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Last week… 

•  We showed that the magnetic field from a single dipole is not 
sufficient to align its neighbours. E.g. would require very large 
fields (100’s of T) to align electron spins. If such effect were the 
correct explanation, ferromagnetism would not exist above a few 
kelvin. 

•  We then showed that it is the energy of exchanging electrons 
that ‘forces’ dipoles to align. Find lowest ground state is always 
spin-parallel. 

•  This mechanism accounts for domain formation in ‘insulating’ 
magnetic materials. It fails in conducting materials (I.e. for 
conduction electrons. Will cover this in last lecture (lecture 10). 



This week…. 

• Will discuss the Weiss Molecular Field 
model of ferromagnetism. 

• Will show that it provides a good 
account of spontaneous magnetisation 
of a ferromagnet, and predicts the 
magnetic susceptibility above the Curie 
temperature. 



a leading question………… 
 dipole fields don’t work 
 quantum mechanics doesn’t always “work” 
 What can we try next? 
 why not ignore the atomic–level structure of the ferromagnet 

completely? 

 Pierre Weiss suggested that, 
#  Inside an individual domain a spontaneous alignment of the magnetic 

moments occurs.  Then assume the alignment of any individual 
magnetic moment is due to an internal magnetic field which arises 
from all the other magnetic moments present in the domain 



#  The magnitude of this internal magnetic field is 
assumed to be proportional to the magnetisation  
M  of the sample, 

  
 Total  B  field  =  Bext  +  Bint 
    B  =  Bext  +  µ0 Hint 
    B  =  Bext  +  µ0 γ M  (1) 

Here γ   the constant of proportionality is called  
γ   Weiss Molecular Field constant 
What did Weiss do?  
He incorporated this “molecular field” into the 

existing treatment of the paramagnet 



His theory has considerable success in correctly  
predicting the properties of the ferromagnet 

It is capable of extension to all the other types of  
magnetic materials that show co-operative 
behaviour 

It’s also so straightforward that almost anyone can 
use it! 



The Spontaneous Magnetisation of the 
Ferromagnet 

From the quantum treatment of the paramagnet we 
obtain, 

where  M  is a function of temperature  T  through, 

        (2) 
so we can write, 
        (3) 
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M = NµJ BJ y( )

€ 

y =
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kT
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M T( ) = Nµ J BJ y( )



N ow, as  T → 0,      y → ∞,      BJ(y) → 1  so that  
the saturation magnetisation  M(0)  is equal to, 

                                 (4) 

or,                                                               (5) 

But for the ferromagnet, we must add the molecular field 
term to  y. So substitute (1) into (2) to get… 

              (6) 
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However, we want the  spontaneous magnetisation   

so we let     Bext → 0    and write    M  =  M(T) 
explicitly 

that is,                          

so rearranging,  and using  equation (4)  for  M(0)  
we get, 

    or            (7) 

We now have two equations (5 and 7) for the 
variation of  M(T)/M(0) 
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Equation  2  is the Brillouin function 
Equation  3  is a straight line with a slope 

proportional to  T 



1)  T  >  some  Tcritical  M(T)/M(0)  ≡  0 
is the only solution 

2)  T  ≡  Tcritical   the straight line (eqn 3) is a tangent 
to BJ(y)  at the origin, - still only one solution  M
(T)/M(0)  ≡  0 

3) T  <  Tcritical  two solutions,   
M(T)/M(0)  ≡  0                     
as before M(T)/M(0)  =  real   [actual value of M(T)] 



We can now replot the real 
solutions, 

     
    versus   T 

Temperature variation of  
magnetisation  M  of a  
ferromagnet 
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M T( )
M 0( )



Evaluation of the critical temperature  
(Curie temperature) 

At small values of  y  we can expand  BJ(y)  as,  

which is also a straight line, - so equating these two 
gives, 

then  using,                                          gives, 
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        (8) 

   so that, 
•  Not unexpected: the larger the Weiss Molecular 

Field constant   γ the higher the Curie temperature   
TC. 

Successes of the Weiss Molecular Field model 
i) it gives a good account of, 
#  The spontaneous magnetisation of the 

feromagnet, 
#  The temperature variation of magnetisation,      M

(T)/M(0) 
#  The magnetic susceptibility above  TC - called the   

Curie_Weiss Law! 
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Summary 

•  Have seen that if we assume that the internal 
magnetic field is proportional to the 
magnetisation of the sample, we can get a 
spontaneous magnetization for temperatures 
less than the Curie Temperature. 

•  We also find the larger the field constant 
(relating internal field to magnetization), the 
higher the Curie Temperature. 

•  Next week…paramagnetic susceptability of 
free electrons - Pauli paramagnetism. 


