

	KING SAUD UNIVERSITY
COLLEGE OF COMPUTER AND INFORMATION SCIENCES
COMPUTER SCIENCE DEPARTMENT

	CSC215
	[bookmark: _GoBack]Lab10
Linked Lists
	

Write a program that creates in the main function two linked lists of characters and fills them with the following values:

· The first list will have 3 nodes with the following characters: A,B, and C.
· The second list will also have 3 nodes with the following characters: D,E, and F.
In your main also:
· Call the function concat and send your first and second lists as arguments.
· Call the function printList and send your concatenated list as argument.
· Call the function addNode and send your concatenated list and the value ‘G’ as arguments.
· Call the function printList again and send your concatenated list as argument to print the content of the list after adding a node.

Write a function that concatenates two linked lists of string. The function takes pointers to both lists as arguments and concatenates the second list to the first list.
· void concat (struct node *f, struct node *s)
· In your function consider the cases where the first or second lists are empty.

Write a function that adds a new node to the end of the list. The function takes a pointer to the concatenated list and the new node value. Your function should print feedback messages upon successful/ unsuccessful addition.
· void addNode(struct node *head, char val)

Write a function that prints the content of the concatenated list. The function takes a pointer to the concatenated list.
· void printList(struct node *head)

Your output after running your program should be:
The Content of the Concatenated List is:
A
B
C
D
E
F
The node was added successfully
After adding a node:
The Content of the Concatenated List is:
A
B
C
D
E
F
G

Model Answer:

include <stdio.h>

include <stdlib.h>

struct node {

char val;

struct node *next;
};

void concat (struct node *f, struct node *s)

{

struct node *temp ;

/* if the first linked list is empty */

if (f == NULL)

*f = *s ;

else

{

/* if both linked lists are non-empty */

if (s != NULL)

{
 temp = f ; /* points to the starting of the first list*/

/* traverse the entire first linked list */

while (temp -> next != NULL)

temp = temp -> next ;

/* concatenate the second list after the first */

 temp -> next = s ;

 }

 }

 }
//end concat

void addNode(struct node *head, char val){

struct node * current = head;

while (current->next != NULL) {

 current = current->next;

 }

 /* now we can add a new node */

 current->next = malloc(sizeof(struct node));
 if(current != NULL)
 {

 current->next->val = val;

 current->next->next = NULL;

 printf("The node was added successfully");
 }
 else
 printf("No enough memory to add a node");

}
//end addNode

void printList(struct node *head)
{
struct node *current = head;

 printf("The Content of the Concatenated List is: \n");

 while(current != NULL)

 {

 printf("%c\n",current->val);

 current = current ->next;
}

 }//end printList

 int main()

 {

 struct node *first, *second , *head1, *head2;

 int i;

 first = second = head1 = head2 = NULL ; /* empty linked lists */

 char C = 'C';
 for (i = 0; i<3; i++)

 {

 first = (struct node*)malloc(sizeof(struct node));

 if(first != NULL)

 {
 first -> val =C;

 first -> next = head1;

 head1 = first;

 C--;
 }

 }

 char F = 'F';

 for (i = 0; i<3; i++)

 {

 second = (struct node*)malloc(sizeof(struct node));

 if(second != NULL)

 {

 second -> val =F;

 second -> next = head2;

 head2 = second;
 F--;

 }

 }
//calling functions
 concat(first, second);
 printList(head1);
 addNode(head1, 'G');
 printf("\nAfter adding a node:\n");
 printList(head1);
 return 0;

 }//end main

