MATH107 Vectors and Matrices

Dr. Bandar Al-Mohsin
School of Mathematics, KSU
28/9/16

Gauss-Jorden elimination Method

$$
\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{21} & a_{22} & a_{23} & b_{2} \\
a_{31} & a_{32} & a_{33} & b_{3}
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & B_{1} \\
0 & 1 & 0 & B_{2} \\
0 & 0 & 1 & B_{3}
\end{array}\right]
$$

Ex. 4
$x_{1}+x_{2}+2 x_{3}=8$
$-x_{1}-2 x_{2}+3 x_{3}=1$
$3 x_{1}-7 x_{2}+4 x_{3}=10$
Solution:

$$
\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
-1 & -2 & 3 & 1 \\
3 & -7 & 4 & 10
\end{array}\right] \xrightarrow{\left(\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}},-\mathbf{3} \mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{3}}\right)}\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
0 & -1 & 5 & 9 \\
0 & -10 & -2 & -14
\end{array}\right]
$$

$$
\begin{aligned}
& \xrightarrow{\left(-\mathbf{R}_{\mathbf{2}}, \mathbf{1 0} \mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{3}}\right)}\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
0 & 1 & -5 & -9 \\
0 & 0 & -52 & -104
\end{array}\right] \xrightarrow{\left(-\mathbf{R}_{\mathbf{3}} / \mathbf{5 2}\right)}\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
0 & 1 & -5 & -9 \\
0 & 0 & 1 & 2
\end{array}\right] \\
& \xrightarrow{\left(-\mathbf{2 R}_{\mathbf{3}}+\mathbf{R}_{\mathbf{1}}, \mathbf{5} \mathbf{R}_{\mathbf{3}}+\mathbf{R}_{\mathbf{2}}\right)}\left[\begin{array}{cccc}
1 & 1 & 0 & 4 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right] \xrightarrow{\left(-\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{1}}\right)}\left[\begin{array}{cccc}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right]
\end{aligned}
$$

$$
x_{1}=3, x_{2}=1, x_{3}=2 .
$$

Row Echelon Form

- "1" (leading entry) must be in the beginning of each row.
- "1" must be on the right of the above leading entry.
- Below the leading entry all values must be zero.
- A row containing all zero values must be in the bottom.

Examples

$\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2\end{array}\right]$
$\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0\end{array}\right]$

Reduced Row Echelon Form

- "1" (leading entry) must be in the beginning of each row.
- "1" must be on the right of the above leading entry.
- All leading entries in the column containing leading enty must be zero.
- A row containing all zero values must be in the bottom.

Examples

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 2
\end{array}\right]} \\
& {\left[\begin{array}{llll}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Conditions on Solutions

Example 7

For which values of ' a ' will be following system

$$
\begin{align*}
& x+2 y-3 z=4 \tag{1}\\
& 3 x-y+5 z=2 \tag{2}\\
& 4 x+y+\left(a^{2}-14\right) z=a+2 \tag{3}
\end{align*}
$$

(i) infinity many solutions?
(ii) No solution?
(iii) Exact one solution?

Solution:

Augmented matrix is

Conditions on Solutions

Example 7

For which values of ' a ' will be following system

$$
\begin{align*}
& x+2 y-3 z=4 \tag{1}\\
& 3 x-y+5 z=2 \tag{2}\\
& 4 x+y+\left(a^{2}-14\right) z=a+2 \tag{3}
\end{align*}
$$

(i) infinity many solutions?
(ii) No solution?
(iii) Exact one solution?

Solution:

Augmented matrix is

Conditions on Solutions

Example 7

For which values of ' a ' will be following system

$$
\begin{align*}
& x+2 y-3 z=4 \tag{1}\\
& 3 x-y+5 z=2 \tag{2}\\
& 4 x+y+\left(a^{2}-14\right) z=a+2 \tag{3}
\end{align*}
$$

(i) infinity many solutions?
(ii) No solution?
(iii) Exact one solution?

Solution:

Augmented matrix is
$\left[\begin{array}{cccc}1 & 2 & -3 & 4 \\ 3 & -1 & 5 & 2 \\ 4 & 1 & a^{2}-14 & a+2\end{array}\right]$

Conditions on Solutions

Example 7

For which values of ' a ' will be following system

$$
\begin{align*}
& x+2 y-3 z=4 \tag{1}\\
& 3 x-y+5 z=2 \tag{2}\\
& 4 x+y+\left(a^{2}-14\right) z=a+2 \tag{3}
\end{align*}
$$

(i) infinity many solutions?
(ii) No solution?
(iii) Exact one solution?

Solution:

Augmented matrix is

$$
\left[\begin{array}{cccc}
1 & 2 & -3 & 4 \\
3 & -1 & 5 & 2 \\
4 & 1 & a^{2}-14 & a+2
\end{array}\right] \xrightarrow{\left(\mathbf{R}_{\mathbf{2}}-\mathbf{3} \mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{3}}-\mathbf{4 \mathbf { R } _ { \mathbf { 1 } })}\right.}
$$

Conditions on Solutions

Example 7

For which values of ' a ' will be following system

$$
\begin{align*}
& x+2 y-3 z=4 \tag{1}\\
& 3 x-y+5 z=2 \tag{2}\\
& 4 x+y+\left(a^{2}-14\right) z=a+2 \tag{3}
\end{align*}
$$

(i) infinity many solutions?
(ii) No solution?
(iii) Exact one solution?

Solution:

Augmented matrix is

$$
\left[\begin{array}{cccc}
1 & 2 & -3 & 4 \\
3 & -1 & 5 & 2 \\
4 & 1 & a^{2}-14 & a+2
\end{array}\right] \xrightarrow{\left(\mathbf{R}_{\mathbf{2}}-\mathbf{3 \mathbf { R } _ { 1 } , \mathbf { R } _ { \mathbf { 3 } } - \mathbf { 4 } \mathbf { R } _ { 1 })}\right.}\left[\begin{array}{cccc}
1 & 2 & -3 & 4 \\
0 & -7 & 14 & -10 \\
0 & -7 & a^{2}-2 & a-14
\end{array}\right]
$$

The equivalent linear system form is:

$$
\begin{align*}
& x+2 y-3 z=4 \tag{4}\\
& y-2 z=\frac{10}{7} \tag{5}\\
&\left(a^{2}-16\right) z=a-4 \tag{6}
\end{align*}
$$

$$
\xrightarrow{\left(-\frac{1}{7} \mathbf{R}_{2}, \mathbf{R}_{\mathbf{3}}-\mathbf{R}_{2}\right)}\left[\begin{array}{cccc}
1 & 2 & -3 & 4 \\
0 & 1 & -2 & 10 / 7 \\
0 & 0 & a^{2}-16 & a-4
\end{array}\right]
$$

The equivalent linear system form is:

$$
\begin{array}{rlc}
x+2 y-3 z & =4 \\
y-2 z & =\frac{10}{7} \\
\left(a^{2}-16\right) z=a-4 . & \tag{6}
\end{array}
$$

Case I: when $a=4$, then $0 z=0$. So the linear system is:

$$
\begin{aligned}
x+2 y-3 z & =4 \\
y-2 z & =\frac{10}{7} .
\end{aligned}
$$

As the number of equations are less than the number of the variables (unknowns), then there are infinite solutions. Choosing $z=t$, where $t \in \mathbb{R}$, then the solution is

$$
\begin{aligned}
& y=\frac{10}{7}+2 t \\
& x=4+3 t-4 t-\frac{20}{7}=-t+\frac{8}{7} .
\end{aligned}
$$

Case II: When $a=-4$, then $0 z=-8$, therefore, there is no solution.

Case I: when $a=4$, then $0 z=0$. So the linear system is:

As the number of equations are less than the number of the variables (unknowns), then there are infinite solutions. Choosing $z=t$, where $t \in \mathbb{R}$, then the solution is

[^0]Case I: when $a=4$, then $0 z=0$. So the linear system is:

> As the number of equations are less than the number of the variables (unknowns), then there are infinite solutions. Choosing $z=t$, where $t \in \mathbb{R}$, then the solution is

Case II: When $a=-4$, then $0 z=-8$, therefore, there is no solution.

Case I: when $a=4$, then $0 z=0$. So the linear system is:

$$
\begin{aligned}
x+2 y-3 z & =4 \\
y-2 z & =\frac{10}{7} .
\end{aligned}
$$

As the number of equations are less than the number of the variables (unknowns), then there are infinite solutions. Choosing $z=t$, where $t \in \mathbb{R}$, then the solution is

Case II: When $a=-4$, then $0 z=-8$, therefore, there is no solution.

Case I: when $a=4$, then $0 z=0$. So the linear system is:

$$
\begin{aligned}
x+2 y-3 z & =4 \\
y-2 z & =\frac{10}{7} .
\end{aligned}
$$

As the number of equations are less than the number of the variables (unknowns), then there are infinite solutions.

Case II: When $a=-4$, then $0 z=-8$, therefore, there is no solution.

Case I: when $a=4$, then $0 z=0$. So the linear system is:

$$
\begin{aligned}
x+2 y-3 z & =4 \\
y-2 z & =\frac{10}{7} .
\end{aligned}
$$

As the number of equations are less than the number of the variables (unknowns), then there are infinite solutions. Choosing $z=t$, where $t \in \mathbb{R}$, then the solution is

Case II: When $a=-4$, then $0 z=-8$, therefore, there is no solution.

Case I: when $a=4$, then $0 z=0$. So the linear system is:

$$
\begin{aligned}
x+2 y-3 z & =4 \\
y-2 z & =\frac{10}{7} .
\end{aligned}
$$

As the number of equations are less than the number of the variables (unknowns), then there are infinite solutions. Choosing $z=t$, where $t \in \mathbb{R}$, then the solution is

$$
\begin{aligned}
& z=t \\
& y=\frac{10}{7}+2 t \\
& x=4+3 t-4 t-\frac{20}{7}=-t+\frac{8}{7}
\end{aligned}
$$

Case II: When $a=-4$, then $0 z=-8$, therefore, there is no solution.

Case I: when $a=4$, then $0 z=0$. So the linear system is:

$$
\begin{aligned}
x+2 y-3 z & =4 \\
y-2 z & =\frac{10}{7} .
\end{aligned}
$$

As the number of equations are less than the number of the variables (unknowns), then there are infinite solutions. Choosing $z=t$, where $t \in \mathbb{R}$, then the solution is

$$
\begin{aligned}
& z=t \\
& y=\frac{10}{7}+2 t \\
& x=4+3 t-4 t-\frac{20}{7}=-t+\frac{8}{7}
\end{aligned}
$$

Case II: When $a=-4$,

Case I: when $a=4$, then $0 z=0$. So the linear system is:

$$
\begin{aligned}
x+2 y-3 z & =4 \\
y-2 z & =\frac{10}{7} .
\end{aligned}
$$

As the number of equations are less than the number of the variables (unknowns), then there are infinite solutions. Choosing $z=t$, where $t \in \mathbb{R}$, then the solution is

$$
\begin{aligned}
& z=t \\
& y=\frac{10}{7}+2 t \\
& x=4+3 t-4 t-\frac{20}{7}=-t+\frac{8}{7}
\end{aligned}
$$

Case II: When $a=-4$, then $0 z=-8$, therefore, there is no solution.

Case III: When $a \neq \pm 4$,

 $a=0$, the solution is:

Case III: When $a \neq \pm 4$, we have only one solution.

Case III: When $a \neq \pm 4$, we have only one solution. For example when $a=0$, the solution is:

Case III: When $a \neq \pm 4$, we have only one solution. For example when $a=0$, the solution is:

$$
z=\frac{1}{4}
$$

Case III: When $a \neq \pm 4$, we have only one solution. For example when $a=0$, the solution is:

$$
\begin{aligned}
& z=\frac{1}{4} \\
& y=\frac{10}{7}-2\left(\frac{1}{4}\right)=\frac{13}{14} \\
& x=4-2\left(\frac{13}{14}\right)+3\left(\frac{1}{4}\right)=\frac{39}{28} . \quad \text { check!!) }
\end{aligned}
$$

Q: For what value of λ does the system of equations have
(i) have infinitely many solutions?
(ii) have no solution?
(iii) have just one solution?.

$$
\begin{aligned}
3 x+\lambda z & =2 \\
3 x+3 y+4 z & =4 \\
y+2 z & =3 .
\end{aligned}
$$

Ex 3

$$
\begin{align*}
& x+2 y-3 z=5 \tag{7}\\
& 3 x-y=3 \tag{8}\\
& 2 x+4 z=-1 \tag{9}
\end{align*}
$$

Solution:

Augmented matrix is

Ex3

$$
\begin{align*}
& x+2 y-3 z=5 \tag{7}\\
& 3 x-y=3 \tag{8}\\
& 2 x+4 z=-1 \tag{9}
\end{align*}
$$

Solution:

Augmented matrix is

$$
\left[\begin{array}{cccc}
1 & 2 & -3 & 5 \\
3 & -1 & 0 & 3 \\
2 & 0 & 4 & -1
\end{array}\right]
$$

Ex3

$$
\begin{align*}
& x+2 y-3 z=5 \tag{7}\\
& 3 x-y=3 \tag{8}\\
& 2 x+4 z=-1 \tag{9}
\end{align*}
$$

Solution:

Augmented matrix is

$$
\left[\begin{array}{cccc}
1 & 2 & -3 & 5 \\
3 & -1 & 0 & 3 \\
2 & 0 & 4 & -1
\end{array}\right] \xrightarrow{\left(\mathbf{R}_{\mathbf{2}}-\mathbf{3} \mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{3}}-\mathbf{2} \mathbf{R}_{\mathbf{1}}\right)}
$$

Ex3

$$
\begin{align*}
& \quad x+2 y-3 z=5 \tag{7}\\
& 3 x-y=3 \tag{8}\\
& 2 x+4 z=-1 \tag{9}
\end{align*}
$$

Solution:

Augmented matrix is

$$
\left[\begin{array}{cccc}
1 & 2 & -3 & 5 \\
3 & -1 & 0 & 3 \\
2 & 0 & 4 & -1
\end{array}\right] \xrightarrow{\left(\mathbf{R}_{\mathbf{2}}-\mathbf{3} \mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{3}}-\mathbf{2} \mathbf{R}_{\mathbf{1}}\right)}\left[\begin{array}{cccc}
1 & 2 & -3 & 5 \\
0 & -7 & 9 & -12 \\
0 & -4 & 10 & -11
\end{array}\right]
$$

$$
\begin{aligned}
& z=-0.85 \\
& y=0.617 \\
& x=1.205
\end{aligned}
$$

$\xrightarrow{-\frac{1}{7} \mathbf{R}_{2}}\left[\begin{array}{cccc}1 & 2 & -3 & 5 \\ 0 & 1 & -\frac{9}{7} & \frac{12}{7} \\ 0 & -4 & 10 & -11\end{array}\right]$

$$
y=0.617
$$

$x=1.205$
$\xrightarrow{-\frac{1}{7} \mathbf{R}_{2}}\left[\begin{array}{cccc}1 & 2 & -3 & 5 \\ 0 & 1 & -\frac{9}{7} & \frac{12}{7} \\ 0 & -4 & 10 & -11\end{array}\right] \xrightarrow{\mathbf{4} \mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{3}}}$

$y=0.617$

$\xrightarrow{-\frac{1}{7} \mathbf{R}_{2}}\left[\begin{array}{cccc}1 & 2 & -3 & 5 \\ 0 & 1 & -\frac{9}{7} & \frac{12}{7} \\ 0 & -4 & 10 & -11\end{array}\right] \xrightarrow{4 \mathbf{R}_{2}+\mathbf{R}_{3}}\left[\begin{array}{cccc}1 & 2 & -3 & 5 \\ 0 & 1 & -\frac{9}{7} & \frac{12}{7} \\ 0 & 0 & 4.85 & -4.14\end{array}\right]$
$\xrightarrow{-\frac{1}{7} \mathbf{R}_{\mathbf{2}}}\left[\begin{array}{cccc}1 & 2 & -3 & 5 \\ 0 & 1 & -\frac{9}{7} & \frac{12}{7} \\ 0 & -4 & 10 & -11\end{array}\right] \xrightarrow{\mathbf{4} \mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{3}}}\left[\begin{array}{cccc}1 & 2 & -3 & 5 \\ 0 & 1 & -\frac{9}{7} & \frac{12}{7} \\ 0 & 0 & 4.85 & -4.14\end{array}\right]$

$$
\begin{aligned}
& z=-0.85 \\
& y=0.617 \\
& x=1.205
\end{aligned}
$$

Homogeneous system

A system of equation of the form

$$
A X=0 .
$$

(1) The homogeneous system has solutions, $x_{1}=x_{2}=x_{3}=\cdots=0$ (trivial solution)
(3) The homogeneous system has infinitely many non-trivial solutions and trivial solutions.

- The homogeneous system has a non-trivial solution if and only if A is a singular matrix $(|A|=0)$.

[^0]: Case II: When $a=-4$, then $0 z=-8$, therefore, there is no solution.

