CHEM 201

Laboratory Of General Chemistry (2)

Laboratory Reports

Table of Contents

NO.	Experiment Report Name	page
$\mathbf{1}$	Evaluation of Error, Accuracy And Precision	3
$\mathbf{2}$	Determination of The Density Using Different Methods	5
$\mathbf{3}$	Determination of The Avogadro's Number Using The Monomolecular Film Method	8
$\mathbf{4}$	Reaction Stoichiometry: Determination of The Limiting Reactant And Yield Percentage	9
$\mathbf{5}$	Determination of The Transfered Thermal Energy (Cooling A Metal And A Hot Tea)	10
$\mathbf{6}$	Measuring The pH of A Solution	12
$\mathbf{7}$	Determining The Rate Law For The Reaction Of Hydrogen Peroxide With Iodide	16

\qquad

The objectives of the experiment:

Results and calculations

A. Part One

1.Tabulate the results:

$\mathbf{m}(\mathbf{g})$	$\Delta \mathbf{m}$

2. Calculate the experimental error.
3. Calculate error percentage.
4. Calculate the precision.

B. Part two

1. Tabulate the results:

- Graduated Cylinder

mgc1 (g)	mgc2 (g)	mgc3 (g)
	Accuracy of the mass value	
	the average ($\overline{\mathrm{m}})$	
the experimental error ($\mathbf{\Delta m}$)		
the percent error (m\%)		

- Graduated Burette

mburette1 (g)	mburette2 (g)	mburette (g)
Accuracy of the mass value		
the average ($\overline{\mathrm{m}})$		
the experimental error ($\Delta \mathrm{m})$		
the percent error (m\%)		

Report No. (2)

Determination Of The Density Using Different Methods

\qquad
\qquad

The objectives of the experiment:

First method

If you have a cylindrical object, the weight of the mass of the body was taken and the dimensions were taken by the ruler. The measurements were as follows:

$\mathbf{L}(\mathbf{c m})$	$\mathbf{D}(\mathbf{c m})$	$\mathbf{M}(\mathbf{g})$
$\mathbf{3 . 6}$	$\mathbf{1 . 2}$	$\mathbf{4 . 0 5}$

Determination of density directly by calculation of volume and weighing mass of a geometric specimen

1. Calculate the volume of your specimen (massive cylinder).
2. Calculate the density of your specimen (massive cylinder).
3. Tabulate your errors of measurements:

$\Delta \mathrm{L}(\mathrm{cm})$	$\Delta \mathrm{D}(\mathrm{cm})$	$\Delta \mathrm{m}(\mathrm{g})$

4. Calculate the error in the density (Δ density), and its accuracy:

Second method:

1. Report your measurements as follows:

$\mathbf{V}_{1}\left(\mathbf{c m}^{3}\right)$	$\mathbf{V}_{\mathbf{2}}\left(\mathbf{c m}^{3}\right)$	$\mathbf{m}(\mathbf{g})$
$\mathbf{2 0}$		

2. Calculate the volume of your specimen (glass ball):
3. Calculate the density of specimen (glass ball):
4. Tabulate the values of experimental errors:

$\Delta \mathbf{V}_{1}$	$\Delta \mathbf{V}_{\mathbf{2}}$	$\Delta \mathrm{m}$

5. Calculate the error in the density (Δ density), and its accuracy:

Third method

Weighted graduate cylinder-100 ml its mass ($\mathbf{m g c i}^{\mathbf{g}}$) 250.08 g . It was then filled 50 mL of water, Then a cylindrical sample was placed inside the cylinder and it was filled with saturated solution of the salt until the body was positioned in the midpoint of the cylinder the total volume of the solution remained in the cylinder is 65 ml , and the Weight the wide 100 mL -graduate cylinder with the remaining solution. its mass $\left(\mathbf{m g c}_{\mathrm{g} 2}\right) 310.55 \mathrm{~g}$:
1.Calculate the mass of the solution (m solution):
2. Calculate the density of the solution which is at the same time equals that of the cylindrical specimen.
3. Tabulate the experimental errors on the mass and volume

$\Delta \mathbf{m}$	$\Delta \mathbf{V}$

4. Calculate the error in the density (Δ density), and its accuracy:

Determination Of The Avogadro's Number Using The
\qquad
\qquad

The objectives of the experiment :

Tabulate the results of your calculations in the following tables:

	1	2	3
radius (cm)			
$\mathrm{S}\left(\mathrm{cm}^{2}\right)$			
$\mathrm{e}(\mathrm{cm})$			
$\mathrm{V}\left(\mathrm{cm}^{3}\right)$			
$\mathrm{N}_{\mathrm{A}^{\prime}}$			
C			

Calculate the following:

a. The radius, r
d. The molar volume of oil, V_{m}
b. The surface area, S
e. The volume of one molecule, V
c. The thickness of the oil film (e)
f. The Avogadro number NA
g. Calculate the error in the value of Avogadro's number $\left(\Delta \mathrm{NA}^{\prime}\right)$ that you obtained
h. Compare your value of Avogadro's number, NA', with the value of Avogadro's number

Report No. (4)

Reaction Stoichiometry: Determination Of The Limiting
 Reactant And Yield Percentage

The objectives of the experiment:

The balanced equations for the reactions is:
\qquad

Results:

$\mathrm{m}_{\text {INITIAL }} / \mathrm{g}$	$\mathrm{V}_{\mathrm{HCl}} / \mathrm{L}$	$\mathrm{m}_{\text {reactant }} / \mathrm{g}$	$\mathrm{m}_{\text {TOTAL(product) }} \mathrm{g}^{\prime} \mathrm{g}$

Calculations:

1.The limiting reactant

- Mass of NaCl produced ($\mathrm{m}_{\mathrm{NaCl}}$):
- Number of moles ($\mathrm{n}_{\mathrm{Na} 2 \mathrm{CO} 3}$) and ($\mathrm{n}_{\mathrm{HCl}}$):
- $\mathrm{n}_{\mathrm{Na} 2 \mathrm{CO} 3}$ and $\mathrm{n}_{\mathrm{HCl}}$ must be divided by the coefficient of each reactants in the equation:

The limiting reactant is

2.The yield percentage

-The actual mass of NaCl :
Molecular weight of NaCl

- Number of moles (nNaCl ,actual):
- The yield percentage of NaCl :

Objectives of experiment:

Results and calculations:

A. Part one

1. Tabulate your results as follows:

$\mathrm{m}_{\text {water }}$	$\mathrm{T}_{\text {initial,water }}$	$\mathrm{m}_{\text {lock }}$	$\mathrm{T}_{\text {initial, lock }}$	$\mathrm{T}_{\text {final }}$

2. Given that $\mathrm{c}_{\text {water }}=4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}, \mathrm{c}_{\text {lock }}=0.385 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$ and from your tabulated data, calculate the enthalpy changes, in the units of Joule:

- The heat gained by water.
- The heat lost by the nail.

3. Tabulate the values of errors:

$\Delta \mathrm{m}_{\text {water }}$	$\Delta \mathrm{T}_{\text {initial,water }}$	$\Delta \mathrm{m}_{\text {lock }}$	$\Delta \mathrm{T}_{\text {initial, lock }}$	$\Delta \mathrm{T}_{\text {final }}$

4. Calculate the error in the values of $\Delta \mathrm{H}$ water and the heat absorbed by the water.
5. Calculate the error in the values of $\Delta \mathrm{H}_{\text {lock }}$ the heat released from the lock.
B. Part two
6. Tabulate your results as follows:

$\mathrm{m}_{\text {beaker1 }}$	$\mathrm{m}_{\text {beaker2 }}$	$\mathrm{T}_{\text {initial, tea }}$	$\mathrm{T}_{\text {initial, water }}$	$\mathrm{T}_{\text {final }}$

2. Given that $\mathrm{c}_{\text {water }}=\mathrm{c}_{\text {tea }}=4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$, and from your tabulated data, calculate the enthalpy changes in the units of Joule as follows:

- The heat gained by water.
- The heat lost by tea.

3. Calculate the mass of water $\left(\mathrm{m}_{\text {water }}\right)$ you need to add to your tea in order to make the temperature of the tea low enough to be drinkable:
4. Tabulate the values of errors:

$\Delta \mathrm{m}_{\text {beaker1 }}$	$\Delta \mathrm{m}_{\text {beaker2 }}$	$\Delta \mathrm{T}_{\text {initial, tea }}$	$\Delta \mathrm{T}_{\text {initial, water }}$	$\Delta \mathrm{T}_{\text {final }}$

5. Calculate the error in the values of $\mathrm{m}_{\text {water }}$
6. The mass of added water.

Student Names:

Report No. (6)
Measuring the $\mathbf{p H}$ of a Solution
\qquad
\qquad

Objectives of experiment:

Part One: Using HCl Solution.

A-Balance Equation:

B- Results:

$\mathbf{V N A O H}$	
0	PH
5	
10	
15	
20	
22	
23	
24	
26	
27	
30	
35	
40	

C- Draw a curve between pH values and the volume added from NaOH and then from the curve determine:
\checkmark The volume of NaOH at equivalent point \qquad
$\checkmark \mathrm{pH}$ value at equivalent point

D- Calculations :

- Molarity of HCl
- Normality
- Molecular weight of HCl
- Strength of Concertation

Part two: Using $\mathrm{CH}_{3} \mathbf{C O O H}$ Solution.

A- Balance Equation:

B- Results:

$\mathbf{V}_{\text {NAOH }}$	$\mathbf{P H}$
0	
5	
10	
20	
25	
28	
29	
30	
31	
32	
35	
40	
45	

C- Draw a curve between pH values and the volume added from NaOH and then from the curve determine :
\checkmark The volume of NaOH at equivalent point
$\checkmark \mathrm{pH}$ value at equivalent point

D- Calculations :

- Molarity of $\mathrm{CH}_{3} \mathrm{COOH}$
- Normality
- Molecular weight of $\mathrm{CH}_{3} \mathrm{COOH}$
- Strength of Concertation

Report No. (7)

Determining the Rate Law for the Reaction of Hydrogen Peroxide with Iodide

Objectives of experiment:

Balance Equation:

Results and calculations:

Expt $\#$	$\mathrm{H}_{2} \mathrm{O}_{2}$ $(\mathrm{~mL})$	Moles of $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ used	$\mathrm{V}(\mathrm{L})_{\text {Total volume of }}$ solution	$\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ used	Time (s)	Rate (M\s)
1	10		0.2			
2	10		0.2			
3	10		0.2			
4	10		0.2			
5	20		0.2			
6	30		0.2			
7	40		0.2			

Moles of $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ used:
$\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$:

Expt $\#$	Log Rate	$\mathrm{H}_{2} \mathrm{O}_{2}$ $(\mathrm{~mL})$	Initial Moles of $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$	$\mathrm{V}(\mathrm{L})$ Total volume of solution	$\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$	$\log \left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$
4		10		0.2		
5		20		0.2		
6		30		0.2		
7		40		0.2		

Initial Moles of $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$:
$\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$:

Draw the relationship between $\log \left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ and Log Rate
The low is \qquad

Expt $\#$	Log Rate	KI (mL)	Initial Moles of [I]	V (L) Tota volume of solution	$[\mathrm{I}]$	Log [I]
1		4		0.2		
2		6		0.2		
3		8		0.2		
4		12		0.2		

Initial Moles of [I]: [I]:

Draw the relationship between $\log [I]$ and Log Rate
The low is \qquad

