The Effect of Enzyme Concentration on the Rate of an Enzyme Catalyzed Reaction

• In this experiment, we will continue to study acid phosphatase kinetics.

Objective:

 To establish the relationship between enzyme concentration and the rate of an enzyme catalyzed reaction.

The effect of enzyme concentration on velocity

- The reaction rate will increase as the concentration of enzymes is increased but there must be <u>a large</u> <u>excess of substrate</u>
- This is a linear relationship.
- The initial rate of reaction is directly proportional to the enzyme concentration
- V a [E]

More Enzyme molecule can react with more substrate molecules, so the **initial rate** will increase.

Principal of the enzyme assay in vitro

OPO $_3^{2-}$ H₂O

NO

ON

OPO $_1^{N}$ P-nitrophenol

- 1. Under acid conditions, the enzyme catalyzes the hydrolysis of p-nitrophenyl phosphate (pNPP) to inorganic phosphate and p-nitrophenol.
- Both p-nitrophenyl phosphate and p-nitrophenol are colorless at acidic pH values.
 Under alkaline conditions, p-nitrophenol is converted to a p-nitrophenolate (yellow color) and concentration can be measured at 405 nm.

Method:

We want to see the effect of enzyme concentration on the velocity, so every tube will have different enzyme concentration (dilution)

Place in a water bath maintained at 37 °C for 5 minutes.

Add to each tube:

- 0.5 ml of buffer
- 0.5 ml of pNPP
- 0.5 ml MgCl₂
- Water

PS: Water volume will differ in each tube since each tube have different [E].

All the factors that affect enzyme kinetics are constant <u>except</u>

enzyme concentration where it varies in each tube

Time = 5 min pH = 5.7 Temp = $37 \,^{\circ}$ C [S] = 0.05M

To start the reaction add the corresponding enzyme volume to each tube

To stop the reaction → add 0.5ml of KOH

- All additions f E and KOH must be in 37 °C water bath
- Note that the blank do not contain any enzyme

Start at	0	0	2	4	6	8	10	12
Stop at	0	5	7	9	11	13	15	17

After all the reactions have been terminated, determine the absorbance at 405 nm for each sample against blank.

Tube	Α	В	С	D	Е	F	G
Start at	0	2	4	6	8	10	12
Stop at	5	7	9	11	13	15	17

Time (min)	Tube	Addition
0	A	Enzyme 200
2	В	Enzyme 300
4	С	Enzyme 400
5	A	КОН
6	D	Enzyme 500
7	В	КОН
8	Ε	Enzyme 600
9	С	КОН
10	F	Enzyme 800
11	D	КОН
12	G	Enzyme 1000
13	Е	КОН
15	F	КОН
17	G	КОН

To convert the time table to an easier way try the following

Results:

Tube	Enzyme (ml)	Absorbance 405 nm	Velocity (µmole of PNP/min)
Blank	0		
Α	0.2		
В	0.3		
С	0.4		
D	0.5		
E	0.6		
F	0.8		
G	1		

Calculations

■ Velocity (V) = (A x 10⁶) /(E x time) = µmole of PNP/min

- A= absorbance
- E= extension coefficient=18.8 x 10³
- Time = 5 min

The Effect of Enzyme Concentration on the Rate of an Enzyme Catalyzed Reaction.

"Linear curve"

Discussion:

- An introductory statement
- Describe the shape of curve you get. WHY?
- Comment on the relationship between [E] and the rate of the reaction.

Assuming that there is a large excess of substrate. The rate of reaction will increase with increasing enzyme concentration. WHY?

