Determination of sodium benzoate in fruit juice
Preservatives

- A substance which when added to food is capable of inhibiting, retarding or arresting the process of fermentation, acidification or other decomposition of food.

- Used to prevent and retard the microbial spoilage of food.
Examples of preservatives

- Benzoic acid
- Sodium benzoate
- Potassium benzoate
- Sorbic acid
- Potassium sorbate
- Propionic acid
- Sodium propionate
- Calcium propionate

- The inhibitory action of preservatives is due to their interfering with the mechanism of cell division, permeability of cell membrane and activity of enzymes.
PRESERVATIVES FOUND TO CAUSE THE MOST HARM ARE

- Sodium Benzoate: Soda/Pop
- Propyl Gallate: Vegetable Oil
- TBHQ: Frozen Fish & Some Chocolates
- BHA/BHT: Cereal
- Polysorbates 60, 65 & 80: Ice Cream
- Potassium Sorbate: Cottage Cheese, Margarine
- Nitrates: Bacon, Sausages
- Sulfites: Red Wine, Balsamic Vinegar

SCARY SEVEN: INGREDIENTS

SCARY SEVEN: REPORTED SIDE EFFECTS INCLUDE

- HEADACHES
- TINNITUS (LIVER & KIDNEY DAMAGE)
- CANCER
- SKIN RASHES
- VOMITING
- NAUSEA
- INFERTILITY
- ALLERGIC REACTIONS

ALWAYS READ THE LABEL

naturallysavvy.com™
FACEBOOK.COM/NATURALLYSAVVY LEARN MORE AT NATURALLYSAVVY.COM/CHALLENGES
Sodium benzoate

- Sodium benzoate (MW = 144) is a preservative. As a food additive, sodium benzoate has the E number E211.
- It is bacteriostatic and fungistatic.
- It is most widely used in acidic foods such as salad dressings (vinegar), carbonated drinks (carbonic acid), jams and fruit juices and pickles (vinegar).
- It is also used as a preservative in medicines.
**Sodium benzoate**

- When added in high concentration it affects the taste of juice.

- Sodium benzoate is usually permitted at a concentration of up to 1.3 g/l of juice. \( \text{not exceed} 0.13\% \)
Objective

To estimate the concentration of benzoate in fruit juice.
Principle

The benzoate anion is not soluble in non-polar solvents because of its negative charge. However, in acid solution, benzoic acid is formed. This is neutral & quite non-polar. Moreover, it is soluble in non-polar solvents.
Principle-continue

- Benzoic acid is separated from a known quantity of the sample by saturating with NaCl and then acidifying with dilute HCl and extracting with chloroform.

- The chloroform layer is made mineral acid (inorganic acid) free and the solvent is removed by evaporation. The residue is dissolved in neutral alcohol and the amount of benzoic acid is determined by titration against standard alkali (0.05 M NaOH) using phenolphthalein as an indicator.
Method:

- Weight **10 g of sample** into a beaker and add 1 ml of 10% NaOH solution and 12 g NaCl.
- Add sufficient water to bring the vol. up to about 50 ml and let it stand for 30 min. with frequent shaking.
- Add 1 drop of ph.ph (the color will change), add drops of HCl until the color change (disappear), then add excess 3 ml HCl.
- Add 25 ml of chloroform.
- Transfer into separator funnel. Let it stand for 20 min with frequent shaking.
- Transfer 12.5 ml of the chloroform layer (**lower layer**) into a conical flask and evaporate of the chloroform on a steam bath.
- Add 50 ml of 50% ethanol solution.
- **Titrate** with 0.05 M NaOH add 1 drops of ph.ph as indicator (colorless in acidic).

Calculate the amount of sodium benzoate in the sample.
Calculation:

1 ml of 0.05M NaOH $\longrightarrow$ 0.0072 g sodium benzoate

$\ldots\ldots\ldots$ ml NaOH $\longrightarrow$ $\ ?$ gm of sodium benzoate

% of sodium benzoate = \( \frac{\text{wt. of sodium benzoate}}{\text{wt. of sample}} \times 100 \)

- Normal range not exceed 0.13 %