

BULETIN PERSATUAN SAINS MATEMATIK MALAYSIA

Generalization of Posner's Theorems

${ }^{1}$ Ahmed A. M. Kamal and ${ }^{2}$ Khalid H. Al-Shatalan
${ }^{1}$ Department of Mathematics, Faculty of Sciences, Cairo University, Giza, Egypt
${ }^{1}$ Department of Mathematics, College of Science, King Saud University, Riyadh 2455, Kingdom of Saudi Arabia
${ }^{2}$ Science Department, King Abdul-Aziz Military Academy, Kingdom of Saudi Arabia
${ }^{1}$ aamkamal_9@ hotmail.com, ${ }^{2}$ khshaalan@ gmail.com

Abstract

In this paper we generalize Posner's first theorem to a 3-prime near-ring with a (σ, τ)-derivation. We prove that a prime ring with a non-zero (σ, τ)-derivation is commutative if $\sigma(x) d(x)=d(x) \tau(x)$ for all $x \in U$ where U is a suitable subset of R. Also, we generalize Posner's second theorem completely to a prime ring with a (σ, σ)-derivation and partially to a prime ring with a (σ, τ)-derivation.

2010 Mathematics Subject Classification: 16W25, 16Y30
Keywords and phrases: Posner's theorems, (σ, τ)-derivations, primeness, commutativity.

1. Introduction

Throughout this paper R will be a ring or a left near-ring. $Z(R)$ will be its multiplicative center and σ, τ two endomorphisms from R to R. We say that R is prime (3-prime for nearrings) if, for all $x, y \in R, x R y=\{0\}$ implies $x=0$ or $y=0$. We say that U is a semigroup right (left) ideal of R, if U is a non-empty subset of R satisfies $U R \subseteq U(R U \subseteq U)$. We say that U is a semigroup ideal if it is both a semigroup right and left ideal. For all $x, y \in R$, we write $[x, y]=x y-y x$ for the multiplicative commutator, $[x, y]_{\sigma, \tau}=\sigma(x) y-y \tau(x)$ and $(x, y)=x+y-x-y$ for the additive commutator. A map $d: R \rightarrow R$ is called a (σ, τ) derivation if d is additive and $d(x y)=\sigma(x) d(y)+d(x) \tau(y)$ for all $x, y \in R$. If $\tau=1_{R}$, then d is called a σ-derivation. If $\sigma=\tau=1_{R}$, then d is the usual derivation. An element $x \in R$ is called a left (right) zero divisor in R if there exists a non-zero element $y \in R$ such that $x y=0$ $(y x=0)$. A zero divisor is either a left or a right zero divisor. By an integral near-ring, we mean a near-ring without non-zero divisors of zero. A near-ring R is called a constant near-ring, if $x y=y$ for all $x, y \in R$ and is called a zero-symmetric near-ring, if $0 x=0$ for all $x \in R$. For any group $(G,+), M_{o}(G)$ denotes the near-ring of all zero preserving maps from G to G with the two operations of addition and composition of maps. An abelian near-ring R is a near-ring such that $(R,+)$ is abelian. We refer the reader to the books of Meldrum [15] and Pilz [17] for basic results of near-ring theory and its applications.

[^0]In this paper we use the commutator $[x, y]_{\sigma, \tau}$ to mean $\sigma(x) y-y \tau(x)$, but its usual form is $x \boldsymbol{\sigma}(y)-\tau(y) x$ with using that $d(x y)=d(x) \sigma(y)+\tau(x) d(y)$ for all $x, y \in R$. According to the last form, Argac, Kaya and Kisir showed in [1] that a prime ring R admits a non-zero (σ, τ)-derivation such that $[d(x), x]_{\sigma, \tau}=0$ for all $x \in I$ if and only if R is commutative and $\sigma=\tau$, where I is a non-zero right ideal of R. They also showed that a prime ring R of characteristic not 2 admits a non-zero (σ, τ)-derivation such that $[d(x), x]_{\sigma, \tau} \in C_{\sigma, \tau}$ for all $x \in I$ if and only if R is commutative and $\sigma=\tau$, where $C_{\sigma, \tau}=\{x \in R: x \sigma(y)=\tau(y) x$ for all $y \in R\}$. Also, Ashraf and Rehman showed in Theorem 1 in [2] that a 2 -torsion free prime ring R is commutative if R admits a non-zero (σ, τ)-derivation such that $[d(x), x]_{\sigma, \tau}=0$ for all $x \in R$. In [3], Aydin had extended that theorem to $[d(x), x]_{\sigma, \tau} \in C_{\sigma, \tau}$ for all $x \in R$. All above papers used that σ and τ are automorphisms on R. In the literature of studying commutativity of rings and near-rings, there are also some works studied the commutativity of rings and near-rings without the use of derivations, for example see [5] and [6]. Also, see [16] for subcommutativity in near-rings.

In Section 2 we give some well-known results and we add some new auxiliary results on a near-ring R admitting a non-zero (σ, τ)-derivation d, which will be useful in the sequel. In Section 3 we study the problem of Posner for the composition of two derivations, in the more general case the composition of a (σ, τ)-derivation and an (α, β)-derivation, where α is an automorphism and, σ, β and τ are epimorphisms on a near-ring R. Consequently, we generalize Posner's first theorem for (σ, τ)-derivations in Theorem 3.1 which generalizes results due to K. I. Beidar, Y. Fong and X. K. Wang; O. Golbasi and M. S. Samman.

Section 4 is devoted to study Posner's second theorem using (σ, τ)-derivations on prime rings. Consequently, we generalize Lemma 3 of $[18]$ to (σ, τ)-derivations on prime rings. In Theorem 4.4 we study Posner's second theorem using (σ, τ)-derivations on prime rings. Theorem 4.5 is a generalization of Posner's second theorem to (σ, σ)-derivations on prime rings, where σ is an epimorphism on R. In the last of this section we study the condition $d\left(x^{2}\right) \in Z(R)$ for all $x \in R$, where d is a non-zero (σ, τ)-derivation on a prime ring R.

2. Preliminaries and some results

We need the following lemmas:
Lemma 2.1. [10, Lemma 1] An additive mapping d on a near-ring R is a (σ, τ)-derivation if and only if $d(x y)=d(x) \tau(y)+\sigma(x) d(y)$, for all $x, y \in R$.

Lemma 2.2. [10, Lemma 2] Let R be a near-ring with a (σ, τ)-derivation d such that τ is an epimorphism. Then R satisfies the partial distributive law, $(\sigma(x) d(y)+d(x) \tau(y)) c=$ $\sigma(x) d(y) c+d(x) \tau(y) c$ and $(d(x) \tau(y)+\sigma(x) d(y)) c=d(x) \tau(y) c+\sigma(x) d(y) c$ for all $x, y, c \in$ R.

Lemma 2.3. [7, Lemma 1.2(iii)] Let R be a 3-prime near-ring and $x \in Z(R)-\{0\}$. If either $y x$ or $x y$ in $Z(R)$, then $y \in Z(R)$.
Lemma 2.4. [9, Lemma 3(i),(ii)] Let R be a 3-prime near-ring and $x \in Z(R)-\{0\}$. Then x is not a zero divisor in R.

Lemma 2.5. [10, Lemma 3] Let d be a non-zero (σ, τ)-derivation on a 3-prime near-ring R.
(i) If $d(R) x=\{0\}$ and τ is onto, then $x=0$.
(ii) If $x d(R)=\{0\}, R$ is zero-symmetric and σ is onto, then $x=0$.

Lemma 2.6. [13, Proposition 2.7] A near-ring R is zero-symmetric if and only if R admits $a(\sigma, \tau)$-derivation d such that σ, τ are endomorphisms and τ is either one-to-one or onto.
Lemma 2.7. Let R be a near-ring with a (σ, τ)-derivation d such that $2 R=\{0\}$ and σ, τ commute with d. Then d^{2} is a $\left(\sigma^{2}, \tau^{2}\right)$-derivation on R.

Proof. For all $x, y \in R$, we have $d^{2}(x+y)=d^{2}(x)+d^{2}(y)$ since d is an additive mapping on R. Now, for all $x, y \in R$ we get

$$
\begin{aligned}
d^{2}(x y) & =d(d(x y))=d(\sigma(x) d(y)+d(x) \tau(y)) \\
& =\sigma^{2}(x) d^{2}(y)+d \sigma(x) \tau d(y)+\sigma d(x) d \tau(y)+d^{2}(x) \tau^{2}(y) \\
& =\sigma^{2}(x) d^{2}(y)+d \sigma(x) d \tau(y)+d \sigma(x) d \tau(y)+d^{2}(x) \tau^{2}(y) \\
& =\sigma^{2}(x) d^{2}(y)+2 d \sigma(x) d \tau(y)+d^{2}(x) \tau^{2}(y)=\sigma^{2}(x) d^{2}(y)+d^{2}(x) \tau^{2}(y)
\end{aligned}
$$

Thus, $d^{2}(x y)=\sigma^{2}(x) d^{2}(y)+d^{2}(x) \tau^{2}(y)$ for all $x, y \in R$ and d^{2} is a $\left(\sigma^{2}, \tau^{2}\right)$-derivation on R.

Lemma 2.8. [7, Lemma 1.3(iii)] Let R be a 3-prime near-ring with a non-zero semigroup right ideal U of R. If there exists $x \in R$ which centralizes U, then $x \in Z(R)$. Moreover, if R is a prime ring and U is a semigroup left ideal, then $x \in Z(R)$.

Lemma 2.9. [11, Lemma 4] Let R be a 3-prime near-ring with a (σ, τ)-derivation d.
(i) If R is zero-symmetric and U is a non-zero semigroup right ideal of R such that σ is an epimorphism, $\sigma(U) \neq\{0\}$ and $d(U)=\{0\}$, then $d=0$.
(ii) If U is a non-zero semigroup left ideal of R such that τ is an epimorphism, $\tau(U) \neq$ $\{0\}$ and $d(U)=\{0\}$, then $d=0$.

Lemma 2.10. [7, Lemma 1.5] Let R be a 3-prime near-ring with a non-zero semigroup right (left) ideal U such that $U \subseteq Z(R)$. Then R is a commutative ring.

Lemma 2.11. [7, Lemma 1.4] Let R be a 3-prime near-ring with a non-zero semigroup ideal U. If $x, y \in R$ and $x U y=\{0\}$, then $x=0$ or $y=0$.

Lemma 2.12. [13, Corollary 4.6] Let R be a 3-prime near-ring with a non-zero (σ, τ) derivation d such that one of σ, τ is either a monomorphism or an epimorphism. If $d(R) \subseteq$ $Z(R)$, then R is a commutative ring.

Lemma 2.13. [13, Theorem 5.4] Let R be a 3-prime near-ring with a non-zero (σ, τ) derivation d such that τ is an automorphism and $d(x y)=d(y x)$ for all $x, y \in R$. Then R is a commutative ring.

Lemma 2.14. [13, Theorem 5.9] Let R be a 3-prime near-ring with a non-zero (σ, τ) derivation d such that $d(x y)=-d(y x)$ for all $x, y \in R$. If τ is an automorphism on R, then R is a commutative ring of characteristic 2.

3. Posner's first theorem

In this section we generalize Posner's first theorem for (σ, τ)-derivations on near-rings. We need the following two lemmas to prove the first theorem in this section.

Lemma 3.1. Let R be a near-ring with a (σ, τ)-derivation d and θ be any endomorphism of R. Then
(i) θd is a $(\theta \sigma, \theta \tau)$-derivation on R.
(ii) $d \theta$ is a $(\sigma \theta, \tau \theta)$-derivation on R.

Proof. (i) Clearly the composition of two additive mappings on R is an additive mapping. Now, for all $x, y \in R$, we have $\theta d(x y)=\theta(d(x y))=\theta(\sigma(x) d(y)+d(x) \tau(y))=$ $\theta \sigma(x) \theta d(y)+\theta d(x) \theta \tau(y)$ and then θd is a $\theta \sigma, \theta \tau)$-derivation on R.
(ii) The proof is similar to (i).

Lemma 3.2. Let R be a near-ring with a non-zero (σ, τ)-derivation d. Suppose one of the following two conditions holds:
(i) R is a 3-prime near-ring and τ is onto, or
(ii) There exists $a \in R$ such that $d(a)$ is not a left zero divisor in R and τ is either one-to-one or onto.
Then $n R=\{0\}$ if and only if $n d(R)=\{0\}$.
Proof. Clearly if $n R=\{0\}$, then $n d(R)=\{0\}$. Conversely, suppose $n d(R)=\{0\}$. Then $0=n d(b)=d(n b)$ for all $b \in R$. Now, for all $x, y \in R$

$$
0=d(n(y x))=d(y(n x))=\sigma(y) d(n x)+d(y) \tau(n x)=d(y) \tau(n x) .
$$

If R is 3-prime and τ is onto, then $d(R) \tau(n x)=\{0\}$ implies $\tau(n x)=0$ for all $x \in R$ by Lemma 2.5(i). It follows that $\{0\}=\tau(n R)=n \tau(R)=n R$. If there exists $a \in R$ such that $d(a)$ is not a left zero divisor in R, then $d(a) \tau(n x)=0$ and then $\tau(n x)=0$ for all $x \in R$. Therefore $\tau(n R)=\{0\}$. If τ is onto, then by the same way above $n R=\{0\}$ and if τ is one-to-one, then $\tau(n R)=\{0\}$ implies $n R=\{0\}$.

The conditions " τ is onto" in Lemma 3.2(i) and " τ is either one-to-one or onto" in Lemma 3.2(ii) are not redundant as the following example shows.

Example 3.1. Let $(R,+)$ be the additive abelian group $\left(\mathbb{Z}_{4},+\right)$ and define the multiplication to make R a constant near-ring. Then R is 3-prime. Suppose $\tau=0$ and σ is any endomorphism on R, then any additive mapping d on R is a (σ, τ)-derivation. Define $d: R \rightarrow R$ by $d(\bar{x})=\bar{x}+\bar{x}$ for all $\bar{x} \in R$. Then $d(\bar{x}+\bar{y})=\bar{x}+\bar{y}+\bar{x}+\bar{y}=\bar{x}+\bar{x}+\bar{y}+\bar{y}=d(\bar{x})+d(\bar{y})$ for all $\bar{x}, \bar{y} \in R$ and d is an additive endomorphism of R. So d is a ($\sigma, \tau)$-derivation on R. Also, $d(\overline{1})=\overline{1}+\overline{1}=\overline{2}$ is not a left zero divisor in R by the definition of the multiplication. Observe that $d(2 \bar{x})=d(\bar{x}+\bar{x})=\bar{x}+\bar{x}+\bar{x}+\bar{x}=4 \bar{x}=\overline{0}$ for all $\bar{x} \in R$. Thus, $2 d(R)=\{\overline{0}\}$. But $2 R \neq\{\overline{0}\}$ as $2(\overline{1})=\overline{1}+\overline{1}=\overline{2} \neq \overline{0}$.

The following theorem generalizes Theorem 1.1 of [4], Theorem 2.5 of [11] and the main Theorem of [19].

Theorem 3.1. Let R be a 3-prime near-ring with a (σ, τ)-derivation d and an (α, β) derivation D such that α commutes with β, α is an automorphism, σ, β, τ are epimorphisms and α, β, τ commute with D. If $d D$ is a $(\sigma \alpha, \tau \beta)$-derivation, then one of the following statements holds:
(i) $d=0$
(ii) $D=0$
(iii) $2 R=\{0\}$.

Proof. Since τ is an epimorphism, we have R is zero-symmetric by Lemma 2.6. As $d D$ is a $(\sigma \alpha, \tau \beta)$-derivation, so $d D(a b)=\sigma \alpha(a) d D(b)+d D(a) \tau \beta(b)$ for all $a, b \in R$. On the other hand, d is a (σ, τ)-derivation and D is an (α, β)-derivation. Thus, $d D(a b)=d(\alpha(a) D(b)+$ $D(a) \beta(b))=\sigma \alpha(a) d D(b)+d(\alpha(a)) \tau D(b)+\sigma(D(a)) d(\beta(b))+d D(a) \tau \beta(b)$. Comparing the previous two equations, we get

$$
\begin{equation*}
d(\alpha(a)) \tau(D(b))+\sigma(D(a)) d(\beta(b))=0 \quad \text { for all } \quad a, b \in R . \tag{3.1}
\end{equation*}
$$

Replace a by $a c$ where $c \in R$. So using the partial distributive law (Lemma 2.2), we have for all $a, b, c \in R$

$$
\begin{aligned}
0 & =d(\alpha(a c)) \tau D(b)+\sigma(D(a c)) d(\beta(b))=d(\alpha(a) \alpha(c)) \tau D(b)+\sigma(D(a c)) d(\beta(b)) \\
& =d \alpha(a) \tau \alpha(c) \tau D(b)+\sigma \alpha(a) d \alpha(c) \tau D(b)+\sigma(\alpha(a) D(c)+D(a) \beta(c)) d(\beta(b)) \\
& =d \alpha(a) \tau \alpha(c) \tau D(b)+\sigma \alpha(a) d \alpha(c) \tau D(b)+(\sigma \alpha(a) \sigma D(c)+\sigma D(a) \sigma \beta(c)) d(\beta(b)) .
\end{aligned}
$$

Notice that σD is a $(\sigma \alpha, \sigma \beta)$-derivation by Lemma 3.1. Since $\sigma \beta$ is onto, we can use the partial distributive law to obtain

$$
\begin{aligned}
0= & d \alpha(a) \tau \alpha(c) \tau D(b)+\sigma \alpha(a) d \alpha(c) \tau D(b)+\sigma \alpha(a) \sigma D(c) d(\beta(b)) \\
& +\sigma D(a) \sigma \beta(c) d(\beta(b)) \\
= & d \alpha(a) \tau \alpha(c) \tau D(b)+\sigma \alpha(a)(d \alpha(c) \tau D(b)+\sigma D(c) d(\beta(b))) \\
& +\sigma D(a) \sigma \beta(c) d(\beta(b))
\end{aligned}
$$

for all $a, b, c \in R$. By using (3.1) with c instead of a, we get for all $a, b, c \in R$

$$
\begin{equation*}
d \alpha(a) \tau \alpha(c) \tau D(b)+\sigma D(a) \sigma \beta(c) d(\beta(b))=0 . \tag{3.2}
\end{equation*}
$$

As α is bijective, we obtain $d \alpha(a) \tau(r) \tau D(b)+\sigma D(a) \sigma \beta\left(\alpha^{-1}(r)\right) d(\beta(b))=0$ for all $a, b, r \in R$ where $r=\alpha(c)$. Taking $r=D(t)$ where $t \in R$, we obtain $d \alpha(a) \tau D(t) \tau D(b)+$ $\sigma D(a) \sigma \beta \alpha^{-1} D(t) d(\beta(b))=0$ for all $a, b, t \in R$. Since $\beta \alpha^{-1}$ commutes with D, we have

$$
\begin{equation*}
d \alpha(a) \tau D(t) \tau D(b)+\sigma D(a) \sigma\left(D\left(\beta \alpha^{-1}(t)\right) d(\beta(b))=0\right. \tag{3.3}
\end{equation*}
$$

Replacing a by $\beta \alpha^{-1}(t)$ in equation (3.1), we deduce that $\sigma\left(D\left(\beta \alpha^{-1}(t)\right) d(\beta(b))=-d(\alpha\right.$ $\left.\left(\beta \alpha^{-1}(t)\right)\right) \tau D(b)$. Since α and β commute, we have $\sigma\left(D\left(\beta \alpha^{-1}(t)\right) d(\beta(b))=-d(\beta(t)) \tau\right.$ $D(b)$ for all $t, b \in R$. Therefore, (3.3) becomes $0=d \alpha(a) \tau D(t) \tau D(b)+\sigma D(a)(-d(\beta(t)) \tau$ $D(b))$ which means

$$
\begin{equation*}
d \alpha(a) \tau D(t) \tau D(b)=\sigma D(a) d(\beta(t)) \tau D(b) \quad \text { for all } \quad a, b, t \in R . \tag{3.4}
\end{equation*}
$$

Replacing b by $t k$ in (3.1) where $t, k \in R$, we have

$$
\begin{aligned}
0 & =d(\alpha(a)) \tau D(t k)+\sigma(D(a)) d(\beta(t k))=d(\alpha(a)) \tau D(t k)+\sigma(D(a)) d(\beta(t) \beta(k)) \\
& =d \alpha(a) \tau(D(t) \beta(k)+\alpha(t) D(k))+\sigma D(a)(\sigma \beta(t) d \beta(k)+d \beta(t) \tau(\beta(k))) \\
& =d \alpha(a) \tau D(t) \tau(\beta(k))+d \alpha(a) \tau \alpha(t) \tau D(k)+\sigma D(a) \sigma \beta(t) d \beta(k)+\sigma D(a) d \beta(t) \tau(\beta(k)) \\
& =d \alpha(a) \tau D(t) \tau(\beta(k))+\sigma D(a) d \beta(t) \tau(\beta(k))
\end{aligned}
$$

as $d \alpha(a) \tau \alpha(t) \tau D(k)+\sigma D(a) \sigma \beta(t) d \beta(k)=0$ by (3.2). Then $d \alpha(a) \tau D(t) \tau(r)+\sigma D(a) d$ $\beta(t) \tau(r)=0$ for all $a, t, r \in R$, since β is onto. Taking $r=D(b)$ where $b \in R$ in the last equation, we obtain

$$
\begin{equation*}
d \alpha(a) \tau D(t) \tau D(b)+\sigma D(a) d \beta(t) \tau D(b)=0 \quad \text { for all } \quad a, b, t \in R . \tag{3.5}
\end{equation*}
$$

Substituting (3.4) in (3.5) and using $\tau D=D \tau$, we get for all $a, b, t \in R$

$$
0=d(\alpha(a)) D \tau(t) D \tau(b)+d(\alpha(a)) D \tau(t) D \tau(b)=d(\alpha(a)) D(\tau(t))(2 D(\tau(b))) .
$$

Since α and τ are onto, we have $d(R) D(R)(2 D(R))=\{0\}$. Suppose $d \neq 0$. So $D(R)(2 D(R))$ $=\{0\}$ by Lemma 2.5(i). If $D \neq 0$, then $2 D(R)=\{0\}$ by Lemma 2.5(i) and hence $2 R=\{0\}$ by Lemma 3.2(i)

The following corollary generalizes [20, Corollary 1].
Corollary 3.1. Let R be a 3-prime near-ring such that $2 R \neq\{0\}$ with a (σ, τ)-derivation d such that σ commutes with τ, σ is an automorphism, τ is an epimorphism and σ, τ commute with d. If d^{2} is a $\left(\sigma^{2}, \tau^{2}\right)$-derivation, then $d=0$.

The conditions $2 R=\{0\}$ in Theorem 3.1 and $2 R \neq\{0\}$ in Corollary 3.1 are essential as the following example shows.

Example 3.2. Let $R=\mathbb{Z}_{2}[x]$. Then R is an integral domain which means that R is a commutative prime ring. Also, we have $2 R=\{0\}$. If we take d to be the usual derivative on $R=\mathbb{Z}_{2}[x]$, then d is a $\left(1_{R}, 1_{R}\right)$-derivation on R which is non-zero. But d^{2} is also a $\left(1_{R}, 1_{R}\right)$ derivation on $R=\mathbb{Z}_{2}[x]$ by Lemma 2.7.

The following result generalizes [12, Proposition 4.8].
Proposition 3.1. Let R be a near-ring with a (σ, τ)-derivation d and an (α, β)-derivation D such that α commutes with β, α is an automorphism, σ, β, τ are epimorphisms and α, β, τ commute with D. If dD is a $(\sigma \alpha, \tau \beta)$-derivation and there exist $x_{o}, y_{o} \in R$ such that $d\left(x_{o}\right), D\left(y_{o}\right)$ are not left zero divisors in R, then $2 R=\{0\}$.
Proof. By the same way of the proof of Theorem 3.1, we will deduce that $d(R) D(R)(2 D(R))$ $=\{0\}$. Since $d\left(x_{o}\right)$ is not a left zero divisor in R, we have $D(R)(2 D(R))=\{0\}$. Again, as $D\left(y_{o}\right)$ is not a left zero divisor in R, so $2 D(R)=\{0\}$ which implies that $2 R=\{0\}$ by Lemma 3.2(ii).

4. Posner's second theorem

In this section we generalized Posner's second theorem for (σ, τ)-derivations.
Lemma 4.1. Let R be a near-ring with a multiplicative epimorphism θ. If U is a non-zero semigroup right (left) ideal of R, then $\theta(U)$ is a semigroup right (left) ideal of R. Moreover, if θ is a multiplicative automorphism on R then $\theta(U)$ is a non-zero semigroup right (left) ideal of R.

Proof. Let U be a non-zero semigroup right ideal of R and $x \in R$. Since θ is onto, there exists $r \in R$ such that $\theta(r)=x$. Thus, $\theta(u) x=\theta(u) \theta(r)=\theta(u r) \in \theta(U)$ for all $u \in U$. Hence, $\theta(U)$ is a semigroup right ideal of R. If θ is a multiplicative automorphism, then $\theta(U)=\{0\}$ implies $U=\{0\}$, a contradiction. The proof is similar for semigroup left ideals.

The following result generalizes [2, Theorem 1] and [18, Lemma 3].
Theorem 4.1. Let R be a prime ring with a non-zero (σ, τ)-derivation d such that σ or τ is an automorphism and $\sigma(x) d(x)=d(x) \tau(x)$ for all $x \in U$, where U is a non-zero semigroup ideal of R which is closed under addition. Then R is a commutative ring.

Proof. Suppose τ is an automorphism. U is closed under addition implies $\sigma(x+y) d(x+$ $y)=d(x+y) \tau(x+y)$ for all $x, y \in U$. So $\sigma(x) d(x)+\sigma(x) d(y)+\sigma(y) d(x)+\sigma(y) d(y)=$ $d(x) \tau(x)+d(x) \tau(y)+d(y) \tau(x)+d(y) \tau(y)$. Using $\sigma(x) d(x)=d(x) \tau(x)$ and $\sigma(y) d(y)=$ $d(y) \tau(y)$, we get

$$
\begin{equation*}
\sigma(x) d(y)+\sigma(y) d(x)=d(x) \tau(y)+d(y) \tau(x) \quad \text { for all } \quad x, y \in U . \tag{4.1}
\end{equation*}
$$

Adding $d(x) \tau(y)+\sigma(y) d(x)$ to both sides of (4.1), we have $\sigma(x) d(y)+d(x) \tau(y)+2 \sigma(y)$ $d(x)=\sigma(y) d(x)+d(y) \tau(x)+2 d(x) \tau(y)$ which means $d(x y)+2 \sigma(y) d(x)=d(y x)+2 d(x)$ $\tau(y)$ and then for all $x, y \in U$, we get

$$
\begin{equation*}
d(x y)-d(y x)=2 d(x) \tau(y)-2 \sigma(y) d(x)=2(d(x) \tau(y)-\sigma(y) d(x)) . \tag{4.2}
\end{equation*}
$$

Replacing y by $x y$ in (4.2) and using $\sigma(x) d(x)=d(x) \tau(x)$ for all $x \in U$, we have

$$
\begin{aligned}
d(x x y)-d(x y x) & =2(d(x) \tau(x) \tau(y)-\sigma(x) \sigma(y) d(x)) \\
& =2(\sigma(x) d(x) \tau(y)-\sigma(x) \sigma(y) d(x)) \\
& =\sigma(x)(2(d(x) \tau(y)-\sigma(y) d(x)))=\sigma(x)(d(x y)-d(y x)),
\end{aligned}
$$

On the other hand, we have

$$
d(x x y)-d(x y x)=d(x(x y-y x))=\sigma(x)(d(x y)-d(y x))+d(x) \tau(x y-y x) .
$$

Comparing the last equations, we obtain $d(x) \tau(x y-y x)=0$, for all $x, y \in U$. Thus, we have the following

$$
\begin{equation*}
d(x) \tau(x) \tau(y)=d(x) \tau(y) \tau(x) \quad \text { for all } \quad x, y \in U . \tag{4.3}
\end{equation*}
$$

Replacing y by $y z$ and using (4.3), we get $d(x) \tau(y) \tau(x) \tau(z)=d(x) \tau(x) \tau(y) \tau(z)=d(x) \tau(y)$ $\tau(z) \tau(x)$ for all $x, y, z \in U$. So $d(x) \tau(y)(\tau(x) \tau(z)-\tau(z) \tau(x))=0$. Thus, $d(x) \tau(U)(\tau(x) \tau(z)$ $-\tau(z) \tau(x))=\{0\}$ for all $x, z \in U$. Using Lemma 4.1 and Lemma 2.11, we have for all $x \in U$ either $d(x)=0$ or $\tau(x) \tau(z)-\tau(z) \tau(x)=\tau(x z-z x)=0$ for all $z \in U$. If $d(U)=\{0\}$, then $d=0$ by Lemma 2.9(ii), a contradiction. So there exists $a \in U$ such that $d(a) \neq 0$ and hence $\tau(a z-z a)=0$ for all $z \in U$. But τ is an automorphism implies that $a z-z a=0$ for all $z \in U$ and then a centralizes U. Therefore, $a \in Z(R)$ by Lemma 2.8. Replacing y by ay in (4.2), we get $d(x a y)-d(a y x)=2(d(x) \tau(a) \tau(y)-\sigma(a) \sigma(y) d(x))$ for all $x, y \in U$. But from (4.1), we have $\sigma(x) d(a)+\sigma(a) d(x)-d(a) \tau(x)=d(x) \tau(a)$. Substituting this in the last equation and using (4.2) and $a \in Z(R)$, it will be

$$
\begin{aligned}
d(x a y)-d(a y x) & =2(\sigma(a) d(x) \tau(y)+(\sigma(x) d(a)-d(a) \tau(x)) \tau(y)-\sigma(a) \sigma(y) d(x)) \\
& =2 \sigma(a)(d(x) \tau(y)-\sigma(y) d(x))+2((\sigma(x) d(a)-d(a) \tau(x)) \tau(y)) \\
& =\sigma(a) 2(d(x) \tau(y)-\sigma(y) d(x))+2(\sigma(x) d(a)-d(a) \tau(x)) \tau(y) \\
& =\sigma(a)(d(x y)-d(y x))-(d(a x)-d(x a)) \tau(y) \\
& =\sigma(a)(d(x y)-d(y x))
\end{aligned}
$$

for all $x, y \in U$ since $d(a x)-d(x a)=0$ for all $x \in U$. On the other hand, $d(x a y)-d(a y x)=$ $d(a(x y-y x))=\sigma(a)(d(x y)-d(y x))+d(a) \tau(x y-y x)$ for all $x, y \in U$. Comparing the last two equations, we get $d(a) \tau(x y-y x)=0$ and then $d(a) \tau(x) \tau(y)=d(a) \tau(y) \tau(x)$ for all $x, y \in U$. Putting $x z$ instead of x where $z \in U$, we get $d(a) \tau(x) \tau(z) \tau(y)=d(a) \tau(y) \tau(x) \tau(z)=$ $d(a) \tau(x) \tau(y) \tau(z)$ for all $x, y, z \in U$. Therefore, $d(a) \tau(x)(\tau(z) \tau(y)-\tau(y) \tau(z))=0$ for all $x, y, z \in U$. Thus, $d(a) \tau(U)(\tau(z) \tau(y)-\tau(y) \tau(z))=\{0\}$. Using $d(a) \neq 0$, Lemma 4.1 and Lemma 2.11, we have $\tau(z) \tau(y)-\tau(y) \tau(z)=\tau(z y-y z)=0=\tau(0)$ and then $z y=y z$ for all
$y, z \in U$. By Lemma 2.8, we obtain $U \subseteq Z(R)$. Hence, R is a commutative ring by Lemma 2.10. The proof for σ is an automorphism is similar.

It is not true to replace the condition " $\sigma(x) d(x)=d(x) \tau(x)$ " in Theorem 4.1 by " $x d(x)=$ $d(x) x^{\prime \prime}$ as the following example shows.
Example 4.1. Let R be the prime ring $M_{2}\left(\mathbb{Z}_{2}\right)$. Take $d=\tau$ is the identity map on R and $\sigma=0$ (or $d=\sigma$ is the identity map on R and $\tau=0$). Then d is a non-zero (σ, τ)-derivation d on R. Clearly that $d(x) x=x d(x)=x^{2}$ for all $x \in R$. But R is not commutative.
Corollary 4.1. Let R be a prime ring with a non-zero σ-derivation d such that $\sigma(x) d(x)=$ $d(x) x$ for all $x \in U$ where U is a non-zero semigroup ideal of R which is closed under addition. Then R is a commutative ring.

Lemma 4.2. Let R be an abelian near-ring with a non-zero (σ, τ)-derivation d such that σ and τ are epimorphisms. Then $d(\operatorname{dist}(R)) \subseteq \operatorname{dist}(R)$, where $\operatorname{dist}(R)$ is the set of distributive elements of R.
Proof. For all $x, y \in R, s \in \operatorname{dist}(R)$, we have $d((x+y) s)=d(x s+y s)$. That means $\sigma(x+$ $y) d(s)+d(x+y) \tau(s)=\sigma(x) d(s)+d(x) \tau(s)+\sigma(y) d(s)+d(y) \tau(s)$. Since τ is onto, we get $\tau(s) \in \operatorname{dist}(R)$. It follows that $(\sigma(x)+\sigma(y)) d(s)+d(x) \tau(s)+d(y) \tau(s)=\sigma(x) d(s)+$ $\sigma(y) d(s)+d(x) \tau(s)+d(y) \tau(s)$ and hence $(\sigma(x)+\sigma(y)) d(s)=\sigma(x) d(s)+\sigma(y) d(s)$. So $d(s) \in \operatorname{dist}(R)$.

Theorem 4.2. Let R be an integral near-ring with a non-zero (σ, τ)-derivation d such that σ and τ are automorphisms and $\sigma(x) d(x)=d(x) \tau(x)$ for all $x \in R$. Then d is a (σ, σ) derivation on $\operatorname{dist}(R)$ and either $d(\operatorname{dist}(R))=0$ or $\operatorname{dist}(R)$ is a commutative ring. Moreover, if $d(\operatorname{dist}(R)) \neq 0$, then $\sigma(s)=\tau(s)$ for all $s \in \operatorname{dist}(R)$.
Proof. For all $x, y \in R$, we have $d(x(x+y))=d\left(x^{2}+x y\right)$. So

$$
\begin{aligned}
d(x(x+y)) & =\sigma(x) d(x+y)+d(x) \tau(x+y) \\
& =\sigma(x) d(x)+\sigma(x) d(y)+d(x) \tau(x)+d(x) \tau(y) \\
& =\sigma(x) d(x)+\sigma(x) d(y)+\sigma(x) d(x)+d(x) \tau(y)
\end{aligned}
$$

as $d(x) \tau(x)=\sigma(x) d(x)$. On the other hand

$$
\begin{aligned}
d\left(x^{2}+x y\right) & =d\left(x^{2}\right)+d(x y)=\sigma(x) d(x)+d(x) \tau(x)+\sigma(x) d(y)+d(x) \tau(y) \\
& =\sigma(x) d(x)+\sigma(x) d(x)+\sigma(x) d(y)+d(x) \tau(y)
\end{aligned}
$$

After cancellation we get $\sigma(x) d(y)+\sigma(x) d(x)=\sigma(x) d(x)+\sigma(x) d(y)$ for all $x, y \in R$. Thus, $0=\sigma(x)(d(y)+d(x)-d(y)-d(x))=\sigma(x) d(y+x-y-x)$ for all $x, y \in R$. Since R is without zero divisors and σ is an automorphism, either $x=0$ or $d(y+x-y-x)=0$ for all $0 \neq x \in R$ and for all $y \in R$. But if $x=0$, then $d(y+x-y-x)=d(y-y)=d(0)=0$. So $d((x, y))=0$ for all $x, y \in R$. Since $z(x, y)=(z x, z y)$ for all $x, y, z \in R$, we have $d(z(x, y))=0$ and then $0=d(z(x, y))=\sigma(z) d((x, y))+d(z) \tau(x, y)=d(z) \tau(x, y)$. Since $d \neq 0$, there exists $z \in R$ such that $d(z) \neq 0$ and then $\tau(x, y)=0$ for all $x, y \in R$. It follows that $(R,+)$ is an abelian group. So R is an abelian near-ring. Thus, $\operatorname{dist}(R)$ is a subnear-ring of R which is an integral ring. Also, $d(\operatorname{dist}(R)) \subseteq \operatorname{dist}(R)$ by Lemma 4.2. Therefore, $d(\operatorname{dist}(R))=0$ or $\operatorname{dist}(R)$ is a commutative ring by Theorem 4.1. Now, If $d(\operatorname{dist}(R))=0$, then d is a (σ, σ)-derivation on $\operatorname{dist}(R)$. Suppose that $d(\operatorname{dist}(R)) \neq 0$. So $\sigma(s) d(s)=d(s) \tau(s)$ for all $s \in \operatorname{dist}(R)$. Thus, $d(s)(\sigma(s)-\tau(s))=0$ and either $d(s)=0$ or $\sigma(s)=\tau(s)$. That means if
$d(s) \neq 0$, then $\sigma(s)=\tau(s)$. Since $d(\operatorname{dist}(R)) \neq 0$, there exists $t \in \operatorname{dist}(R)$ such that $d(t) \neq 0$. So for all $s \in \operatorname{dist}(R)-\{0\}$ such that $d(s)=0$, we get $\sigma(t s) d(t s)=d(t s) \tau(t s)$. It follows that $\sigma(t) \sigma(s) d(t) \tau(s)=d(t) \tau(s) \tau(t) \tau(s)$. As $\operatorname{dist}(R)$ is a commutative integral ring, τ is an automorphism and $\sigma(t)=\tau(t)$ where $d(t) \neq 0$ and $t \in \operatorname{dist}(R)$, we have $\sigma(s)=\tau(s)$ for all $s \in \operatorname{dist}(R)$. Also, σ is an automorphism on R implies that σ is an automorphism on $\operatorname{dist}(R)$. Therefore, d is a non-zero (σ, σ)-derivation on $\operatorname{dist}(R)$.

The following result generalizes [1, Theorem 1].
Theorem 4.3. Let R be a prime ring with a non-zero (σ, τ)-derivation d such that σ, τ are epimorphisms and $\sigma(x) d(x)=d(x) \tau(x)$ for all $x \in U$ where U is a non-zero right (left) ideal of R. Then $\tau(U)=\{0\}$ or $\sigma(U)=\{0\}$ or (R is a commutative ring and $\sigma=\tau$).

Proof. Suppose U is a non-zero right ideal. The first part of the proof is similar to the first part of the proof of Theorem 4.1 up to equation (4.3)

$$
d(x) \tau(x) \tau(y)=d(x) \tau(y) \tau(x) \quad \text { for all } \quad x, y \in U .
$$

Replacing y by $y z$ and using (4.3), we have $d(x) \tau(y) \tau(x) \tau(z)=d(x) \tau(x) \tau(y) \tau(z)=d(x) \tau(y)$ $\tau(z) \tau(x)$ for all $x, y, z \in U$, which means $d(x) \tau(y)(\tau(x) \tau(z)-\tau(z) \tau(x))=0$. Thus, $d(x) \tau(U)$ $(\tau(x) \tau(z)-\tau(z) \tau(x))=\{0\}$ for all $x, z \in U$. By Lemma 4.1, either $\tau(U)=\{0\}$ or $d(x) \tau(U)$ $R(\tau(x) \tau(z)-\tau(z) \tau(x))=\{0\}$. If $\tau(U) \neq\{0\}$, then for each $x \in U$ either $d(x) \tau(U)=\{0\}$ or $\tau(x z)=\tau(z x)$ for all $z \in U$. Let $A=\{x \in U: d(x) \tau(U)=\{0\}\}$ and $B=\{x \in U: \tau(x z)=$ $\tau(z x)$ for all $z \in U\}$. Then A and B are subgroups of $(U,+)$ and $A \cup B=U$. Thus, $A=U$ or $B=U$. In other words, $d(U) \tau(U)=\{0\}$ or $\tau(U) \subseteq Z(R)$. Suppose $d(U) \tau(U)=\{0\}$. So (4.1) will be $\sigma(x) d(y)+\sigma(y) d(x)=0$ for all $x, y \in U$. Since $d(x y)=\sigma(x) d(y), d(y x)=$ $\sigma(y) d(x)$, we have

$$
\begin{equation*}
d(x y+y x)=0 \quad \text { for all } \quad x, y \in U . \tag{4.4}
\end{equation*}
$$

Replacing x, y by $z,(x y+y x)$ respectively in (4.4), we get $d(z(x y+y x)+(x y+y x) z)=0$ for all $x, y, z \in U$. It follows that

$$
\begin{equation*}
0=\sigma(z) d(x y+y x)+d(z) \tau(x y+y x)+\sigma(x y+y x) d(z)+d(x y+y x) \tau(z) \tag{4.5}
\end{equation*}
$$

for all $x, y, z \in U$. Observe that $d(x y+y x) \tau(z)=d(z) \tau(x y+y x)=0$ from $d(U) \tau(U)=\{0\}$ and $\sigma(z) d(x y+y x)=0$ from (4.4). Thus, (4.5) will be $\sigma(x y+y x) d(z)=0$. Replacing y by $y z$, it yields $0=\sigma(x y z+y z x) d(z)=\sigma(x) \sigma(y) \sigma(z) d(z)+\sigma(y) \sigma(z) \sigma(x) d(z)=$ $\sigma(y) \sigma(z) \sigma(x) d(z)$ for all $x, y, z \in U$ since $\sigma(z) d(z)=d(z) \tau(z)=0$. Replacing y by $y r$ where $r \in R$, we get $\sigma(y) \sigma(r) \sigma(z) \sigma(x) d(z)=0$. As R is prime and σ is onto, either $\sigma(U)=\{0\}$ or $\sigma(z) \sigma(x) d(z)=0$ for all $x, z \in U$. If $\sigma(U) \neq\{0\}$, then $\sigma(z) \sigma(x) d(z)=0$ for all $x, z \in U$. Putting $x r$ instead of x, we conclude that $\sigma(z) \sigma(x) \operatorname{Rd}(z)=\{0\}$ and then for every $z \in U$ either $d(z)=0$ or $\sigma(z) \sigma(x)=\sigma(z x)=0$. Let $A=\{u \in U: d(u)=0\}$ and $B=\{u \in U: \sigma(u x)=0$ for all $x \in U\}$. So A and B are subgroups of $(U,+)$. Moreover, $U=A \cup B$. Thus, either $A=U$ or $B=U$. If $A=U$, then $d(U)=\{0\}$ and hence $d=0$ by Lemma 2.9(i), a contradiction with the hypothesis. If $B=U$, then $\sigma\left(U^{2}\right)=\{0\}$ which implies $\sigma(U) \sigma(U)=\{0\}$. But $\sigma(U)$ is a non-zero semigroup right ideal of R by Lemma 4.1 and $\sigma(U) \neq\{0\}$. So $\sigma(U) \sigma(U) \neq\{0\}$, a contradiction. Hence, $d(U) \tau(U) \neq\{0\}$ if $\sigma(U) \neq\{0\}$. Therefore, $\tau(U) \subseteq Z(R)$. But $\tau(U) \neq\{0\}$ is a non-zero semigroup right ideal of R, so R is a commutative ring by Lemma 2.10. It follows that $\sigma(x) d(x)=d(x) \tau(x)$ implies $d(x)(\sigma(x)-\tau(x))=0$ for all $x \in U$. Since R is a commutative prime ring, it doesn't have non-zero zero divisors by Lemma 2.4. Thus, either $d(x)=0$ or $\sigma(x)=\tau(x)$.

Let $A=\{x \in U \mid d(x)=0\}$ and $B=\{x \in U \mid \sigma(x)=\tau(x)\}$. Then A and B are subgroups of U whose union is U. As $d(U) \neq 0$, we have $B=U$ and $\sigma(x)=\tau(x)$ for all $x \in U$. Hence, $\sigma(u x)=\tau(u x)$ for all $u \in U$ and $x \in R$. That implies $\sigma(u)(\sigma(x)-\tau(x))=0$. Since $\sigma(U) \neq\{0\}$, we get $\sigma(x)=\tau(x)$ for all $x \in R$ and $\sigma=\tau$. The proof when U is a non-zero left ideal is similar.

If a 3-prime near-ring R with a (σ, σ)-derivation d such that $\sigma(x) d(x)=d(x) \sigma(x)$ for all $x \in R$, then R need not be a ring as the following example shows:
Example 4.2. Let $R=I \times I$ as a set, where I is any integral ring with identity which has at least three elements. Define the addition and the multiplication on R by $(a, b)+(c, d)=$ $(a+c, b+d)$ and $(a, b)(c, d)=(a c, b c+d)$ if $(a, b) \neq(0,0)$ and $(0,0)(c, d)=(0,0)$. Then R is a zero-symmetric abelian near-ring with identity $(1,0)$ which is not a ring. Let D be a non-zero derivation on I and σ the endomorphism defined on R by $\sigma((a, b))=(a, 0)$ for all $(a, b) \in R$. Define $d: R \rightarrow R$ by $d((a, b))=(D(a), 0)$. Then d is a non-zero (σ, σ)-derivation on R by simple calculations.

Observe that R is 3-prime. Indeed, assume that $(a, b) R(c, d)=(0,0)$ with $(a, b) \neq$ $(0,0)$. If $a \neq 0$, then $(a, b)(1,0)(c, d)=(0,0)$. That means $(a, b)(c, d)=(a c, b c+d)=$ $(0,0)$. Thus, $c=0$ and hence $d=0$. Now, suppose $a=0$ and $b \neq 0$. It follows that $(0,0)=(0, b)(0,1)(c, d)=(0,1)(c, d)=(0, c+d)$ and then $c=-d$. It follows that $(0,0)=$ $(0, b)(0, y)(-d, d)=(0, y)(-d, d)=(0,-y d+d)=(0,(-y+1) d)$ for all $y \in I-\{0\}$. If $d \neq 0$, then $y=1$ and $I=\{0,1\}$ which is a contradiction with the number of elements of I. Therefore, $d=0$ and $(c, d)=(0,0)$. Hence, R is a 3-prime near-ring.

Now, choose I to be the integral domain $\mathbb{R}[x]$ where \mathbb{R} is the field of real numbers and choose D to be usual derivative on $\mathbb{R}[x]$. Observe that we have $\sigma(a, b) d((a, b))=$ $d((a, b)) \sigma(a, b)$ for all $(a, b) \in R$, but R is not a ring.
Proposition 4.1. Let R be a prime ring.
(i) If $n x=0$ for some $x \in R$ and a positive integer n, then either $n R=\{0\}$ or $x=0$.
(ii) If $n R \neq\{0\}$ for some positive integer n and $n x \in Z(R)$ for some $x \in R$, then $x \in Z(R)$.

Proof. (i) For all $y, z \in R$, we have $0=y z(n x)=n(y z x)=(n y) z x$. From the primeness of R, we have either $n R=\{0\}$ or $x=0$.
(ii) If $Z(R)=\{0\}$, then $n x=0$ and hence $x=0$ by using (i). If $Z(R) \neq\{0\}$, then there exists $z \in Z(R)-\{0\}$. Observe that $n y \neq 0$ for all $y \in R-\{0\}$ from (i). Now, $z(n x) \in Z(R)$. Observe that $z(n x)=n(z x)=(n z) x \in Z(R)$. But $n z \in Z(R)-\{0\}$. Therefore, $x \in Z(R)$ by Lemma 2.3.

The following example shows that the hypothesis "prime ring" in Proposition 4.1 can't be replaced by "3-prime near-ring".
Example 4.3. Let $R=M_{o}(G)$, where G is the abelian group $\left(\mathbb{Z}_{4},+\right)$. Then $M_{o}(G)$ is 3prime. Take $f \in M_{o}(G)$ such that $x f=2 x$ for all $x \in G$. Then $2 f=0$, but neither $2 M_{o}(G)=$ $\{0\}$ nor $f=0$. Observe that $2 f \in Z\left(M_{o}(G)\right)$ and $2 M_{o}(G) \neq\{0\}$, but $f \notin Z\left(M_{o}(G)\right)$ since $f g \neq g f$, where $g \in M_{o}(G)$ is defined by $\{0,1,3\} g=\{0\}$ and $2 g=1$.
Lemma 4.3. Let R be a ring and σ and τ are endomorphisms of R. Then for all $x, y, z \in R$, we have the following relations:
(i) $[x, y \pm z]_{\sigma, \tau}=[x, y]_{\sigma, \tau} \pm[x, z]_{\sigma, \tau}$.
(ii) $[x \pm y, z]_{\sigma, \tau}=[x, z]_{\sigma, \tau} \pm[y, z]_{\sigma, \tau}$.
(iii) $[x y, z]_{\sigma, \tau}=\sigma(x)[y, z]_{\sigma, \tau}+[x, z]_{\sigma, \tau} \tau(y)$.
(iv) $[x, y z]_{\sigma, \tau}=y[x, z]_{\sigma, \tau}+[x, y]_{\sigma, \sigma} z$.

Proof. (i) For all $x, y, z \in R$, we have $[x, y \pm z]_{\sigma, \tau}=\sigma(x)(y \pm z)-(y \pm z) \tau(x)=\sigma(x) y \pm$ $\sigma(x) z-y \tau(x) \pm(-z \tau(x))=\sigma(x) y-y \tau(x) \pm(\sigma(x) z-z \tau(x))=[x, y]_{\sigma, \tau} \pm[x, z]_{\sigma, \tau}$.
(ii) For all $x, y, z \in R$, we have $[x \pm y, z]_{\sigma, \tau}=\sigma(x \pm y) z-z \tau(x \pm y)=\sigma(x) z \pm \sigma(y) z-$ $z \tau(x) \pm(-z \tau(y))=\sigma(x) z-z \tau(x) \pm(\sigma(y) z-z \tau(y))=[x, z]_{\sigma, \tau} \pm[y, z]_{\sigma, \tau}$.
(iii) For all $x, y, z \in R$, we have $[x y, z]_{\sigma, \tau}=\sigma(x y) z-z \tau(x y)=\sigma(x) \sigma(y) z-z \tau(x) \tau(y)=$ $\sigma(x) \sigma(y) z+(-\sigma(x) z \tau(y)+\sigma(x) z \tau(y))-z \tau(x) \tau(y)=\sigma(x)(\sigma(y) z-z \tau(y))+(\sigma(x) z-$ $z \tau(x)) \tau(y)=\sigma(x)[y, z]_{\sigma, \tau}+[x, z]_{\sigma, \tau} \tau(y)$.
(iv) For all $x, y, z \in R$, we have $[x, y z]_{\sigma, \tau}=\sigma(x) y z-y z \tau(x)=\sigma(x) y z+(-y \sigma(x) z+$ $y \sigma(x) z)-y z \tau(x)=(\sigma(x) y-y \sigma(x)) z+y(\sigma(x) z-z \tau(x))=[x, y]_{\sigma, \sigma z+y[x, z]_{\sigma, \tau}=y[x, z]_{\sigma, \tau}+}$ $[x, y]_{\sigma, \sigma} z$.

It is not true in general that $[x, y z]_{\sigma, \tau}=y[x, z]_{\sigma, \tau}+[x, y]_{\sigma, \tau} z$ as the following example shows.

Example 4.4. Let R be a ring. Choose $\sigma=1_{R}$ and $\tau=0$. Then for all $x, y, z \in R$, we have $[x, y z]_{\sigma, \tau}=\sigma(x) y z-y z \tau(x)=x y z$ and $y[x, z]_{\sigma, \tau}+[x, y]_{\sigma, \tau} z=y(\sigma(x) z-z \tau(x))+(\sigma(x) y-$ $y \tau(x)) z=y x z+x y z$.
Lemma 4.4. Let R be a ring with (σ, τ)-derivations d and D. Then
(i) [13, Example 3.1] $\delta: R \rightarrow R$ such that $\delta(x)=\sigma(x) a-a \tau(x)$ for all $x \in R$ is a (σ, τ)-derivation on R for all $a \in R$.
(ii) $g: R \rightarrow R$ such that $g(x)=a d(x)$ for all $x \in R$ is a (σ, τ)-derivation on R, where $a \in Z(R)$.
(iii) $d+D$ is a (σ, τ)-derivation on R.

Proof. (ii) For all $x, y \in R$, we have $g(x+y)=a d(x+y)=a(d(x)+d(y))=a d(x)+a d(y)=$ $g(x)+g(y)$. Also, $g(x y)=a d(x y)=a(\sigma(x) d(y)+d(x) \tau(y))=\sigma(x) a d(y)+a d(x) \tau(y)=$ $\sigma(x) g(y)+g(x) \tau(y)$.
(iii) Clearly that $d+D$ is additive mapping. Now,

$$
\begin{aligned}
(d+D)(x y) & =d(x y)+D(x y)=\sigma(x) d(y)+d(x) \tau(y)+\sigma(x) D(y)+D(x) \tau(y) \\
& =\sigma(x)(d(y)+D(y))+(d(x)+D(x)) \tau(y) \\
& =\sigma(x)(d+D)(y)+(d+D)(x) \tau(y)
\end{aligned}
$$

Therefore, $d+D$ is also a (σ, τ)-derivation on R.
Theorem 4.4. Let R be a prime ring with a non-zero (σ, τ)-derivation d, σ and τ are epimorphisms of R. If $\sigma(x) d(x)-d(x) \tau(x) \in Z(R)$, for all $x \in R$, then R is a commutative ring or $d(Z(R))=\{0\}$.
Proof. Observe that $\sigma(x) d(x)-d(x) \tau(x)=[x, d(x)]_{\sigma, \tau}$ for all $x \in R$. From $[x+y, d(x+$ $y)]_{\sigma, \tau} \in Z(R)$ for all $x, y \in R$ and using Lemma 4.3, we have $[x, d(x)]_{\sigma, \tau}+[x, d(y)]_{\sigma, \tau}+$ $[y, d(x)]_{\sigma, \tau}+[y, d(y)]_{\sigma, \tau} \in Z(R)$. Using $[x, d(x)]_{\sigma, \tau} \in Z(R),[y, d(y)]_{\sigma, \tau} \in Z(R)$ and that $Z(R)$ is a subring of R, we get

$$
\begin{equation*}
[x, d(y)]_{\sigma, \tau}+[y, d(x)]_{\sigma, \tau} \in Z(R) \quad \text { for all } \quad x, y \in R . \tag{4.6}
\end{equation*}
$$

If $Z(R)=\{0\}$, then $\sigma(x) d(x)-d(x) \tau(x)=0$ for all $x \in R$ and hence R is a commutative ring by Theorem 4.3. So $R=Z(R)=\{0\}$ and $d=0$, a contradiction. Therefore, $Z(R) \neq\{0\}$. We divide the proof into two cases:
(i) R is not of characteristic 2 . Then there exists $c \in Z(R)-\{0\}$ such that $[x, d(c)]_{\sigma, \tau}+$ $[c, d(x)]_{\sigma, \tau} \in Z(R)$ for all $x \in R$ by (4.6). Write $d_{1}(x)=[x, d(c)]_{\sigma, \tau}$ and $d_{2}(x)=[c, d(x)]_{\sigma, \tau}$. Observe that d_{1}, d_{2} and $d_{1}+d_{2}$ are (σ, τ)-derivations by Lemma 4.4. If $d_{1}+d_{2} \neq 0$, then $\left(d_{1}+d_{2}\right)(R) \subseteq Z(R)$ implies that R is a commutative ring by Lemma 2.12. If $d_{1}+d_{2}=0$, then $[x, d(c)]_{\sigma, \tau}+[c, d(x)]_{\sigma, \tau}=0$ for all $x \in R, c \in Z(R)$. It follows that $0=[c, d(c)]_{\sigma, \tau}+$ $[c, d(c)]_{\sigma, \tau}=2[c, d(c)]_{\sigma, \tau}$ and hence $[c, d(c)]_{\sigma, \tau}=0$ by Proposition 4.1(i). As $\sigma(c), \tau(c) \in$ $Z(R)$, we obtain $[c, d(c)]_{\sigma, \tau}=d(c)(\sigma(c)-\tau(c))=0$. Thus, for all $c \in Z(R)$, either $d(c)=0$ or $\sigma(c)=\tau(c)$. If $\sigma(c) \neq \tau(c)$ and $d(c)=0$ for some $c \in Z(R)$, then $d_{1}=0$ which implies $d_{2}=0$. Thus, $(\sigma(c)-\tau(c)) d(x)=0$ for all $x \in R$ and $d=0$ by Lemma 2.4, a contradiction. So if $d(Z(R))=\{0\}$, then $\sigma(a)=\tau(a)$ for all $a \in Z(R)$. If $d(c) \neq 0$ and $\sigma(c)=\tau(c)$ for some $c \in Z(R)$, then $d_{2}=0$. So $d_{1}(x)=\sigma(x) d(c)-d(c) \tau(x)=0$ for all $x \in R$. If there exists $a \in Z(R)$ such that $\sigma(a) \neq \tau(a)$, then $d(c)(\sigma(a)-\tau(a))=0$ and $d(c)=0$, a contradiction. So if $d(c) \neq 0$ for some $c \in Z(R)$, then $\sigma(a)=\tau(a)$ for all $a \in Z(R)$. Now, we have the following case: $d_{1}=d_{2}=0, d(Z(R)) \neq\{0\}$ and $\sigma(a)=\tau(a)$ for all $a \in Z(R)$. Replacing y in (4.6) by $z y$ and using Lemma 4.3(i), (iii) and (iv), we get for all $x, y, z \in R$

$$
\begin{aligned}
& {[x, d(z y)]_{\sigma, \tau}+[z y, d(x)]_{\sigma, \tau} } \\
= & {[x, \sigma(z) d(y)+d(z) \tau(y)]_{\sigma, \tau}+[z y, d(x)]_{\sigma, \tau} } \\
= & {[x, \sigma(z) d(y)]_{\sigma, \tau}+[x, d(z) \tau(y)]_{\sigma, \tau}+\sigma(z)[y, d(x)]_{\sigma, \tau}+[z, d(x)]_{\sigma, \tau} \tau(y) } \\
= & \sigma(z)[x, d(y)]_{\sigma, \tau}+[x, \sigma(z)]_{\sigma, \sigma} d(y)+d(z)[x, \tau(y)]_{\sigma, \tau}+[x, d(z)]_{\sigma, \sigma} \tau(y) \\
& +\sigma(z)[y, d(x)]_{\sigma, \tau}+[z, d(x)]_{\sigma, \tau} \tau(y) \\
= & \sigma(z)\left([x, d(y)]_{\sigma, \tau}+[y, d(x)]_{\sigma, \tau}+\left([x, d(z)]_{\sigma, \sigma}+[z, d(x)]_{\sigma, \tau}\right) \tau(y)\right. \\
& +[x, \sigma(z)]_{\sigma, \sigma} d(y)+d(z)[x, \tau(y)]_{\sigma, \tau} .
\end{aligned}
$$

Putting $z=c \in Z(R)$, using $d_{2}=0$ and (4.6), we deduce that $[x, d(c)]_{\sigma, \sigma} \tau(y)+d(c)[x, \tau(y)]_{\sigma, \tau} \in$ $Z(R)$ for all $x, y \in R$. Then $\sigma(x) d(c) \tau(y)-d(c) \sigma(x) \tau(y)+d(c) \sigma(x) \tau(y)-d(c) \tau(y) \tau(x)=$ $\sigma(x) d(c) \tau(y)-d(c) \tau(y) \tau(x) \in Z(R)$ for all $x, y \in R$. Suppose $d(c) \neq 0$ for some $c \in Z(R)$ and assume that

$$
\begin{equation*}
\sigma(x) d(c) \tau(y)=d(c) \tau(y) \tau(x) \quad \text { for all } \quad x, y \in R \tag{4.7}
\end{equation*}
$$

Multiplying both sides by $\tau(z)$ from the right, we obtain

$$
\begin{equation*}
\sigma(x) d(c) \tau(y) \tau(z)=d(c) \tau(y) \tau(x) \tau(z) \quad \text { for all } \quad x, y, z \in R \tag{4.8}
\end{equation*}
$$

Replacing y by $y z$ in (4.7), we have

$$
\begin{equation*}
\sigma(x) d(c) \tau(y) \tau(z)=d(c) \tau(y) \tau(z) \tau(x) \quad \text { for all } \quad x, y, z \in R \tag{4.9}
\end{equation*}
$$

From (4.8) and (4.9), we conclude $d(c) \tau(y)(\tau(z) \tau(x)-\tau(x) \tau(z))=0$ for all $x, y, z \in R$. Since R is prime and $d(c) \neq 0$, we obtain that R is commutative. Now, assume that $\tau(a) \neq 0$ for some $a \in R$ such that $\sigma(x) d(c) \tau(a) \neq d(c) \tau(a) \tau(x)$. It follows that $\delta(x)=\sigma(x) d(c) \tau(a)-$ $d(c) \tau(a) \tau(x) \in Z(R)$ for all $x \in R$ is a non-zero inner (σ, τ)-derivation and R is a commutative ring by Lemma 2.12.
(ii) R is of characteristic 2 . Adding $d(x) \tau(y)+d(y) \tau(x)-d(x) \tau(y)-d(y) \tau(x)=0$ to (4.6), we have $\sigma(x) d(y)+d(x) \tau(y)-2 d(x) \tau(y)+\sigma(y) d(x)+d(y) \tau(x)-2 d(y) \tau(x) \in Z(R)$ which means

$$
\begin{equation*}
d(x y+y x) \in Z(R) \quad \text { for all } \quad x, y \in R . \tag{4.10}
\end{equation*}
$$

Now, suppose $d(Z(R)) \neq\{0\}$ and there exists $c \in Z(R)-\{0\}$ such that $d(c) \neq 0$. Replace y by $y c$ in (4.10). Then $d(x y c+y c x)=d(c(x y+y x)) \in Z(R)$ for all $x, y \in R$. It follows that $\sigma(c) d(x y+y x)+d(c) \tau(x y+y x) \in Z(R)$. Since $\sigma(c) d(x y+y x) \in Z(R)$, we have $d(c) \tau(x y+$ $y x) \in Z(R)$ and then $d(c)(u v+v u) \in Z(R)$ for all $u, v \in R$ as τ is onto. Firstly, suppose that $d(c)(x y+y x)=0$ for all $x, y \in R$. So $d(c) x y=d(c) y x$ for all $x, y \in R$. Replacing x by $x z$ in the last equation, we get $d(c) x z y=d(c) y x z=d(c) x y z$ and hence $d(c) x(z y-y z)=0$ for all $x, y, z \in R$. The primeness of R and $d(c) \neq 0$ imply that R is commutative. Now, suppose $d(c)(s t+t s) \in Z(R)-\{0\}$ for some $s, t \in R$. Using $d(c)(x y+y x) \in Z(R)$ for all $x, y \in R$ and replacing x by $[s, t] x$ and y by $[s, t] y$, we have $d(c)([s, t] x[s, t] y+[s, t] y[s, t] x) \in Z(R)$. Thus, $d(c)[s, t](x[s, t] y+y[s, t] x) \in Z(R)$. Since $d(c)[s, t] \in Z(R)-\{0\}$, it is not a zero divisor by Lemma 2.4. It follows that $(x[s, t] y+y[s, t] x) \in Z(R)$ for all $x, y \in R$. Replacing x by c and putting $a=[s, t]$, we obtain $c(a y+y a) \in Z(R)$. Again, by Lemma 2.3, we have $a y+y a \in Z(R)$ for all $y \in R$. Define $d_{a}: R \rightarrow R$ by $d_{a}(y)=a y+y a$ for all $y \in R$. Then d_{a} is an inner derivation on R and $d_{a}(R) \subseteq Z(R)$. If d_{a} is non-zero, then R is commutative by Lemma 2.12. If $d_{a}=0$, then $a=[s, t] \in Z(R)-\{0\}$. Using Lemma 2.3, we get $d(c) \in Z(R)-\{0\}$. Thus, $d(c)(x y+y x) \in Z(R)$ for all $x, y \in R$ implies $x y+y x \in Z(R)$ for all $x, y \in R$. If there exists $b \in R$ such that $b y+y b \neq 0$ for some $y \in R$, then d_{b} is a non-zero derivation on R and $d_{b}(R) \subseteq Z(R)$ which implies R to be a commutative ring by Lemma 2.12 and hence $b y+y b=0$, a contradiction. Thus, $x y+y x=0$ and then R is a commutative ring.

Corollary 4.2. Let R be a prime ring of characteristic 2 with a non-zero (σ, τ)-derivation d such that σ and τ are automorphisms and commute with d. If $\sigma(x) d(x)+d(x) \tau(x) \in Z(R)$ for all $x \in R$., then R is a commutative ring or $d^{2}=0$.

Proof. Using Theorem 4.4, R is a commutative ring or $d(Z(R))=\{0\}$. If $d(Z(R))=\{0\}$, then $d^{2}(x y)=d^{2}(y x)$ for all $x, y \in R$ from (4.10) in the proof of Theorem 4.4. Using Lemma 2.7, d^{2} is a $\left(\sigma^{2}, \tau^{2}\right)$-derivation on R. So by Lemma 2.13, R is a commutative ring or $d^{2}=$ 0 .

The following result generalizes Theorem 1 (in its part of derivations) of [14] and [8, Theorem 4].

Theorem 4.5. Let R be a prime ring with a non-zero (σ, σ)-derivation d such that σ is an epimorphism and $\sigma(x) d(x)-d(x) \sigma(x) \in Z(R)$ for all $x \in U$, where U is a non-zero right (left) ideal of R. Then R is a commutative ring or $\sigma(U)=\{0\}$.
Proof. From $[x+y, d(x+y)]_{\sigma, \sigma} \in Z(R)$ for all $x, y \in U$, we have

$$
\begin{equation*}
[x, d(y)]_{\sigma, \sigma}+[y, d(x)]_{\sigma, \sigma} \in Z(R) \text { for all } x, y \in U \tag{4.11}
\end{equation*}
$$

We divide the proof into two cases:
(i) R is not of characteristic 2 . Replacing y in (4.11) by x^{2} and using Lemma 4.3, we get

$$
\begin{aligned}
& {[x, d(x x)]_{\sigma, \sigma}+[x x, d(x)]_{\sigma, \sigma}} \\
& =[x, \sigma(x) d(x)+d(x) \sigma(x)]_{\sigma, \sigma}+[x x, d(x)]_{\sigma, \sigma} \\
& =[x, \sigma(x) d(x)]_{\sigma, \sigma}+[x, d(x) \sigma(x)]_{\sigma, \sigma}+\sigma(x)[x, d(x)]_{\sigma, \sigma}+[x, d(x)]_{\sigma, \sigma} \sigma(x) \\
& =\sigma(x)[x, d(x)]_{\sigma, \sigma}+[x, d(x)]_{\sigma, \sigma} \sigma(x)+2 \sigma(x)[x, d(x)]_{\sigma, \sigma}=4 \sigma(x)[x, d(x)]_{\sigma, \sigma}
\end{aligned}
$$

and hence $4 \sigma(x)[x, d(x)]_{\sigma, \sigma} \in Z(R)$. It follows that $\sigma(x)[x, d(x)]_{\sigma, \sigma} \in Z(R)$ by Proposition 4.1(ii). If $[x, d(x)]_{\sigma, \sigma} \neq 0$, then $\sigma(x) \in Z(R)$ by using Lemma 2.3. But that means
$[x, d(x)]_{\sigma, \sigma}=0$, a contradiction. Thus, $[x, d(x)]_{\sigma, \sigma}=0$ for all $x \in U$. Therefore, R is a commutative ring or $\sigma(U)=\{0\}$ by Theorem 4.3.
(ii) R is of characteristic 2. Using Lemma 4.3(ii), (iii) and $[x, d(x)]_{\sigma, \sigma} \in Z(R)$, we have for all $x, y \in U$

$$
\begin{aligned}
& {[x y+y x, d(x)]_{\sigma, \sigma}+\left[x^{2}, d(y)\right]_{\sigma, \sigma} } \\
= & {[x y, d(x)]_{\sigma, \sigma}+[y x, d(x)]_{\sigma, \sigma}+\left[x^{2}, d(y)\right]_{\sigma, \sigma} } \\
= & \sigma(x)[y, d(x)]_{\sigma, \sigma}+[x, d(x)]_{\sigma, \sigma} \sigma(y)+\sigma(y)[x, d(x)]_{\sigma, \sigma}+[y, d(x)]_{\sigma, \sigma} \sigma(x) \\
& +\sigma(x)[x, d(y)]_{\sigma, \sigma}+[x, d(y)]_{\sigma, \sigma} \sigma(x) \\
= & \sigma(x)[y, d(x)]_{\sigma, \sigma}+\sigma(x)[x, d(y)]_{\sigma, \sigma}+[y, d(x)]_{\sigma, \sigma} \sigma(x)+[x, d(y)]_{\sigma, \sigma} \sigma(x) \\
= & \sigma(x)\left([y, d(x)]_{\sigma, \sigma}+[x, d(y)]_{\sigma, \sigma}\right)+\left([y, d(x)]_{\sigma, \sigma}+[x, d(y)]_{\sigma, \sigma}\right) \sigma(x)=0
\end{aligned}
$$

using (4.11). So

$$
\begin{equation*}
[x y+y x, d(x)]_{\sigma, \sigma}+\left[x^{2}, d(y)\right]_{\sigma, \sigma}=0 \quad \text { for all } \quad x, y \in U . \tag{4.12}
\end{equation*}
$$

Using $d(x) \sigma(y)+d(y) \sigma(x)-d(x) \sigma(y)-d(y) \sigma(x)=0$ for all $x, y \in U$ and (4.11), we have

$$
\sigma(x) d(y)+d(x) \sigma(y)-2 d(x) \sigma(y)+\sigma(y) d(x)+d(y) \sigma(x)-2 d(y) \sigma(x) \in Z(R)
$$

and consequently, we get

$$
\begin{equation*}
d(x y+y x) \in Z(R) \quad \text { for all } \quad x, y \in U \tag{4.13}
\end{equation*}
$$

Replacing y by $x y+y x$ in (4.12) and using (4.13), we have

$$
\begin{aligned}
0 & =[x(x y+y x)+(x y+y x) x, d(x)]_{\sigma, \sigma}+\left[x^{2}, d(x y+y x)\right]_{\sigma, \sigma} \\
& =[x x y+x y x+x y x+y x x, d(x)]_{\sigma, \sigma}=[x x y+y x x, d(x)]_{\sigma, \sigma} .
\end{aligned}
$$

Replacing y by $x y$ in the last equation and using Lemma 4.3(iii), we get

$$
\begin{aligned}
0 & =[x x x y+x y x x, d(x)]_{\sigma, \sigma}=[x(x x y+y x x), d(x)]_{\sigma, \sigma} \\
& =\sigma(x)[x x y+y x x, d(x)]_{\sigma, \sigma}+[x, d(x)]_{\sigma, \sigma} \sigma(x x y+y x x) \\
& =[x, d(x)]_{\sigma, \sigma} \sigma(x x y+y x x) .
\end{aligned}
$$

If there exists $a \in U$ such that $[a, d(a)]_{\sigma, \sigma} \neq 0$, then $\sigma(U) \neq\{0\}$ and $0=\sigma\left(a^{2} y+y a^{2}\right)=$ $\left[a^{2}, d(y)\right]_{\sigma, \sigma}$ for all $y \in U$. Thus, $\sigma\left(a^{2}\right) \in Z(R)$ by Lemma 4.1 and Lemma 2.8. So Substituting x by a in (4.12), we get $[a y+y a, d(a)]_{\sigma, \sigma}=0$ for all $y \in U$. Putting ay instead of y, we obtain

$$
\begin{aligned}
0 & =[a(a y+y a), d(a)]_{\sigma, \sigma}=\sigma(a)[a y+y a, d(a)]_{\sigma, \sigma}+[a, d(a)]_{\sigma, \sigma} \sigma(a y+y a) \\
& =[a, d(a)]_{\sigma, \sigma} \sigma(a y+y a) .
\end{aligned}
$$

Since, $[a, d(a)]_{\sigma, \sigma}$ is not a zero divisor, we have $\sigma(a) \sigma(y)-\sigma(y) \sigma(a)=0$ for all $y \in U$. It follows that $\sigma(a)$ centralizes $\sigma(U) \neq\{0\}$. Lemma 4.1 and Lemma 2.8 implies $\sigma(a) \in Z(R)$. But that implies $[a, d(a)]_{\sigma, \sigma}=0$, a contradiction. Therefore, $[x, d(x)]_{\sigma, \sigma}=0$ for all $x \in U$ and R is commutative by Theorem 4.3.

The proof when U is a non-zero left ideal of R is similar.
We finish this section by studying the commutativity of a prime ring R admitting a nonzero (σ, τ)-derivation d and satisfying the condition $d\left(x^{2}\right) \in Z(R)$ for all $x \in R$.

Proposition 4.2. Let R be a prime ring with a non-zero (σ, τ)-derivation d such that τ is an automorphism and $d\left(x^{2}\right)=0$ for all $x \in R$. Then R is a commutative ring of characteristic 2.

Proof. From $d\left((x+y)^{2}\right)=0$, we have $\sigma(x+y) d(x+y)=-d(x+y) \tau(x+y)$ for all $x, y \in$ R. So $\sigma(x) d(x)+\sigma(x) d(y)+\sigma(y) d(x)+\sigma(y) d(y)=-d(x) \tau(x)-d(x) \tau(y)-d(y) \tau(x)-$ $d(y) \tau(y)$. Using $\sigma(x) d(x)=-d(x) \tau(x)$ and $\sigma(y) d(y)=-d(y) \tau(y)$, we get $\sigma(x) d(y)+$ $\sigma(y) d(x)=-d(x) \tau(y)-d(y) \tau(x)$ and then

$$
d(x y)=-d(y x) \quad \text { for all } \quad x, y \in R .
$$

Therefore, R is a commutative ring of characteristic 2 by Lemma 2.14.
Theorem 4.6. Let R be a prime ring with $2 R \neq\{0\}$ and a non-zero (σ, τ)-derivation d such that σ and τ are automorphisms and $d\left(x^{2}\right) \in Z(R)$ for all $x \in R$. Then R is a commutative ring.

Proof. From $d\left((x+y)^{2}\right)=\sigma(x+y) d(x+y)+d(x+y) \tau(x+y) \in Z(R)$ for all $x, y \in R$, we have $\sigma(x) d(x)+\sigma(x) d(y)+\sigma(y) d(x)+\sigma(y) d(y)+d(x) \tau(x)+d(x) \tau(y)+d(y) \tau(x)+$ $d(y) \tau(y) \in Z(R)$. Using $\sigma(x) d(x)+d(x) \tau(x) \in Z(R), \sigma(y) d(y)+d(y) \tau(y) \in Z(R)$ and that $Z(R)$ is a subring of R, we get $\sigma(x) d(y)+d(x) \tau(y)+\sigma(y) d(x)+d(y) \tau(x) \in Z(R)$ for all $x, y \in R$. It follows that $d(x y)+d(y x) \in Z(R)$ for all $x, y \in R$. If $Z(R)=\{0\}$, then R is a commutative ring of characteristic 2 by Lemma 2.14 and then $R=\{0\}$ and $d=0$, a contradiction. So there exists $c \in Z(R)-\{0\}$ such that $d(c y)+d(y c)=2 d(c y) \in Z(R)$ for all $y \in Z(R)$. Thus,

$$
\begin{equation*}
d(c y) \in Z(R) \quad \text { for all } \quad y \in R \quad \text { and for all } \quad c \in Z(R)-\{0\} \tag{4.14}
\end{equation*}
$$

by Proposition 4.1(ii). It follows that $d(c c c)=\sigma(c) d(c c)+d(c) \tau(c c) \in Z(R)$. Since $\sigma(c) d(c c) \in Z(R)$, we have $d(c) \tau(c c) \in Z(R)$ as $Z(R)$ is a subring of R. Using Lemma 2.3, Lemma 2.4 and τ is an automorphism, we get that $d(c) \in Z(R)$ for all $c \in Z(R)-\{0\}$.

If $d(Z(R)) \neq\{0\}$, then there exists $c \in Z(R)-\{0\}$ such that $d(c) \in Z(R)-\{0\}$. From (4.14), we have $d(c c y)=\sigma(c) d(c y)+d(c) \tau(c y) \in Z(R)$. But $\sigma(c) d(c y) \in Z(R)$, so $d(c) \tau(c y) \in$ $Z(R)$ for all $y \in R$. Using that $d(c), \tau(c) \in Z(R)-\{0\}$ and Lemma 2.3, we obtain $\tau(R) \subseteq$ $Z(R)$. Therefore, R is a commutative ring since τ is onto.

If $d(Z(R))=\{0\}$, then for all $c \in Z(R)-\{0\}$, (4.14) implies

$$
d(c y)=\sigma(c) d(y)+d(c) \tau(y)=\sigma(c) d(y) \in Z(R) \quad \text { for all } \quad y \in R .
$$

Since σ is an automorphism, we have $d(R) \subseteq Z(R)$ by Lemma 2.3. Therefore, R is a commutative ring by Lemma 2.12.

References

[1] N. Argaç, A. Kaya and A. Kisir, (σ, τ)-derivations in prime rings, Math. J. Okayama Univ. 29 (1987), 173177 (1988).
[2] M. Ashraf and Nadeem-ur-Rehman, On (σ, τ)-derivations in prime rings, Arch. Math. (Brno) 38 (2002), no. 4, 259-264.
[3] N. Aydin, A note on (σ, τ)-derivations in prime rings, Indian J. Pure Appl. Math. 39 (2008), no. 4, 347-352.
[4] K. I. Beidar, Y. Fong and X. K. Wang, Posner and Herstein theorems for derivations of 3-prime near-rings, Comm. Algebra 24 (1996), no. 5, 1581-1589.
[5] H. E. Bell, A commutativity theorem for near-rings, Canad. Math. Bull. 20 (1977), no. 1, 25-28.
[6] H. E. Bell, On commutativity and structure of periodic rings, Math. J. Okayama Univ. 27 (1985), 1-3.
[7] H. E. Bell, On derivations in near-rings. II, in Nearrings, Nearfields and K-loops (Hamburg, 1995), 191-197, Math. Appl., 426 Kluwer Acad. Publ., Dordrecht.
[8] H. E. Bell and W. S. Martindale, III, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1987), no. 1, 92-101.
[9] H. E. Bell and G. Mason, On derivations in near-rings, in Near-rings and Near-fields (Tübingen, 1985), 31-35, North-Holland Math. Stud., 137 North-Holland, Amsterdam.
[10] Ö. Gölbaşi and N. Aydin, Results on prime near-ring with (σ, τ)-derivation, Math. J. Okayama Univ. 46 (2004), 1-7.
[11] Ö. Gölbaşi and N. Aydin, On near-ring ideals with (σ, τ)-derivation, Arch. Math. (Brno) 43 (2007), no. 2, 87-92.
[12] A. A. M. Kamal and K. H. Al-Shaalan, Commutativity of near-rings with derivations, Algebra Colloquium, to appear.
[13] A. A. M. Kamal and K. H. Al-Shaalan, Commutativity of near-rings with (σ, τ)-derivations, An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 21 (2013), no. 1, 121-142.
[14] J. H. Mayne, Centralizing mappings of prime rings, Canad. Math. Bull. 27 (1984), no. 1, 122-126.
[15] J. D. P. Meldrum, Near-rings and Their Links with Groups, Research Notes in Mathematics, 134, Pitman, Boston, MA, 1985.
[16] P. Nandakumar, On weakly π-subcommutative near-rings, Bull. Malays. Math. Sci. Soc. (2) 32 (2009), no. 2, 131-136.
[17] G. Pilz, Near-rings, second edition, North-Holland Mathematics Studies, 23, North-Holland, Amsterdam, 1983.
[18] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[19] M. S. Samman, Existence and Posner's theorem for α-derivations in prime near-rings, Acta Math. Univ. Comenian. (N.S.) 78 (2009), no. 1, 37-42.
[20] X. K. Wang, Derivations in prime near-rings, Proc. Amer. Math. Soc. 121 (1994), no. 2, 361-366.

[^0]: Communicated by Ang Miin Huey.
 Received: August 18, 2011; Revised: December 12, 2011.

