Hence ∫ 2

1
ln(x+ 1)dx ≈ T6(f) =

1

12
[0.6932 + 2(4.5591) + 1.0986] = 0.9092.



(b) The second derivative of the function can be obtain as

f ′(x) =
1

(x+ 1)
and f ′′(x) =

−1

(x+ 1)2
.

Since η(x) is unknown point in (1, 2), therefore, the bound |f ′′| on [1, 2] is

M = max
1≤x≤2

|f ′′(x)| =
∣∣∣ −1

(x+ 1)2

∣∣∣ = 0.25.

Thus the error formula (10) becomes

|ET6
(f)| ≤

(1/6)2

12
(0.25) = 0.0006,

which is the possible maximum error in our approximation in part (a).
(c) The absolute error |E| in our approximation is given as

|E| = |(3 ln 3− 2 ln 2− 1)− T6(f)| = |0.9095− 0.9092| = 0.0003.

(d) To find the minimum subintervals for the given accuracy, we use the formula
(10) such that

|ETn (f)| ≤
| − (b− a)3|

12n2
M ≤ 10−4,

where h = (b− a)/n. Since M = 0.25, then solving for n2, we obtain

n2 ≥ 208.3333, gives n ≥ 14.4338.

Hence to get the required accuracy, we need 15 subintervals. •



Simple Simpson’s Rule

The Trapezoidal rule approximates the area under a curve by the area of trapezoid
formed by connecting two points on the curve by straight line. The Simpson’s
rule gives a more accurate approximation since it consists of connecting three
points on the curve by second-degree parabola and the area under the parabola to
obtain the approximate area under the curve, see Figure 5.
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Figure: Simple Simpson’s rule.



Let us consider the second-degree Lagrange interpolating polynomial, with equally
spaced base points, that is, x0 = a, x1 = a+ h and x2 = a+ 2h, with
h = (b− a)/2, then

f(x) = p2(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0) +

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
f(x1)

+
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f(x2).

Taking integral on both sides of the above equation with respect to x between the
limits x0 and x2, we have∫ x2

x0

f(x)dx ≈
f(x0)

(x0 − x1)(x0 − x2)

∫ x2

x0

(x− x1)(x− x2)dx

+
f(x1)

(x1 − x0)(x1 − x2)

∫ x2

x0

(x− x0)(x− x2)dx

+
f(x2)

(x2 − x0)(x2 − x1)

∫ x2

x0

(x− x0)(x− x1)dx,

which implies that ∫ b

a
f(x)dx ≈

f(x0)

2h2
I1 +

f(x1)

−h2
I2 +

f(x2)

2h2
I3,

where

I1 =

∫ x2

x0

(x− x1)(x− x2)dx; I2 =

∫ x2

x0

(x− x0)(x− x2)dx; I3 =

∫ x2

x0

(x− x0)(x− x1)dx.



Solving above three integrals by using integration by parts, we obtain the values of
I1, I2 and I3 as follows

I1 =
2h3

3
, I2 = −

4h3

3
, I3 =

2h3

3
.

By using these values, we have∫ b

a
f(x)dx ≈

f(x0)

2h2

(
2h3

3

)
+
f(x1)

−h2

(
−4h3

3

)
+
f(x2)

2h2

(
2h3

3

)
.

Simplifying, gives∫ b

a
f(x)dx ≈ S2(f) =

h

3
[f(x0) + 4f(x1) + f(x2)]. (12)

which is called the simple Simpson’s rule or Simpson’s rule for two strips (or 3
points).



Example 0.5
Approximate the following integral∫ 2

1

1

x+ 1
dx,

using simple Simpson’s rule. Compute the actual error.

Solution. Since f(x) =
1

x+ 1
and h = (2− 1)/2 = 0.5, then by using Simpson’s

rule (12), we have

S2(f) =
0.5

3

[
f(1) + 4f(1.5) + f(2)

]
= (0.1667)[0.5 + 1.6 + 0.3333] = 0.4056.

Hence ∫ 2

1

1

x+ 1
dx ≈ S2(f) = 0.4056.

Since the exact solution of the given integral is, 0.4055, therefore, the actual error
is

ES2
= I(f)− S2(f) = −0.0001.

To compare this error with the error got by using the simple Trapezoidal rule, the
error in Simpson’s rule is much smaller than for the Trapezoidal rule by a factor of
about 123, a significant increase in accuracy. •



Example 0.6
Use simple Simpson’s rule to show that∫ 1.6

1

2

x
dx < 1 <

∫ 1.7

1

2

x
dx.

Solution. Given f(x) =
2

x
and take h = (1.6− 1)/2 = 0.3, then by using

Simpson’s rule (12), we have

S2(f) =
0.3

3

[
f(1) + 4f(1.3) + f(1.6)

]
= (0.1)[2 + 6.1538 + 1.25] = 0.9404.

Now taking h = (1.7− 1)/2 = 0.35, then by using Simpson’s rule (12), we have

S2(f) =
0.35

3

[
f(1) + 4f(1.35) + f(1.7)

]
= (0.1167)[2 + 5.9260 + 1.1764] = 1.0623.

Hence
0.9404 < 1 < 1.0623,

the required result. •



Example 0.7
Let f be defined by

f(x) =

{
x2 − x+ 1, if 0 ≤ x ≤ 1,
2x− 1, if 1 ≤ x ≤ 2.

Approximate the integral

∫ 2

0
f(x)dx by using Simpson’s rule with n = 2.

Solution. Since one can know that∫ 2

0
f(x)dx =

∫ 1

0
f(x)dx+

∫ 2

1
f(x)dx,

and we are given∫ 2

0
f(x)dx =

∫ 1

0
(x2 − x+ 1)dx+

∫ 2

1
(2x− 1)dx.

First we find the approximation of the first integral on the right hand side of
above equation for n = 2, using the formula (12) and h = 0.5, we have

I1(f) ≈
0.5

3

[
f(0) + 4f(0.5) + f(1)

]
≈

0.5

3

[
1 + 3 + 1

]
≈ 0.8333.



Now we find the approximation of the second integral on the right hand side of
above equation for n = 2, using the formula (12) and h = 0.5, we have

I2(f) ≈
0.5

3

[
f(1) + 4f(1.5) + f(2)

]
≈

0.5

3

[
1 + 8 + 3

]
≈ 2.0000.

Hence ∫ 2

0
f(x)dx = I1(f) + I2(f) ≈ 0.8333 + 2.000 = 2.83333,

the required approximation of the given integral. •



Composite Simpson’s Rule

Just as with the simple Trapezoidal rule (7), the simple Simpson’s rule (12) can be
improved by dividing the integration interval [a, b] into a number of subintervals of

equal width h; where h =
b− a
n

. Since the simple Simpson’s rule (12) requires a

interval consisting of three points (pair of strips). In practice, we usually take
more than three points and add the separate results for the different pairs of strips
(see Figure 6). Since the simple Simpson’s rule requires a pair of strips for
application, so there is restriction on the integer n, which must be even. We define
the composite Simpson’s rule in the form of the following theorem.



Theorem 4
(Composite Simpson’s Rule)
Let f ∈ C4[a, b], n be even, h = (b− a)/n, and xi = a+ ih for each
i = 0, 1, 2, . . . , n. Then the composite Simpson’s rule for n subintervals can be
written as∫ b

a
f(x)dx ≈ Sn(f) =

h

3

f(a) + 2

n/2−1∑
i=1

f(x2i) + 4

n/2∑
i=1

f(x2i−1) + f(b)

. (13)
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Figure: Composite Simpson’s Rule.



Example 0.8
Let f be defined by

f(x) =

{
x2 − x+ 1, if 0 ≤ x ≤ 1,
2x− 1, if 1 ≤ x ≤ 2.

Approximate the integral

∫ 2

0
f(x)dx by using Simpson’s rule with n = 4.

Solution. Since one can know that∫ 2

0
f(x)dx =

∫ 1

0
f(x)dx+

∫ 2

1
f(x)dx,

and we are given∫ 2

0
f(x)dx =

∫ 1

0
(x2 − x+ 1)dx+

∫ 2

1
(2x− 1)dx = I1(f) + I2(f).

First we find the approximation of the first integral on the right hand side of
above equation for n = 4, using the formula (13) and h = 0.25, we have

I1(f) ≈
0.5

3

[
f(0) + 4(f(0.25) + f(0.75)) + 2f(0.5) + f(1)

]
≈

0.25

3

[
8
]
≈ 0.8333.



Now we find the approximation of the second integral on the right hand side of
above equation for n = 4, using the formula (13) and h = 0.25, we have

I2(f) ≈
0.5

3

[
f(1) + 4(f(1.25) + f(1.75)) + 2f(1.5) + f(2)

]
≈

0.25

3

[
24
]
≈ 2.0000.

Hence ∫ 2

0
f(x)dx = I1(f) + I2(f) ≈ 0.8333 + 2.000 = 2.83333,

the required approximation of the given integral. •



Example 0.9
Suppose that f(1) = 0.5, f(1.2) = 0.9, [f(1.25) + f(1.75)] = α, f(1.5) = 1.5,
f(1.6) = 1.65, f(1.95) = 1.95 and f(2) = 2. Find the approximate value of α if the

best composite Simpson’s rule gives the value, 1.35, for the integral

∫ 2

1
f(x) dx.

Solution. Since we need the equally spaced data points, so we can take
x0 = 1, x1 = 1.25, x2 = 1.5, x3 = 1.75 and x4 = 2, gives n = 4, so

h =
2− 1

4
= 0.25. By using the composite formula (13) for n = 4, we have

∫ 2

1
f(x) dx ≈

0.25

3

[
f(1) + 4[f(1.25) + f(1.75)] + 2f(1.5) + f(2)

]
.

Now using the given values, we obtain

1.35 ≈
1

12
[0.5 + 4(α) + 2(1.5) + 2], or 12(1.35)− 5.5 ≈ 4α,

gives α ≈ 2.675. •



Error Terms for Simpson’s Rule

Now we discuss the local error and the global error formulas for Simpson’s rule.

Firstly: Error Term for Simple Simpson’s Rule

Theorem 5
(Error Term for Simple Simpson’s Rule)
Let f ∈ C4[a, b], and h = (b− a)/2. The local error that the Simpson’s rule makes
in estimating the definite integral (1) is

ES2
(f) = −

h5

90
f (4)(η(x)), (14)

where η(x) ∈ (a, b)



Example 0.10
Compute the local error for the Simpson’s rule using the following integral∫ 2

1

1

x+ 1
dx.

Solution. Given f(x) =
1

x+ 1
and [a, b] = [1, 2], then the fourth derivative of the

function can be obtain as

f ′ =
−1

(x+ 1)2
, f ′′ =

2

(x+ 1)3
, f ′′′ =

−6

(x+ 1)4
, f (4) =

24

(x+ 1)5
.

Since the error formula for the Simpson’s rule is

ES2
(f) = −

h5

90
f (4)(η(x)), where η(x) ∈ (1, 2),

or

|ES2
(f)| =

∣∣∣− h5

90

∣∣∣∣∣∣f (4)(η(x))
∣∣∣, for η(x) ∈ (1, 2).



This formula cannot be computed exactly because η(x) is not known. But one can
bound the error by computing the largest possible value for |f (4)|. Bound |f (4)| on
[1, 2] is

M = max
1≤x≤2

=
∣∣∣ 24

(x+ 1)5

∣∣∣ = 0.75.

Then for |f (4)(η(x))| ≤M , we have

|ES2
(f)| ≤

h5

90
M.

Taking M = 0.75 and h = 0.5, we get

|ES2
(f)| ≤

(0.03125)

90
(0.75) = 0.0003.

Comparing this with the actual error −0.0001, this bound is about 3 times the
actual error. •



Error Terms for Simpson’s Rule
Secondly: Error Term for Composite Simpson’s Rule

Since the composite Simpson’s rule (13) requires that the given interval [a, b] is
divided into even number of subintervals and each application of the simple
Simpson’s rule requires two subintervals, therefore, the global error of the

composite Simpson’s rule (13) is the sum of
n

2
local truncation error of the simple

Simpson’s rule with n =
b− a
h

, that is,

ESn (f) = −
h5

90
f (4)(η1(x))−

h5

90
f (4)(η2(x))− · · · −

h5

90
f (4)(ηn/2(x)),

which implies that

ESn (f) = −
h5

90
(
n

2
)

[n/2∑
i=1

f (4)(ηi(x))

n/2

]
.

Thus by using the Intermediate Value Theorem, we have

ESn (f) = −
(b− a)

180
h4f (4)(η(x)), (15)

for η(x) ∈ (a, b) and nh = b− a. Then the formula (15) is known as the global
error of the Simpson’s rule. •



Example 0.11

Consider the integral I(f) =

∫ 2

1
ln(x+ 1)dx; n = 6.

(a) Find the approximation of the give integral using the composite Simpson’s
rule.
(b) Compute the error bound for the approximation using the formula (15).
(c) Compute the absolute error.
(d) How many subintervals approximate the given integral to an accuracy of at
least 10−4 using

the composite Simpson’s rule ?

Solution. (a) Given f(x) = ln(x+ 1), n = 6, and so h =
2− 1

6
=

1

6
, then the

composite Simpson’s rule (13) for n = 6, can be written as

S6(f) =
1/6

3

[
ln(1 + 1) + 4(ln

(7

6
+ 1
)

+ ln
(9

6
+ 1
)

+ ln
(11

6
+ 1
))]

+
[
2
(

ln
(8

6
+ 1
)

+ ln
(10

6
+ 1
))

+ ln(2 + 1)
]
.

Hence∫ 2

1
ln(x+ 1)dx ≈ S6(f) =

1

18

[
0.6932 + 4(2.7309) + 2(1.8281) + 1.0986

]
= 0.9095.



(b) Since the fourth derivative of the function is

f (4)(x) =
−6

(x+ 1)4
.

Since η(x) is unknown point in (1, 2), therefore, the bound |f (4)| on [1, 2] is

M = max
1≤x≤2

|f (4)(x)| =
∣∣∣ −6

(x+ 1)4

∣∣∣ = 6/16 = 0.375.

Thus the error formula (15) becomes

|ET6
(f)| ≤

(1/6)4

180
(0.375) = 0.000002,

which is the possible maximum error in our approximation in part (a).
(c) The absolute error |E| in our approximation is given as

|E| = |3 ln 3− 2 ln 2− 1− S6(f)| == 0.0000003.



(d) To find the minimum subintervals for the given accuracy, we use the error
formula (15) which is

|ESn (f)| ≤
(b− a)5

180n4
M ≤ 10−4.

Since we know M = 0.375, then we have

n4 ≥ 20.83333, gives n ≥ 2.136435032.

Hence to get the required accuracy, we need 4 subintervals (because n should be
even) that ensures the stipulated accuracy. •



Example 0.12
Determine the number of subintervals n required to approximate

I(f) =

∫ 2

0

1

x+ 4
dx,

with an error less than 10−4 using Simpson’s rule.

Solution. we have to use the error formula (15) which is

|ESn (f)| ≤
(b− a)

180
h4M ≤ 10−4.

Given the integrand is f(x) =
1

x+ 4
, and we have f (4)(x) =

24

(x+ 4)5
. The

maximum value of |f (4)(x)| on the interval [0, 2] is 3/128, and thus M =
3

128
.

Using the above error formula, we get

3

(90× 128)
h4 ≤ 10−4, or h ≤

2

5

4
√

15 = 0.7872.

Since n =
2

h
=

2

0.7872
= 2.5407, so the number of even subintervals n required is

n ≥ 4. •



Summary

In this lecture, we ...

I discussed Trapezoidal and Simpson’s rules for numerical integration.


