Examination of Urine: Detection and Estimation of Some Abnormal Constituents.

Student Names:

		Part I: detectio	n of some	abnormal constit	uents by	test-strips
	P	arameter	Resu	lts of Sample 1	Res	ults of Sample 2
		Nitrate				
		рН				
	Ket	tone bodies				
	As	corbic acid				
		Glucose				
		Bilirubin				
	Ur	obilinogen				
		Blood				
		of sample 1 : of sample 2 :			••••••	
		of sample 1 : of sample 2 :			••••••	
Clinical Di		of sample 1 : of sample 2 :	Part II: De	tection of Amino	acids	C
Clinical Di		of sample 1 :	Part II: De	tection of Amino B glycine solu	acids tion	C proline solution
Clinical Di		of sample 1 : of sample 2 : A Urine Sam	Part II: De	tection of Amino	acids tion rin soluti	C proline solution

Part III: Quantitative Estimation of Protein in Urine

Method:

It is necessary first to prepare a standard curve as follows. Bovine albumin standard. (50mg/dl)

1. Label a fresh set of test tubes 1 to 7.

Tube NO.	Protein	0.85% salin ml	1.25% HCl	Urine Sample 4	sulphosalicylic acid
	STD				
(Blank)	0.0	2	8 ml	-	-
1	4.5	1.5	-	-	8 ml
2	3	3	-	-	8 ml
3	2.4	3.6	-	-	8 ml
4	1.5	4.5	-	-	8 ml
5	0.9	5.1	-	-	8 ml
6	0.3	5.7	-	-	8 ml
Urine Sample 4	-		-	2 ml	8 ml

- -Mix well in each case and stand for 5 minutes.
- -Using the spectrophotometer for the blank solution at 500 nm, transmittance .
- Record the transmittance of the "unknown".
- If it is above 50 mg/dl repeat the estimation after diluting the urine 1:10 with saline solution. (Normal 0-0.150 g)

Solution	transmittance at 500 nm	Protein (mg/dl)
1		••••••
2		••••••
3		•••••
4		••••••
5		•••••
6		••••••
7 (Blank)		

Part IV: Determination of titrable acidity in urine:

METHOD:

- 1. Pipette 25 ml of urine sample 5 into a 250 ml conical flask, add to spatula full potassium oxalate powder to precipitate calcium.
- 2. Add 2 drops of phenolphalein
- 3.titrate with 0.1 M NaOH from a burette. Note the titre value (Aml) when a permanent pink color appears.

Note: the volume of urine sample 5 (24 h) = 1600ml/day

RESULTS:

Volume of 0.1 M NaOH required to neutralize the acidity in 25 ml of urine = ml
Volume required for 100 ml of urine = X 4 =
Since 24 h urine output 1500 ml, titrable acidity of urine 4A X 16 ml/day=