
Method of Enzyme Assay

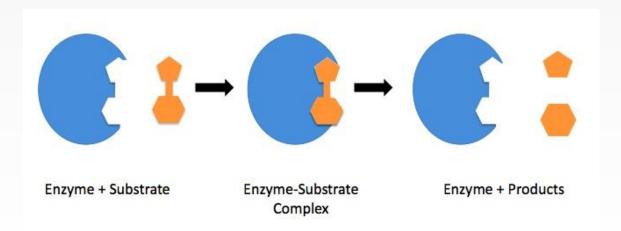
Objective:

- •To study the different methods for determining enzyme activity.
- •Use these method to diagnose certain diseases.

How to follow a reaction?

Enzyme assays: Are laboratory methods for measuring enzymatic activity.

•Enzyme assays measure either the **consumption of substrate** or **production of product** over time.


$$E + S \rightleftharpoons ES \rightleftharpoons P + E$$

•Different enzymes require different estimation methods depending on the type of reaction catalyzed, the nature of S and P or coenzyme.

Methods of quantitatively following enzyme reactions

How to follow an enzymatic reaction?

- •First you must have a complete knowledge about the reaction itself
- Does the substrate or product has the ability to absorb light, fluorescence, any production of gases, production of H+?
- •After that you can use this properties to detect the reaction

Methods of quantitatively following enzyme reactions

Fluorescence Methods

Using fluorometer

Manometric Methods

Using manometer.

Electrode Methods

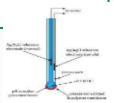
Using a pH meter

Polarimetric Method

Using polarimeter

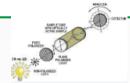
Spectrophotometric Methods

e.g. NAD+ and NADP+ do not fluoresence in their oxidized forms, but the reduced form have

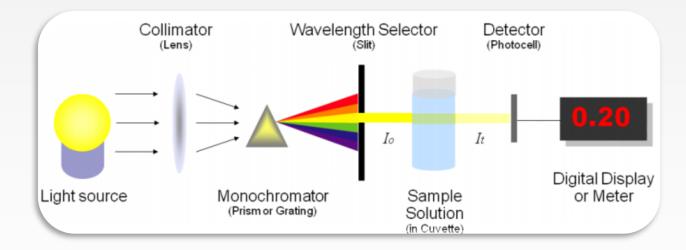

a blue fluorescence.

It is suitable for reactions in which one of the component is a gas. e.g.

Oxidases (O2 uptake),
Decarboxylase(CO2


output)

Reactions which involve the **production of acids** where H+ conc. is measured


For isomerases that convert one isomer to another.

e.g. D-glucose →L-glucose

Spectrophotometric method

In spectrophotometric assays, you follow the course of the reaction by measuring a change in how much light the assay solution absorbs.

What is blank solution?

It is a solution that contains everything except the compound to be measured.

Spectrophotometric methods

Sample absorb Invisible light

(ultraviolet "UV") 100 to 360 nm

Quartz cuvette

Sample absorb Visible range

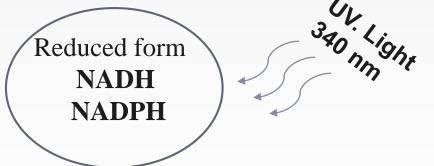
Glass or plastic cuvette

If the light is in the visible region you can actually see a change in the color of the assay, these are called

[colorimetric assays]

Examples of using Spectrophotometric methods

1- cases in which <u>product absorb</u> but not the substrate.
e.g.


Fumarate

Fumarate hydratase

malate

2- the <u>Co-enzyme</u> undergoes change in absorption upon reduction or oxidation

Oxidized form
NAD
NADP

If **reduced form** was **product**: **increase** the absorbance / min
If reduced form was **substrate**: decrease the absorbance / min

Two types of Enzyme assays:

- Continuous assays, where the assay gives a continuous reading of activity.
- **Discontinuous** (**Endpoint**) **assays**, Where the reaction is **stopped** and then the concentration of substrates/products determined.

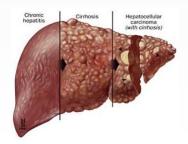
Alanine transaminase (ALT) in serum

Lysosome
Nucleus
SER
Showing ALT

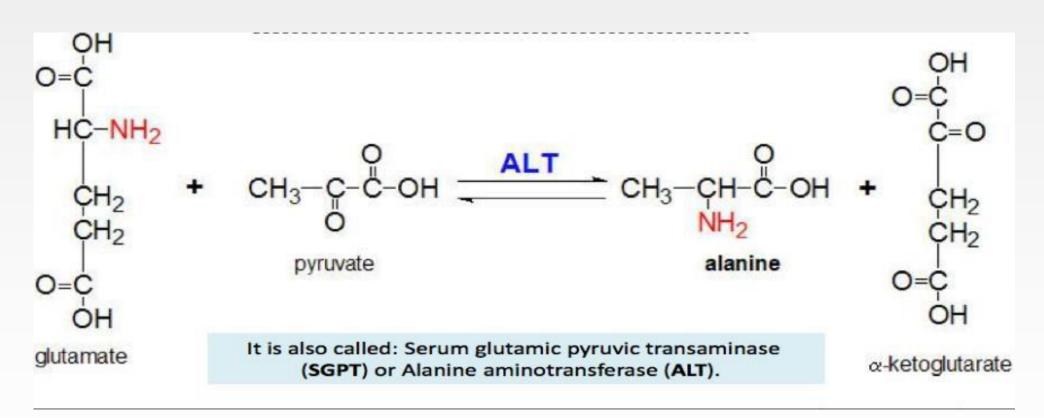
Continues assay

Discontinues assay

Alanine transaminase (ALT)


- •ALT is an enzyme that catalyzes a type of reaction (transamination) between an amino acid and α -keto acid.
- •It is important in the production of various amino acids.
- Transfer of amino group of an amino acid to α-keto acid resulting in formation of new amino acid and new keto acid.

ALT diagnostic importance

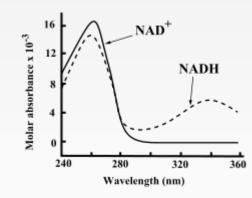


- ALT is found in serum (at low level) but is most commonly found in liver.
- Thus, an **elevated** level of ALT is a sensitive index of *acute hepatocellular injury*.
- Elevated serum ALT levels are found in <u>hepatitis</u>, <u>cirrhosis</u>, <u>and obstructive jaundice</u>.

•NORMAL RANGE OF ALT: (up to 42) U/L → males (up to 32) U/L → females

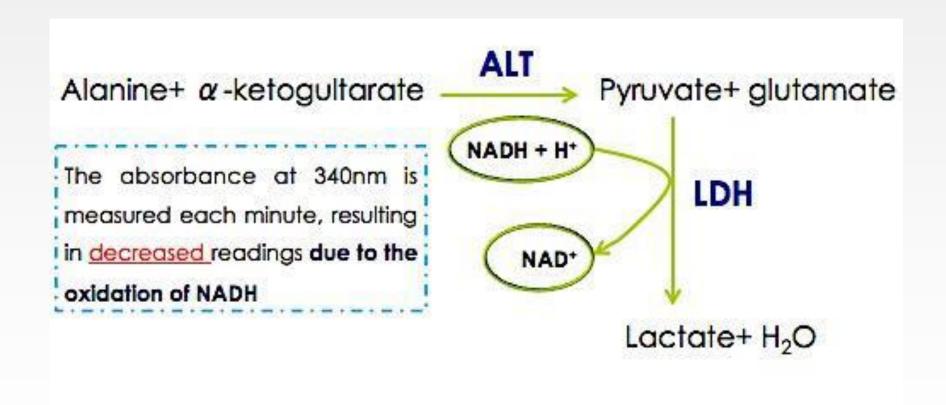
If Substrate and Product can not absorb light? What is the solution?

1-Continuous Assay


- The reading will be continues (1 min for 3 min).
- Because nether the S nor P can absorb light, the following can be done:

First, we will add the enzyme to the Substrate

1. Alanine + α - ketoglutarate \rightarrow Pyruvate + glutamate


Then, Another enzyme (**LDH**) and **NADH**+H+ will be added:

2. Pyruvate + NADH+H+ \rightarrow L-Lactate+ NAD+ +H2O

The absorbance at **340nm** is measured each minute without stopping the reaction, resulting in **decreased** readings **due to the oxidation of NADH.**

Principle

Method

Pipette into clean and dry test tubes:

ALT Reagent	3ml			
Pre-warm at 37°C for 3 minutes and add				
Serum Sample	0.2 ml = (μI) ??		

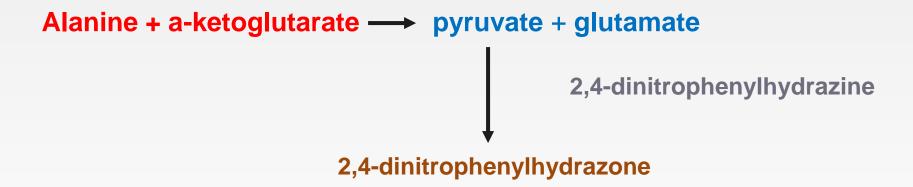
Mix and incubated at 37 °C for 1 minute, then read absorbance (at 340 nm against distilled water) every minute for 3 minutes) and determine $\Delta A/min$

Choose the following on the spectrophotometer:

2) Applications \rightarrow 2) Simple Kinetics \rightarrow wave length (340 nm) \rightarrow Seconds \rightarrow Duration (180 sec = 3 min) \rightarrow Intervals (60 sec= 1 min) \rightarrow Print Data Table (off) \rightarrow Press start (2 times)

Results

Time	Absorband	e 340nm	∆A/min=((A1-A2)+(A2-A3))/2
1 min	A1		
2 min	A2		
3 min	A3		


Calculations:

ALT Activity (U/L) = $\Delta A/\min x 1768$

2-Discontinuous Assay

- In this method **ALT** catalyzes the following reaction
- Alanine + a-ketoglutarate → pyruvate + glutamate
- •ALT is assayed by following formation of pyruvate.
- •Because nether the S nor P can absorb light, the following can be done:
 - •The addition of acidic 2,4-dinitrophenylhydrazine (DNPH) lead to the formation of **2,4-dinitrophenylhydrazone** (colored product that can absorb light),
 - •Then ,NaOH will be added (to stop the reaction), so that the **colored product** may be measured at **546nm**.

Reaction-discontinuous

• This assay as an example of colorimetric\ endpoint assay

Method:

	BLANK	SAMPLE		
ALT Reagent	0.5 ml	0.5 ml		
Pre-warm at 37 °C for <u>5 minutes</u> and add:				
Distilled Water	0.1 ml	-		
Serum Sample	-	0.1 ml		
Mix, and incubate at 37 °C for exactly 30 minutes, and add:				
Color Reagent	0.5 ml	0.5 ml		
(DNPH)				
Mix, and return at 37 °C for exactly 10 minutes, then add:				
Color Developer	5.0 ml	5.0 ml		
(NaOH)				
Mix, and return to 37 °C for exactly <u>5 minutes</u> . Read absorbance of all tubes				
at 546nm against blank.				

Precautions

- COLOR REAGENT contains 1 N Hydrochloric acid which causes burns.
- COLOR DEVELOPER contains 0.5 N Sodium hydroxide which is **corrosive**.

In case of contact, flush affected area with large amounts of water. Seek medical attention.

Results:

Absorbance at 546 nm	ALT Activity (U/L)
0.025	2.5
0.050	5.5
0.075	9
0.100	12
0.125	17
0.150	21
0.175	25
0.2	30
0.225	35
0.250	41

- The data shown in the table is used to convert absorbance at 546 nm into enzymatic activity in U/L of serum.
- Draw graph using the data in table with absorbance on the Y- axis and enzymatic activity in U/L on the X-axis.

Note: Don't forget title of the graph "Standard Curve" and the x- axis and y- axis with their units

- -Absorbance at 546 nm =
- -ALT (SGPT) activity (from graph)=

Discussion:

- Mention the diagnostic importance of ALT (Introductory paragraph)
- Explain the difference in the principle of each ALT assay.
- Compare your result with ALT normal range [in males], and diagnose the patient's state (what disease could the patient have or not).
- •Compare between continuous and discontinuous assays values.